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An individual-based modeling (IBM) approach was developed to describe the behavior of a few Listeria monocytogenes cells con-
taminating smear soft cheese surface. The IBM approach consisted of assessing the stochastic individual behaviors of cells on
cheese surfaces and knowing the characteristics of their surrounding microenvironments. We used a microelectrode for pH
measurements and micro-osmolality to assess the water activity of cheese microsamples. These measurements revealed a high
variability of microscale pH compared to that of macroscale pH. A model describing the increase in pH from approximately 5.0
to more than 7.0 during ripening was developed. The spatial variability of the cheese surface characterized by an increasing pH
with radius and higher pH on crests compared to that of hollows on cheese rind was also modeled. The microscale water activity
ranged from approximately 0.96 to 0.98 and was stable during ripening. The spatial variability on cheese surfaces was low com-
pared to between-cheese variability. Models describing the microscale variability of cheese characteristics were combined with
the IBM approach to simulate the stochastic growth of L. monocytogenes on cheese, and these simulations were compared to
bacterial counts obtained from irradiated cheeses artificially contaminated at different ripening stages. The simulated variability
of L. monocytogenes counts with the IBM/microenvironmental approach was consistent with the observed one. Contrasting situ-
ations corresponding to no growth or highly contaminated foods could be deduced from these models. Moreover, the IBM ap-
proach was more effective than the traditional population/macroenvironmental approach to describe the actual bacterial behav-
ior variability.

Since risk analysis emerged as the internationally recognized
framework to improve food control systems, many risk assess-

ments were published that evaluated the probabilities and severi-
ties of adverse health effects resulting from the exposure of con-
sumers to pathogenic microorganisms present in foods. This is
especially the case for the food-borne pathogen bacterium Listeria
monocytogenes. Its ubiquitous nature and its ability to multiply in
many foods during chilled storage fostered the development of
quantitative microbial risk assessment aimed at ranking foods ac-
cording to risk or predicting the impact of management options
(1–6).

The assessment of the microbial behavior of the pathogen is of
the highest importance when performing these quantitative as-
sessments, since listeriosis cases are predominantly linked to the
consumption of highly contaminated foods (2), and the variability
of this behavior is of paramount importance in the context of
exposure assessment (7, 8). The major sources of variability affect-
ing microbial responses in foods are the initial contamination
level, the variability in processing factors, the variability in food
characteristics and in the storage conditions, and the biological
variability, i.e., the variability of microbial behavior.

For several years, it has been accepted that the accurate predic-
tion of the behavior of food-borne pathogens contaminating food
with a few cells requires a single-cell approach, taking into account
the variability of individual cell lag times, since this variability will
strongly influence the lag phase duration of the bacterial popula-
tion (9–13). More recently, studies also emphasized the need to
take into account the single-cell growth probability when assess-
ing the behavior of these food-borne bacteria (14–17). These ob-

servations were used to implement individual-based probabilistic
approaches to assess the bacterial growth in food (18–20).

Published microbial quantitative risk assessment studies take
into account the variability of food characteristics by measuring
physicochemical properties of foods, e.g., pH and water activity,
on relatively large food portions, i.e., 10- or 25-g portions (21, 22).
These measurements expressing the between- and within-batch
variability of product characteristics are then used to run stochas-
tic models describing the growth of food-borne bacteria (19, 22).
To our knowledge, this variability was never described at a mi-
croscale level in a risk assessment framework to assess the impact
of the microenvironment surrounding individual bacterial cells.

A survey performed by Rudolf and Scherer (23) showed that a
higher incidence of L. monocytogenes was observed in European
soft and semisoft red smear cheeses made from pasteurized milk
(8.0%) than in cheeses manufactured from raw milk (4.8%), illus-
trating the significance of postprocess contamination and the role
of the ripening facilities and the environment of dairy plants. This
postprocess contamination leads to a contamination of the sur-
face of cheese with a few cells. Recently published models de-
scribed the behavior of high inocula of L. monocytogenes in cheeses
during ripening according to the location of contaminating cells
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in the core or on the rind (24, 25). These models are useful to
simulate the behavior of large populations of L. monocytogenes in
cheese during ripening in dynamic conditions, but the physico-
chemical characterization of the product at a macroscale level and
the high inoculum do not allow the variability of bacterial behav-
ior at the individual cell level to be assessed.

In this study, we investigated the variability of pH and water
activity (aw) on the surface of smear soft cheese at a microscale
level to characterize the microenvironment surrounding the bac-
terial cells. An individual-based modeling (IBM) approach was
used to describe the variability of the growth of L. monocytogenes
on the cheese surface. This approach was also compared to more
traditional macroscale and population approaches to considering
variability.

MATERIALS AND METHODS
Overview of the experimental design. Smear soft cheese (Munster) was
obtained from a local manufacturer near Strasbourg in the French geo-
graphical area corresponding to the cheese appellation. The cheeses are
made with pasteurized milk, weigh 200 g, and have a diameter of 11 cm.
Curds are salted 2 days after the beginning of the process and are stored at
16°C and 93% relative humidity for 3 days. The cheeses are then ripened in
a maturing cellar at 13.5 � 0.5°C and 98% relative humidity for approx-
imately 25 days. During ripening, the cheeses are washed two times (at 9 to
10 and 13 to 14 days of age) with a smearing solution spread on the surface
using a circular, rotating brush. The surface of the cheese is irregular and
displays hollows and crests.

