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Upon the screening of 16 antiproliferative compounds against Toxoplasma gondii and Neospora caninum, two hydrolyti-
cally stable ruthenium complexes (compounds 16 and 18) exhibited 50% inhibitory concentrations of 18.7 and 41.1 nM (T.
gondii) and 6.7 and 11.3 nM (N. caninum). To achieve parasiticidal activity with compound 16, long-term treatment (22 to
27 days at 80 to 160 nM) was required. Transmission electron microscopy demonstrated the rapid impact on and ultra-
structural alterations in both parasites. These preliminary findings suggest that the potential of ruthenium-based com-
pounds should thus be further exploited.

Toxoplasma gondii and Neospora caninum are cyst-forming
apicomplexan parasites that infect a wide range of hosts. In

an immunocompetent host, infection with either parasite does
not cause disease (1–3). N. caninum has emerged as one of the
most important infectious causes of bovine abortion (4–6). In
contrast, T. gondii causes toxoplasmosis in humans and many
animal species, either in chronically infected individuals dur-
ing a decrease in immunoreactivity or if a seronegative mother
acquires a primary infection during pregnancy, leading to
abortion or serious fetal abnormalities (7–9). Toxoplasmosis
treatment is based on only a few chemotherapeutics with con-
siderable adverse effects (10, 11). In Neospora-seropositive cat-
tle, pregnancy and the associated immunomodulation are al-
ready sufficient to cause recrudescence, fetal damage, and
abortion (2–6). Chemotherapy has been considered a promis-
ing option if effective drugs can be identified (12, 13). Several
compounds were investigated in vitro (14–16), but only a few
were evaluated in small-animal models (14, 17–24).

We have evaluated compounds originally synthesized as an-
ticancer drugs. Currently used metal complexes (25–31) ex-
hibit considerable toxicity. This has stimulated the interest in
other compounds with more acceptable toxicity, such as ruthe-
nium complexes (32–36). Effects of ruthenium compounds on
some bacteria and parasites have been studied (37–46). “Clas-
sical ruthenium complexes” contain heteroatom ligands (e.g.,
azole derivatives), and NAMI-A and KP-1019 have been eval-
uated in phase I clinical trials for cancer treatment (47–49).
Organometallic complexes are defined by at least one metal-carbon
bond. The �6-arene ruthenium(II) phosphite complexes 5, 6, 12, and
15 to 18 were characterized earlier (50), while [Ru(�6-p-cymen-
e)(bipyridine)Cl][Cl] 11 was synthesized as shown previously
(51). Based on our experiences in the design of selective inhibitors
of CYP11B2 (53) and CYP11B1 (54), the pyridine-based com-
pounds 4, 7 to 10, and 14 were from a small in-house library of
CYP enzyme inhibitors. 2,2=-Bipyridine 3 was obtained from
Joachim W. Heinicke, Ernst Moritz Arndt University of Greif-
swald, Greifswald, Germany. The cytotoxic lipophilic imidazo-
lium salt 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride 3
was synthesized as described previously (54–56). The arylimi-
damide DB745 2 (23) was kindly provided by David Boykin,

Georgia State University, Atlanta, GA. The chemical structures
and molecular masses of the drugs are shown in Fig. 1.

Maintenance of human foreskin fibroblasts (HFF) and Vero
(African green monkey) cells and viability assessments by ala-
marBlue cytotoxicity assays were performed as described pre-
viously (50). Transgenic �-galactosidase-expressing T. gondii
(RH) and N. caninum (Nc-1) tachyzoites (kindly provided by
David Sibley, Washington University, St. Louis, MO) were
maintained by serial passage in Vero cells (23, 24). Investiga-
tion of the inhibitory potential of the compounds was done as
previously described (23, 24, 57). In short, confluent HFF
grown in flat-bottom 96-well plates were infected with T. gon-
dii or N. caninum tachyzoites at 103 parasites per well. After 2 h,
compounds 2 to 18 (1 �M for initial screening and 0.5 nM to 1
�M for 50% inhibitory concentration [IC50] determinations)
were added, and after 72 h of cultivation, parasite proliferation
was assessed by the addition of chlorophenol red–�-D-galacto-
pyranoside (Roche Diagnostics, Rotkreuz, Switzerland) in
phosphate-buffered saline. A570 was measured in a VersaMax
96-well multiplate reader (Bucher Biotec, Basel, Switzerland)
at various time points (23, 24).