The physicochemical characteristics of cheese surfaces and their tem-
poral and spatial variability were characterized during ripening with three
different batches (1 to 3). Models describing the variability of pH and aw at
micro- and macroscale levels were derived from these measurements. The
growth of L. monocytogenes in homogeneously blended and irradiated
cheese also was studied to adjust predictive microbiology models to smear
soft cheese (maximum specific growth rate [�opt] and population initial
physiological state characteristic [K]). Three kinds of cheese, exhibiting
different pH/aw combinations, were used to estimate these growth param-
eters.

The environmental and microbiological models were then used to
predict the behavior of low or high inocula of L. monocytogenes on the
surface of cheeses of different ripening ages. Cheeses coming from batches
2 and 3 and artificially contaminated on the surface with approximately 10
and 1,000 L. monocytogenes cells were used to validate model predictions.
Cheese surfaces were previously irradiated to eliminate indigenous micro-
flora and avoid microbiological interactions not taken into account in
current models. Since physicochemical characteristics of cheese surfaces
were frozen by irradiation and cheeses were in a steady state during the
storage, cheeses of different ages were sampled during ripening in batches
2 and 3 to obtain cheeses exhibiting different pH levels for the validation
step. Inoculated cheese surfaces were enumerated after storage under lab-
oratory conditions at 15°C, and observed distributions of L. monocyto-
genes counts were compared to simulated ones with the IBM/microenvi-
ronmental and population/macroenvironmental approaches.

Physicochemical characteristics of smear soft cheese. pH and aw of
cheese surfaces were measured during ripening from 2-day-old curds to
ripened cheeses after approximately 30 days of storage. The macro- and
microscale pH and aw were determined for three batches (1 to 3) and on
three cheeses at each measurement time. For microscale measurements,
different locations of the cheese surface were examined to reveal potential
spatial effects.

(i) Macroscale pH of cheese. The pHs of cheese surfaces were deter-
mined with a pH meter (HI pH 213; Hanna Instruments, Tanneries,
France) according to the FD V04-035 standard (26). The pH meter was
equipped with a combination pH electrode (HI 1131B; Hanna Instru-
ments, Tanneries, France) calibrated with pH 4.01 and 9.18 buffer solu-

tions (Schott Glas, Mainz, Germany). Measurements were performed on
analytical portions consisting of 5 g of cheese surface homogenized in 5 ml
of deionized water.

(ii) Microscale pH of cheese. The microscale pH of cheese surfaces
was determined with a miniaturized 50-�m-diameter pH electrode
(Unisense, Aarhus, Denmark). The microelectrode was manipulated with
a micromanipulator (Unisense, Aarhus, Denmark), and the position of
the electrode on the cheese surface was watched with binocular glasses.
For each 11-cm-diameter cheese surface, the pH was measured at five
different radius locations (0.7, 3.6, 4.3, 4.7, and 5 cm). For each radius, five
measurements were performed in hollows and five were performed on
crests.

(iii) Modeling the pH variability. The increase of cheese pH with time
during ripening was described by the following logistic-type equation:

pH�t� � pHf �
pHf � pHi

1 � exp��R� � exp��R � kpH · t� (1)

where pH(t) is the cheese pH at time t (in days), pHi and pHf are the
asymptotic initial and final pH, respectively, R is a constant expressing a
lag in the pH increase, and kpH is the specific rate of pH increase (day�1).

For the microscale level, the pH of each cheese surface microlocation
was assumed to follow the model described in equation 1, and a random
between-microlocation variability was assumed. Normal distributions
were used to describe the variability of each parameter of the model in
equation 1 (i.e., pHi, pHf, and kpH). Evolution of the microscale pH for
each batch was then modeled with a nonlinear mixed-effect model, and
parameter distributions were estimated by computing the maximum like-
lihood estimators using Monolix software (www.monolix.org; Lixoft).
Expectations of the initial pH, mpHi, and of the rate of pH increase,
mkpH, were dependent on the location on the cheese surface, and the
following equations were proposed to describe these relationships:

mpHi � pHi0 � 0.004 · r2 (2)

where pHi0 is the asymptotic initial pH when the radius on the cheese
surface location, r (in cm), is equal to 0, and

mkpH � �kpH0 � 0.0018 · exp �r� for hollows

kpH0 � 0.0012 · exp �r� for crests
(3)

where kpH0 is the approximate specific rate of pH increase when the
radius on the cheese surface location, r (in cm), is equal to 0.

(iv) Macroscale water activity of cheese. The aw of cheese surfaces was
determined with a dew-point analyzer (FA-st/1; GBX Scientific Instru-
ments, Romans sur Isere, France) according to the ISO 21807 standard
(27) after calibration with a saturated solution of K2SO4. Three samples of
12.6 cm2 (4-cm diameter) were obtained per cheese surface, and the re-
sults were regarded as replicates of the aw value for the cheese under
consideration.

(v) Microscale water activity of cheese. The microscale aw of cheese
surfaces was estimated using a cryoscopic micro-osmometer (Osmomat
030; Gonotec, Berlin, Germany). Cheese extracts were prepared by mixing
100 mg of cheese with 300 �l of deionized water. The mixture was
blended, centrifuged (2,000 rpm for 5 min), and then allowed to stand at
room temperature for 1 h. The osmolality of the cheese extract solutions
was measured in the intermediate phase (28). First, a calibration curve
linking the osmolality of cheese extracts to the aw measured with the
dew-point analyzer was established. Ten artificial samples of cheese were
made by adding and mixing NaCl or water with natural cheese. These
artificial samples exhibited aw ranging from 0.85 to 0.99 (Fig. 1). For each
sample, 10 measures were performed with the cryoscopic micro-osmom-
eter, and four aw values were obtained with the dew-point analyzer. The
relationship between aw and osmolality, Osm (osmol kg�1), is shown in
Fig. 1, and we used linear model II (major axis) regression (29) to estimate
the calibration curve:

aw � 1.006 � 0.169 · Osm (4)

For each cheese surface, the microscale aw was measured in the center,
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at the intermediate radius, and near the edge. For each location, 5 or 10
100-mg samples were analyzed, and each osmolality measurement was
performed in duplicate.

(vi) Modeling the water activity variability. The following random
factors were identified to explain the variability of the microscale aw of the
cheese surface: the factors termed “surface” and “location,” with the loca-
tion factor nested within the surface factor. The factor surface described
the between-surface variability of aw from one cheese surface to another
one. The factor location described the within-surface variability of aw. The
random effects of these factors followed normal distributions centered on
0 with standard deviations �surface and �location, respectively. For the mac-
roscale level, only the factor surface was considered. The parameters were
estimated by computing the maximum likelihood estimators using R soft-
ware (www.R-project.org; R Development Core Team) and the lme4
package (https://r-forge.r-project.org/projects/lme4/2010).

Growth of L. monocytogenes in smear soft cheese. (i) Bacterial strain
and culture conditions. Strain LM14 of L. monocytogenes (serotype 4b;
isolated from the environment of a meat industrial plant and a reference
strain of the French program in predictive microbiology; Sym’Previus
[www.symprevius.org]) was used throughout the study. Stock cultures
were kept frozen at �80°C on cryobeads (Technical Service Consultants
Ltd., Lancashire, United Kingdom).

Cryobeads were incubated at 37°C for 16 h in brain heart infusion
(BHI; Oxoid, Dardilly, France). These first cultures were diluted to obtain
an initial bacterial concentration of approximately 104 CFU ml�1, and
second cultures were performed for 8 h at 37°C. These second cultures
were then diluted as described for the first ones, and the last cultures were
performed in BHI at 15°C for 64 h to obtain approximately 108 cells ml�1

in the late log phase. Appropriate dilutions of these cultures were filtered
through 9-cm-diameter hydrophobic membranes with a pore size of 0.45
�m (Millipore, Molsheim, France). The membranes were then used to
artificially contaminate cheese portions by applying the membranes to
cheese surfaces. The initial contamination was controlled by adjusting the
bacterial concentration of the filtered suspensions. This technique was
preferred to the usual protocol performed with bacterial suspensions to
avoid altering the microlocal cheese environment (especially the aw).

(ii) Growth parameters in irradiated cheese. Whole cheeses of differ-
ent ripening durations were blended to obtain homogeneous matrices
with various physicochemical characteristics. Three cheeses with the fol-
lowing pH/aw characteristics were obtained: 5.12/0.964, 5.81/0.962, and
6.56/0.986. The cheeses were irradiated at 15 kGy with an electron accel-

erator (Vivirad High Voltage; Aérial, Illkirch, France) to eliminate the
technological microorganisms avoiding potential bacterial interactions
and achieving unchanging matrices during storage. Cheeses were homo-
geneously contaminated with L. monocytogenes cells filtered on mem-
branes to approximately 102 CFU g�1, and whole cheeses were divided
into 10-g samples stored at 15°C for 25 days. The L. monocytogenes pop-
ulation was periodically enumerated by homogenizing 10-g portions in
buffered peptone water (BPW; Oxoid, Dardilly, France) with a stomacher
blender (AES, Bruz, France). Appropriate 10-fold dilutions were plated
onto Oxford agar (Biokar Diagnostics, Beauvais, France). At least 15 mea-
surement points were obtained for each growth curve, and enumerations
were performed in triplicate at each measurement time.

Growth parameters were estimated from growth kinetics by fitting the
model of Baranyi and Roberts (30) with the nlinfit subroutine of Matlab
R2011b software (The Matworks Inc., Natick, MA, USA):

log10�N� � log10�Nmax�

� log10�1 �
10log10�Nmax��log10�N0� � 1

1 � exp���max · lag� � exp���max · �lag � t��� (5)

where N is the bacterial concentration (CFU g�1) at time t (h), Nmax is the
maximum cell concentration (CFU g�1), N0 is the initial cell concentra-
tion (CFU g�1), �max is the maximum specific growth rate (h�1), and lag
is the lag time (h).

The effect of storage temperature and food characteristics on �max and
lag is described by a multiplicative function with interactions (31, 32)
derived from cardinal and square-root models:

��T, pH, aw� � CM2�T�CM1�pH�SR1�aw���T, pH, aw� (6)

with CMn�X� �

�
0 X � Xmin

�X � Xmax� · �X � Xmin�n

�Xopt � Xmax�n�1 · ��Xopt � Xmin� · �X � Xopt�
� �Xopt � Xmax� · �n � 1� · Xopt � Xmin � nX�

Xmin � X � Xmax

0 X 	 Xmax

and SRn�X� � �
0 X � Xmin

� X � Xmin

Xopt � Xmin
	n

Xmin � X � Xopt

and ��T, pH, aw� � �
1 
 � 0.5

2(1�
) 0.5 � 
 � 1

0 
 	 1

with


 � 
i

��Xi�
2 · �j
1�1 � ��Xj��

and ��X� � � Xopt � X

Xopt � Xmin
	3

where Xmin, Xopt, and Xmax are the minimal, optimal, and maximal tem-
perature, pH, and water activity, respectively, for growth. The cardinal
values obtained by Augustin et al. (31) for L. monocytogenes were used in
this study, i.e., Tmin � �1.72°C, Topt � 37°C, Tmax � 45.5°C, pHmin �
4.71, pHopt � 7.1, pHmax � 9.61, aw, min � 0.913, aw, opt � 0.997.