Initial screening at 1 �M revealed that only ruthenium-
based compounds 16 and 18 completely inhibited the prolifer-
ation of both T. gondii and N. caninum (Fig. 2A and B), exhib-
iting dose-dependent effects (Fig. 2C and D). IC50s (Table 1)
show that N. caninum was slightly more susceptible. Treatment
with all of the other compounds resulted in increased parasite
proliferation (Fig. 2A and B), most likely because of nonlethal
metabolic stress. At a concentration of 1 �M, neither of the com-
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FIG 1 Structures and molecular masses (M) of the compounds investigated in this study. Note that compound 2 (DB745) was used as a positive control
in the assessment of parasite toxicity (see Fig. 2) and was replaced with Triton X-100 in the assessment of HFF host cell toxicity (see Fig. 3).

FIG 2 Proliferation-inhibitory effects upon T. gondii and N. caninum tachyzoites. Compounds 2 to 18 were added to transgenic T. gondii (A) and N.
caninum (B) tachyzoites expressing �-galactosidase at 2 h postinfection of HFF monolayers at a concentration of 1 �M. Parasite proliferation was assessed
by measurement of �-galactosidase activity after 72 h. Results are presented as percentages of �-galactosidase activity relative to that of a control
containing the appropriate amount of dimethyl sulfoxide (c � 100%). (C, D) Compounds 16 and 18 were further assessed in dose-response experiments
with T. gondii (C) and N. caninum (D), and measurements were done as described above.
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pounds caused excessive cytotoxicity in noninfected HFF (Fig. 3A;
Table 1). Exposure of extracellular T. gondii tachyzoites to 250 nM
compound 16 for 1 to 2 h resulted in a pronounced (�90%)
reduction of parasite numbers, while compound 18 had no effect
(Fig. 4A). Both compounds had a severe impact on N. caninum
infectivity (Fig. 4B). Pretreatment of host cells prior to infection
was also investigated. Confluent HFF treated with compound 16
or 18 were washed, infected with tachyzoites, and cultured for
72 h. T. gondii proliferation was not affected (Fig. 5A), but N.
caninum tachyzoites were severely impaired (Fig. 5B). This in-
dicated that these compounds were taken up by the host cells as

described earlier for other ruthenium-based drugs (58) and for
dicationic pentamidine derivatives such as DB750 (59) and
DB745 2 (23, 24).

The parasitostatic and/or parasiticidal activities of com-
pounds 16 and 18 were studied as described previously (23, 24).
In short-term experiments (Table 2), confluent HFF were in-
fected with T. gondii or N. caninum, and at 2 h postinfection,
100, 250, or 500 nM compound 16 or 18 was added for 72 h of
incubation, after which time the drug-containing medium was
replaced with normal medium. Microscopy showed that both
compounds failed to eliminate all of the tachyzoites, but com-
pound 16 was more effective than compound 18. The abilities
of T. gondii and N. caninum cells to adapt to compounds 16 and
18 were explored by slowly increasing the drug concentrations
(Table 3). Infected HFF were initially cultured in the presence
of compound 18 (50 nM for T. gondii; 12 nM for N. caninum)
and compound 16 (20 nM and 10 nM, respectively), and drug
levels were increased by 10 to 30 nM, typically every 3 to 4 days.
Microscopy again demonstrated the higher efficacy of com-
pound 16 (Table 3).

Inspection of drug-treated infected HFF by transmission
electron microscopy (TEM) revealed distinct ultrastructural
alterations in both parasites (Fig. 6 and 7). Untreated T. gondii
(Fig. 6A and B) and N. caninum (Fig. 7A and B) form parasi-
tophorous vacuoles containing proliferating tachyzoites. In
cultures treated with compound 16, the drug rapidly induced

TABLE 1 IC50s of compounds 16 and 18 in noninfected HFF and in N.
caninum and T. gondii tachyzoites expressing �-galactosidase grown in
HFF monolayersa

Compound

IC50
b for:

N. caninum T. gondii HFF

16 6.7 18.7 2.4
18 11.3 41.1 6.95
a Parasite proliferation was assessed by measuring �-galactosidase activity (23, 24, 45),
and HFF cell vitality was assessed by alamarBlue assay (38).
b IC50s are given in nM for parasites and in �M for HFF.