The maximum specific growth rate, �max, is calculated according to
the following equation:

�max � �opt · �(T, pH, aw) (7)

where �opt is the maximum specific growth rate when T, pH, and aw are
set to their optimal values. This optimal growth rate is dependent on the
food matrix, and estimates obtained were representative of the cheese
used in this study. The initial physiological state of the bacterial popula-
tion used in these experiments was expressed by the product (19, 33) of
the following equation:

K � �max · lag (8)

The growth parameters �opt and K were assumed to be representative
of validation experiments performed afterwards with artificially contam-

FIG 1 Relationship between the osmolality and the water activity of arti-
ficial samples of cheese mixed with NaCl or water. Points represent the
means from observations, and error bars represent two standard deviations
for 10 replicated experiments for osmolality and 4 replicated experiments
for water activity.
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inated cheese surfaces, and then they were used to perform growth pre-
dictions.

(iii) Behavior of L. monocytogenes on irradiated cheese surfaces.
Surfaces of 11 cm in diameter of smear soft cheese were artificially con-
taminated with L. monocytogenes with cells filtered on membranes to ob-
tain approximately 10 and 1,000 cells per surface. Two batches (2 and 3)
were used, and cheeses were sampled during the ripening period after 5,
12, and 19 days of storage for the first batch (2) and after 7 and 12 days of
storage for the second batch (3). Cheeses were irradiated at 15 kGy, and 20
cheeses were contaminated with each initial level. Afterward, the cheeses
were stored in a laboratory incubator at 15°C for 11 to 21 days depending
on the ripening age of cheeses. Cheeses were not washed during this stor-
age to avoid the redistribution of bacterial cells on the surface, and they
were wrapped in plastic bags to avoid dehydration. The sterility of cheese
was checked after irradiation. Enrichment was performed in tryptone soy
broth supplemented with 0.6% yeast extract (TSBye; Oxoid, Dardilly,
France) for 7 days at 20°C. TSBye was then plated on tryptone soy agar
(TSA; Oxoid, Dardilly, France) to confirm the absence of bacterial or
fungal colonies. Moreover, the pH of irradiated cheese control samples
was measured during the storage length to check the stability of physico-
chemical characteristics.

L. monocytogenes populations were enumerated by homogenizing the
whole cheese surfaces in BPW and plating adequate dilutions on Compass
Listeria agar (Biokar Diagnostics, Beauvais, France). In the absence of a
visible colony, i.e., counting below the enumeration threshold (140 CFU
surface�1 for batch 2 and 14 CFU surface�1 for batch 3), an examination
of L. monocytogenes was performed by adding Fraser supplement (Bio-
Rad, Marnes la Coquette, France) to the BPW suspension. An isolation on
Compass Listeria agar was performed after 24 h of enrichment at 30°C to
confirm the presence of L. monocytogenes.

Growth predictions. Two modeling approaches were used, and their
ability to describe the distributions obtained with artificially contaminated
cheese surfaces was compared. The first approach was an individual-based
modeling approach of the bacterial behavior combined with the microscale
characterization of cheese surface pH and water activity. The second scenario
combined a population approach to bacterial growth and a macroscale de-
scription of cheese characteristics.

(i) IBM and microscale variability of cheese surface characteristics.
The IBM approach assumed that the behavior of each L. monocytogenes
cell contaminating the cheese surface is independent and is characterized
by a single-cell growth probability and a single-cell lag time dependent on
the cell physiological state, as well as on the cheese characteristics and
storage temperature.

The location of each cell was randomly selected on the cheese surface.
The probability for a cell to be located at the radius r (measured in cm) was
described by a distribution with a cumulative distribution function equal
to (r/5.5)2, and the probabilities for a cell to be located in hollows or on
crests were both equal to 0.5. Knowing the location of cells, the microscale
variability of physicochemical characteristics of cheese surfaces then was
taken into account. Individual combinations of pH and aw were generated
for each cell, and the single-cell growth probabilities were calculated just
as the single-cell lag times and growth rates for growing cells were (equa-
tions 6 and 7). Finally, these growth parameters were used in the growth
model (equation 5) to predict the growth yield of each cell.

The following equations were used to describe the impact of growth
conditions on the single-cell growth probability, p, of L. monocytogenes
(14):

p(T, pH, aw) � p(T) · p(pH) · p(aw) (9)

with p(T) � �
0 T � Tinf

exp(T ⁄ c) � exp(Tinf ⁄ c)

exp(Tsup ⁄ c) � exp(Tinf ⁄ c)
Tinf � T � Tsup

1 T 	 Tsup

p(pH) � �
0 pH � pHinf

exp(�pH) � exp(�pHinf)

exp(�pHsup) � exp(�pHinf)
pHinf � pH � pHsup

1 pH 	 pHsup

and p(aw) � �
0 aw � aw,inf

aw � aw,inf

aw,sup � aw,inf
aw,inf � aw � aw,sup

1 aw 	 aw,sup

where c � 7.6, Tinf � �3.6°C, Tsup � 17.3°C, pHinf � 4.34, pHsup � 5.93,
aw, inf � 0.917, and aw, sup � 0.988.

Individual cell lag times, lagi, were derived from the individual physi-
ological state, k, following an extreme value type II with parameters a and
b (33):

(10)

a � E[k] �
1.1642

0.3658
· S[k] and b �

s[k]

0.3658

with S[k] � e1.004 · ln(E[k]) � 0.447 and ln(E[k]) � 0.0103 · ln(K)5 � 0.0065 ·
ln(K)4 � 0.039 · ln(K)3 � 0.0586 · ln(K)2 � 1.1941 · ln(K) � 0.1549, where
E[k] and S[k] are the expected value and the standard deviation of k,
respectively. K is the population initial physiological state characteristic
(equation 8).

(ii) Population behavior and macroscale variability of cheese sur-
face characteristics. In the population approach to bacterial growth, no
variability is assumed between bacterial cells. The behavior of the bacterial
population is described with the model described in equation 5.

Every cell located on the same cheese surface was assumed to face the
same physicochemical characteristics. In this macroscale approach, ran-
dom pH and aw values were generated for each cheese surface. Growth
parameters for L. monocytogenes cells located on these surfaces were cal-
culated with equations 6 and 7, and the growth parameters were used with
equation 5 to predict the bacterial growth.

(iii) Comparison of growth predictions to observed behavior of L.
monocytogenes on irradiated cheese surface. Monte Carlo simulations
were performed with the Matlab R2012b software to predict the growth of
L. monocytogenes on cheese surfaces.

The initial contamination of cheese surfaces was assumed to be log-
normally distributed with an expected value equal to the log mean of three
initial counts and a standard deviation of 0.2 log10 CFU surface�1. This
standard deviation was estimated from preliminary experiments.

The micro- and macroscale variability of physicochemical character-
istics was described with distributions estimated for the two batches used
in this validation study (2 and 3).

In order to obtain stable predictions, 10,000 simulation runs were
performed for each condition, and output-simulated distributions of L.
monocytogenes concentrations on cheese surfaces were compared to dis-
tributions obtained from the 20 counts obtained on artificially contami-
nated surfaces after storage at 15°C.

(iv) Application of the models to the prediction of the growth of L.
monocytogenes during the ripening of smear soft cheese. Monte Carlo
simulations were performed to predict the growth of L. monocytogenes on
the cheese surface during ripening in dynamic pH conditions, unlike the
static conditions used in the validation experiments, and at 13.5°C to
simulate conditions encountered by L. monocytogenes cells during regular
industrial ripening. The IBM and population approaches, coupled with
the micro- and macroscale descriptions of the variability of cheese char-
acteristics, were compared.

The simulations (10,000 runs) were performed by arbitrarily setting
the initial contamination of the cheese surface to 10 cells and using the
mean between-batch microscale pH characteristics (see Table 2), i.e., 4.78
and 4.70 for pHi0 for hollows and crests, respectively; 7.46 for pHfm; and
0.346 and 0.448 day�1 for kpH0 for hollows and crests, respectively. For
macroscale pH (Table 2), the mean pHi was 4.80, the mean pHf was 6.79,
and the mean kpH was equal to 0.421 day�1.
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The differential form of the Baranyi and Roberts (30) model, coupled
with the previously presented secondary model (equation 6), was used to
estimate the growth of L. monocytogenes in dynamic pH conditions after
10, 15, and 20 days of ripening at 13.5°C:

�dN

dt
� � 1

1 � exp(�Q)	 · �max · [1 � exp (N � Nmax)] (11)

dQ

dt
� �max

These equations were solved numerically by the Runge-Kutta method
with the ode23 function of Matlab R2012b software.

RESULTS
Variability of smear soft cheese surface pH in space and time.
The increase in surface pH during cheese ripening is shown in Fig.
2. The pH increased from an initial value of approximately 5 for
2-day-old cheeses to values close to neutrality after approximately
10 days of ripening (15-day-old cheeses) at 13.5 � 0.5°C. For
microscale measurements, this increase in pH was also dependent
on the microlocation on the cheese surface. A faster increase was
observed with increasing radius (Fig. 3), and higher pH values
were observed on crests than in hollows (Fig. 3). The model de-
scribed in equation 1 was fitted to observed data by setting R to an
average value of 4.1, as this constant did not seem affected by the
location on the cheese surface and by the batch under consider-
ation. The normal distributions describing the variability of mi-

croscale pH were then estimated, and parameters of equations
describing the effect of the location on the expected values for the
initial pH and the specific rate of pH increase (equations 2 and 3)
are presented in Table 1. The standard deviations of the distribu-
tions describing the variability of pHi0, pHf, and kpH0 were not
affected by the location on the cheese surface or by the batch.
Differences were noticed between pH evolution for the different
studied batches, illustrating differences in the ripening control of
this kind of cheese in natural conditions (Table 1). The variability
simulated by using these models satisfactorily described the ob-
served microscale pH variability according to the ripening stage
and the location on the cheese surface (Fig. 2).

For macroscale pH, as only small between-cheese differences
were observed, this variability was neglected and only the be-
tween-batch variability was taken into account (Table 1).

Variability of smear soft cheese surface water activity in
space and time. Neither deterministic evolution of the cheese aw

with time during ripening nor batch effect was observed, but great
differences were observed according to the cheese surface under
consideration (Fig. 4). Cheese washings performed during ripen-
ing after 9 to 10 and 13 to 14 days of storage did not have a notice-
able impact on the cheese surface water activity. This potential
effect was probably transcended by the between-cheese variability
(Fig. 4). Estimated parameters of the distributions describing this
variability for macro- or microscale levels are presented in Table 2.