FIG 3 Cytotoxicity assessment of compounds 3 to 18 in HFF monolayers.
(A) HFF were exposed to the drugs at a concentration of 1 �M for 72 h and
viability measurements were done by alamarBlue assay. Results are pre-
sented as percentages of fluorescence measured relative to that of a control
containing the appropriate amount of dimethyl sulfoxide (c � 100%).
Note that compound 2 represents the positive cytotoxicity control (addi-
tion of 1% Triton X-100). In panel B, HFF were exposed to different con-
centrations (0 to 20 �M) of compound 16 or 18 for 72 h and measurements
were done as described above.

FIG 4 Effects of preincubation of extracellular tachyzoites. Extracellular T.
gondii (A) and N. caninum (B) tachyzoites were exposed to compound 16
or 18 for 1 or 2 h and then added to HFF for 2 h. Subsequently, cultures
were further maintained in the absence of the drugs for 72 h and prolifer-
ation was assessed by �-galactosidase activity measurement. Note that
compound 16 affected both T. gondii and N. caninum extracellular
tachyzoites, while compound 18 was active only against N. caninum. Re-
sults are presented as percentages of �-galactosidase activity relative to that
of a control containing the appropriate amount of dimethyl sulfoxide
(control � 100%).
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alterations. Obviously metabolically impaired tachyzoites with
numerous empty or lipid-containing inclusions with electron-
dense granular or amorphous material were visible after 12 h
(Fig. 6C). The nuclear membrane had a fuzzy appearance, and
chromatin appeared to be preferentially located at the nuclear
periphery. At 36 h, most T. gondii tachyzoites exhibited a com-
pletely disorganized cytoplasm, organelles were hardly discern-
ible, and many parasites were embedded in a granular matrix
(Fig. 6D). Similar alterations were evident in N. caninum
tachyzoites treated with compound 16 (Fig. 7C to F), with ef-
fects being most pronounced at 36 h of treatment (Fig. 7E and
F). While these observations indicated a critical metabolic im-
pairment of parasites, the alterations observed do not really
point toward a defined mode of action.

How compound 16 exerts its parasiticidal action remains
unknown. Earlier studies indicated that ruthenium com-
pounds interact with DNA (25, 27). However, more recent
investigations showed that ruthenium compounds bind more
strongly to proteins (60, 61) and potential targets in cancer
cells were postulated, including cathepsin B, P-glycoprotein,
and glutathione S-transferase P1 (62). Exploitation of the
wealth of available knowledge about ruthenium compounds
could represent a starting point for the development of drugs
with antiparasitic properties (63).

Of the eight ruthenium complexes investigated, the set of
phosphite complexes can be divided into hydrolytically labile
(compounds 5, 6, and 12) and hydrolytically stable complexes

(compounds 16 to 18). Only compounds 16 to 18 exerted an-
tiparasitic effects. We assume that the hydrocarbon substitu-
ents around the ruthenium center form a lipophilic sphere that
facilitates the uptake of the compounds, though they should

FIG 5 Effects of preincubation of HFF host cell monolayers prior to infec-
tion on proliferation of T. gondii and N. caninum tachyzoites. HFF mono-
layers were exposed to compounds 16 and 18 for 1, 3, or 6 h; washed; and
infected with T. gondii (A) or N. caninum (B) tachyzoites. Proliferation of
parasites was assessed after 72 h by measurement of �-galactosidase activ-
ity. T. gondii proliferation (A) was not affected, while proliferation of N.
caninum tachyzoites was impaired severely by compound 16 pretreatment
and partially also by compound 18 (B). Results are presented as percent-
ages of �-galactosidase relative to a control containing the appropriate
amount of dimethyl sulfoxide (control � 100%).