FIG 2 Evolution of the microscale pH of smear soft cheese surface during ripening at 13.5°C on crests at a radius of 0.7 cm (A) and in hollows at a radius of 4.3
cm (B). Crosses are observed values (n � 15 for each date), and dashed lines show the 2.5th and 97.5th percentiles of the modeled variability region.

FIG 3 Microscale pH observed at different radii in hollows (●) and on crests (y) of smear soft cheese surface at 8 days (A) and 14 days (B) of aging. Points and
error bars represent the means and standard deviations from observations for 15 replicated experiments.
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The variability simulated by using this model satisfactorily de-
scribed the observed microscale aw variability according to the
cheese surface and the location on the cheese surface (Fig. 5).

Growth of L. monocytogenes in irradiated smear soft cheese.
Figure 6 presents the L. monocytogenes growth curves obtained at
15°C in the cheese with pH/aw characteristics of 5.81/0.962 and
6.56/0.986. Since no growth was observed in the cheese at pH 5.12
and aw of 0.964, only the growth parameters obtained for the two
other conditions were used to estimate �opt and K in Munster
cheese. The growth model (equation 5) was fitted to these data,
and the following values were obtained in the 5.81/0.962 and 6.56/
0.986 cheeses, respectively: 31 and 4 h for lag and 0.026 and 0.050
h�1 for �max. The deduced optimal growth rate (�opt) values
(equation 7) were 0.23 and 0.22 h�1, and the mean value of 0.23
h�1 was retained for this matrix. The parameter K (equation 8)
was equal to 0.8 and 0.2, respectively. Although the higher ob-
served K value of 0.8 could have resulted from an abrupt shift in
pH or aw experienced by the bacterial cells (34) for the combina-

tion 5.81/0.962, this effect was neglected in the modeling ap-
proach. The parameter K was assumed to reflect the initial physi-
ological state of the bacterial population and was assumed to be
constant for the same preculturing conditions. The mean value of
0.5 was then used for future simulations. By using these estimates
and the secondary growth models described in equation 6, values
of 0.008 h�1 and 2.6 days could be predicted for �max and lag,
respectively, in cheese with 5.12/0.964 characteristics and stored at
15°C. Although growth was predicted, these growth parameters
expressed a very slow bacterial multiplication, which was in agree-
ment with the absence of observed growth for this cheese.

Comparison of IBM combined with microscale approach
and population growth combined with macroscale approach to
describe the L. monocytogenes growth variability on irradiated
smear soft cheese surfaces. Observed and simulated distributions
of L. monocytogenes concentrations on cheese surfaces are pre-
sented in Fig. 7. The IBM/microscale approach appeared more
relevant than the population/macroscale approach to describe the
observed variability of the counts of cheese surfaces. The differ-
ence between the two approaches was more pronounced when the
initial number of cells was low and the intrinsic cheese character-
istics were less favorable to growth (Fig. 7A and B). Under these
conditions, the IBM approach was the only one that was able to

FIG 4 Evolution of the microscale water activity of smear soft cheese surfaces
during ripening at 13.5°C. Values obtained for the three batches are repre-
sented by different symbols, and points and error bars represent the means and
standard deviations from 15 or 30 observations obtained on the same cheese
surfaces. Cheese washings were performed at days 9 or 10 and 13 or 14.

TABLE 1 Fitted parameters of the normal distributions describing the
pH variability of smear soft cheese surfaces

Scale, parameter, and
batch no.

Value for:

pHi0 pHf

(hollows/crests)

kpH0 (day�1)

Hollows Crests Hollows Crests

Microscale
Expectation

1 4.95 4.93 7.62 0.342 0.443
2 4.65 4.50 7.13 0.330 0.448
3 4.74 4.68 7.62 0.365 0.453

Standard deviation 0.027 0.027 0.143 0.0613 0.0613

Macroscale
Expectation

1 4.82 6.80 0.368
2 4.79 6.57 0.445
3 4.79 7.00 0.451

TABLE 2 Fitted parameters of the normal distributions describing the
water activity variability of smear soft cheese surface

Scale and parameter Estimate

Microscale
Expectation 0.969
�surface 0.0041
�location 0.0025
Residual error 0.0009

Macroscale
Expectation 0.969
�surface 0.0047
Residual error 0.0020

FIG 5 Microscale water activity (aw) variability observed for smear soft cheese
surfaces according to the surface and the location. Joined points represent
cumulative distribution functions (cdf) of values observed for one cheese sur-
face and describe the within-surface location variability (�location). The disper-
sion of joined-point distributions illustrates the between-cheese or between-
surface variability (�surface). The solid line is the median cdf of aw for one
surface, and the dashed lines show the 2.5th and 97.5th percentiles of the
modeled between-surface variability region.
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predict no growth for L. monocytogenes on several cheese surfaces
and a large variability in counts (Table 3). When conditions be-
came more favorable to growth with increased pH, the difference
between the two approaches was small (Fig. 7D, E, and F). For a
high initial contamination and unfavorable growth conditions,
the population/macroscale approach underestimated the actual
growth yield (Fig. 7C) and variability (Table 3).

Table 3 summarizes the characteristics of simulated and ob-
served distributions. It must be specified here that for older
cheeses (12 and 19 days of age), the optimal growth rate had to be
increased from 0.23 h�1 to values ranging from 0.30 to 0.34 h�1 to
predict mean bacterial increases in accordance with observed
ones. In spite of a better description of observed data, the IBM/
microscale approach still had a tendency to underestimate the
actual variability for unfavorable growth conditions (Table 3).

Figure 8 presents results obtained when simulating the growth
of L. monocytogenes on cheese surfaces during ripening under dy-
namic pH conditions at 13.5°C to mimic the ripening of a batch of
cheese in natural conditions. Nevertheless, the probable effect of
washing steps on the bacterial dispersion was not taken into ac-
count in the simulation, because no information on the redistri-
bution of bacterial cells on the cheese surface was available. The
results are highly dependent on the approach under consideration
regarding the bacterial behavior, i.e., IBM or population, and the
scale used to describe the variability of physicochemical charac-
teristics, i.e., micro- or macroscale. Only the IBM approach was
able to predict no growth in a noticeable number of cases. With
the microscale approach, the no-growth probability was approx-
imately 0.2 (Fig. 8A), and it was a little more than 0.1 with the
macroscale approach (Fig. 8B). With the IBM approach, bimodal
distributions were observed when ripening increased, reflecting
cheese surfaces where no growth occurred and cheeses where bac-
terial cells found favorable growth conditions. When growth oc-
curred, the variability of contamination was larger with the mi-
croscale approach (Fig. 8A and C) than with the macroscale one
(Fig. 8B and D), and the range of the contamination was approx-
imately 1 log10 larger at the microscale level than the macroscale.

DISCUSSION
Physicochemical characteristics of smear soft cheese. The in-
crease in surface pH during cheese ripening is a typical phenom-
enon (35) linked to the activity of acid-tolerant yeasts, e.g.,
Debaryomyces hansenii, Geotrichum candidum, and Kluyveromyces

species, metabolizing lactate at the beginning of the ripening pro-
cess (36–38). This activity leads to the deacidification of the cheese
surface, allowing the development of less acid-tolerant, aerobic or
facultative anaerobic, halo-tolerant Gram-positive bacteria, e.g.,
Brevibacterium species, Staphylococcus species, Arthrobacter spe-
cies, and Corynebacterium species. For instance, Irlinger et al. (39)
observed an increase in surface pH of Livarot, another kind of
smear soft cheese, from 5.2 to 5.4 up to 7.2 to 7.7 after 25 days of
ripening.

The spatial variability of cheese pH was studied in Camembert
cheese, the best known soft cheese (40, 41). Liu and Puri (41)
investigated the pH distribution from the rind to the core, and for
different radial distances, with a glass electrode. They also ob-
served an increase in pH at the surface of Camembert cheese with
increasing radius, denoting, as in our study, a more intense de-
acidification activity near the edge of the cheese compared to that
at the center. The higher pH values obtained on crests than hol-
lows in our study show a higher activity of yeasts on crests and
outline the large variability of physicochemical characteristics at
the microscale level. The relevance of investigating the heteroge-
neity of product characteristics with microelectrodes was already
emphasized by Abraham et al. (40) with the study of pH and redox
potential gradients of Camembert cheese. The observed pH gra-
dient from the rind to the core (40, 41) could explain the differ-
ence between ultimate pH measured at the macro- and microscale
levels in our study (Table 2) and a macroscale final pH lower than
the microscale one. This can be related to the thickness of analyt-
ical portions used for the macroscale characterization, where curd
below the cheese surface exhibiting a lower pH was inevitably
sampled when preparing the test portions.

The measured water activity was relatively high, in the range of
0.95 to 0.98, and was consistent with the macroscale value of 0.97
observed in curds of similar smear soft cheese (19). Unlike Sch-
vartzman et al. (25), who observed a continuous decrease of the aw

in the rind of smear semisoft cheese from 0.99 to values ranging
from 0.75 to 0.80 during a 28-day ripening period, we did not
observe any trend in the water activity on the cheese surface dur-
ing ripening. This discrepancy is possibly related to the absence of
washing during ripening for cheeses studied by Schvartzman et al.
(25) and the difference in relative humidity of the atmosphere of
the maturing cellars, i.e., 90 versus 98% in our study. The relative
humidity plays an important role in the evolution of cheese rip-

FIG 6 Observed growth of L. monocytogenes in irradiated smear soft cheese at 15°C with pH 5.81 and aw of 0.962 (A) or pH 6.56 and aw of 0.986 (B). The solid
line represents the fitted growth model.
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ening by influencing both the cheese weight loss and the water
activity on the surface (42). Since no effect of the washing steps on
the water activity was detected in our study, we can assume that
the moisture equilibrium was quickly restored. We observed dif-
ferences only between cheese surfaces, possibly reflecting the het-
erogeneity of ripening conditions according to the situation of

cheeses in the manufacturer’s maturing cellar. No spatial effect
was observed for surface microscale aw. Only a relatively small
random variability was observed according to the location on the
cheese surface. This variability is probably underestimated to ac-
curately describe the environment surrounding bacterial cells,
since relatively large 100-mg portions were used for the measure-

FIG 7 Observed and simulated distributions of L. monocytogenes counts on irradiated smear soft cheese surface. (A) Five-day-old cheese from batch 2
contaminated with 8 cells and stored for 21 days at 15°C; (B) 7-day-old cheese from batch 3 contaminated with 21 cells and stored for 19 days at 15°C; (C)
5-day-old cheese from batch 2 contaminated with 630 cells and stored for 21 days at 15°C; (D) 12-day-old cheese from batch 3 contaminated with 7 cells and
stored for 11 days at 15°C; (E) 19-day-old cheese from batch 2 contaminated with 24 cells and stored for 12 days at 15°C; and (F) 12-day-old cheese from batch
3 contaminated with 5,730 cells and stored for 11 days at 15°C. Points are observed counts, the solid line represents the distribution simulated with the
IBM/microscale approach, and the dashed line represents the distribution simulated with the population/macroscale approach. Gray lines display distributions
simulated by adjusting �opt to values ranging from 0.30 to 0.34 h�1 instead of 0.23 h�1.
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ments. This can lead to an underestimation of the variability of
bacterial behavior; however, to our knowledge, this is the first time
that the microscale variability of this environmental factor is char-
acterized in a food matrix, making the predicted bacterial behav-
ior more reliable.