TABLE 2 Short-term treatment of N. caninum and T. gondii tachyzoites
grown in HFF is not parasiticidala

Parasite and compound Concn (nM)
Posttreatment culture
time (days)

N. caninum
Control 3
16 100 8

250 9
500 10

18 100 6
250 7
500 8

T. gondii
Control 2
16 100 2

250 6
500 7

18 100 2
250 2
500 3

a T25 tissue culture flasks containing confluent HFF monolayers were infected with
8 � 105 N. caninum or T. gondii tachyzoites. At 2 h postinfection, compound 16 or
18 was added and cultivation continued for 72 h in the presence of each compound
at 100, 250, or 500 nM. The cultures were then washed with medium to remove the
drugs and then incubated further in the absence of the compounds as indicated in
Table 3. Posttreatment culture time indicates the numbers of days of culture in the
absence of drugs until the reemergence of parasite proliferation was detected by
light microscopy.

TABLE 3 T. gondii and N. caninum tachyzoites can adapt to increasing
concentrations of compound 18 but not 16a

Drug treatment
duration (days)

Drug concn (nM)

T. gondii N. caninum

Compound
18

Compound
16

Compound
18

Compound
16

0 50 20 12 8
3 70 40 20 16
6 90 40 40 20
9 110 60 60 30
12 130 80 80 40
16 150 100 80 40
22 170 130 80 Medium
27 190 160 100 Medium
31 210 Medium 120 Medium
35 250 Medium 150 Medium
39 270 Medium 170 Medium
42 300 Medium 200 Medium
45 330 Medium 240 Medium
a T25 tissue culture flasks containing confluent HFF monolayers were infected and
cultured initially in the presence of compound 16 or 18 at the concentrations indicated
on day 0. Proliferation of parasites was monitored daily by light microscopy. At the
time points indicated, the medium was replaced with new medium containing a slightly
elevated concentration of the respective compound, the same concentration, or no drug
at all. Every 6 to 10 days, cultures were trypsinized and seeded onto fresh HFF
monolayers. The experiment was terminated on day 45.
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not be able to penetrate membranes because of their ionic na-
ture. For compound 16, an optimum arrangement and the for-
mation of a ball-shaped sphere around the ruthenium center
can be considered to be of importance. The smaller the surface
of the molecule, the lower the chance of interaction with other
molecules, e.g., in cell membranes. An additional aspect could
be the impossibility of ligand exchange on the ruthenium cen-
ter when almost perfect coverage is provided. The combination
of bulky isopropyl groups on the phosphite ligand, tBu residues

on the 1,3-diketonate moiety, and a sterically demanding �6-
arene unit should effectively prevent nucleophilic attack on the
metal center, leading to very good stability even in the presence
of strong nucleophiles. Presumably, an attack on the phenyl
moieties in compound 17 is easier (for example, by protona-
tion following an SEAr mechanism), which leads to decompo-
sition of the triarylphosphite ligand and subsequent loss of the
stability of the whole complex. In conclusion, the combination
of reduced surface area and best shielding of the ruthenium

FIG 6 Effects of compound 16 on T. gondii ultrastructure. HFF monolayers grown to confluence in T25 culture flasks were infected with T. gondii
tachyzoites, and after 48 h, they were treated with 100 nM compound 16 for 12 and 36 h, respectively; untreated infected cultures served as a control.
Specimens were then processed for TEM as previously described (46, 47) and were viewed on a Philips 400T transmission electron microscope operating
at 80 kV. (A, B) Numerous tachyzoites enclosed in a parasitophorous vacuole near the vicinity of the host cell nucleus (hcnuc), surrounded by a
parasitophorous vacuole membrane (pvm). (B) Actively dividing tachyzoite with conoid (con) and rhoptry (rop) organelles. At 12 h after treatment
started, clear alterations were observed (C). The tachyzoite cytoplasm is largely vacuolized, with vacuoles containing lipid droplets (ld) or membra-
nous and electron-dense material. The white arrows point toward electron-dense chromatin deposits along the nuclear periphery of tachyzoites (nuc �
nucleus). At 36 h of drug treatment (D), tachyzoites appear completely altered, exhibiting a disorganized cytoplasmic morphology, and intracellular
parasites are often embedded in an electron-dense granular matrix (large white arrow in panel D). Bars: A, 1.4 �m; B, 0.8 �m; C, 0.5 �m; D, 0.8 �m.
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center against nucleophilic attacks might explain the superior
antiparasitic activity of 16.
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