Growth of L. monocytogenes on irradiated smear soft cheese.
The observed optimal growth rate of L. monocytogenes in smear
soft cheese, 0.23 h�1 on average, is consistent with previously pub-
lished values for this kind of matrix. A similar mean optimal value
of 0.212 h�1 was deduced from several studies of different cheeses
(31), and Schvartzman et al. (25) reported optimal average growth
rates of 0.18 and 0.16 h�1 in the core and the rind of smear semi-
soft cheese, respectively.

Although the parameter K increased from 0.2 to 0.8 when the
pH/aw characteristics of cheese changed from 6.56/0.986 to 5.81/
0.962, suggesting an effect of shifts in pH and aw on this physio-
logical parameter, we neglected this potential effect and used the
mean value 0.5. The simulations could be refined by modeling the
effect of the shifts in pH and aw when L. monocytogenes cells are
inoculated on the cheese surfaces (43). However, this simplifica-
tion seemed acceptable, since simulated count distributions were

close to the observed ones even for young cheeses with the lowest
pH (Fig. 7A, B, and C).

The secondary model used in our study considered the effect of
major environmental factors, i.e., temperature, pH, and aw, and
assumed that the other environmental factors were constant dur-
ing cheese ripening. This is especially the case for the lactate con-
centration, of which the effect is implicitly encompassed in the
optimal growth rate. Since the lactic acid concentration decreases
during the ripening process, the optimal growth rate of L. mono-
cytogenes is probably lower in early-stage curd, with high concen-
trations of lactate, than in ripened cheese, where lactate is metab-
olized. This phenomenon could explain why the optimal growth
rate had to be increased to values of 0.30 to 0.34 h�1 to appropri-
ately describe the L. monocytogenes growth yield on the surface of
older cheeses (12 and 19 days of age). The description of the mi-
croscale variability of lactate concentration in cheese and the in-
sertion of this factor in the secondary model could increase the
efficiency of the modeling exercise. However, whatever the �opt

value used, the IBM approach always produced more variable
count distributions than the population approach (Table 3).

Thus, the IBM approach, combined with the microlocal de-

TABLE 3 Observed and simulated distributions of L. monocytogenes counts on soft smear cheese surfaces stored at 15°C

Batch no. and
cheese age
(days)

Mean initial
contamination
(CFU surface�1)

Storage duration
(days) Approacha

No-growth
probability

Contaminationb (log10 CFU
surface�1)

Mean SD

Batch 2
5 8 21 OBS 0.50 3.7 3.29

IBM 0.29 2.8 1.93
POP 0.003 1.6 0.32

5 630 21 OBS 0 7.0 1.54
IBM 0 7.2 0.65
POP 0 3.5 0.32

12 9 13 OBS 0 8.8 0.71
IBM 0.01 5.9 (8.5) 0.79 (1.15)
POP 0 5.6 (7.9) 0.45 (0.62)

12 1,040 13 OBS 0 10.5 0.38
IBM 0 8.1 (10.5) 0.46 (0.46)
POP 0 7.6 (9.8) 0.45 (0.47)

19 24 12 OBS 0 7.7 0.67
IBM 0 6.1 (7.8) 0.49 (0.59)
POP 0 6.1 (7.6) 0.46 (0.57)

19 700 12 OBS 0 9.5 0.68
IBM 0 7.6 (9.3) 0.47 (0.54)
POP 0 7.6 (9.1) 0.46 (0.56)

Batch 3
7 21 19 OBS 0.10 6.9 2.58

IBM 0 7.9 0.83
POP 0 5.2 0.41

7 4,510 19 OBS 0 9.6 1.08
IBM 0 10.5 0.49
POP 0 7.5 0.40

12 7 11 OBS 0 8.0 1.23
IBM 0.02 4.9 (8.0) 0.79 (1.30)
POP 0 5.2 (8.1) 0.43 (0.64)

12 5,730 11 OBS 0 10.3 0.41
IBM 0 8.0 (10.3) 0.42 (0.55)
POP 0 8.1 (10.2) 0.43 (0.54)

a OBS are observed data, IBM are data simulated with the IBM/microscale approach, and POP are data simulated with the population/macroscale approach.
b Values in parentheses were obtained by adjusting �opt to values ranging from 0.30 to 0.34 h�1 instead of 0.23 h�1.
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scription of cheese characteristics, was more relevant than the
population/macroscale approach to describe the observed vari-
ability of the growth of L. monocytogenes on the cheese surface. In
particular, the IBM approach was the only one leading to a pre-
diction of no growth when the number of cells contaminating the
cheese surface was low. Recently, Koutsoumanis and Lianou (16)
reported a highly heterogeneous behavior of individual cells of
Salmonella enterica serovar Typhimurium and emphasized the
importance of this single-cell variability to assess the behavior of
microbial populations resulting from the contamination of foods
with a low number of pathogenic cells (�100 cells). We also ob-
served that the IBM/microscale approach was still not fully satis-
factory to accurately describe the observed growth variability. The
underestimation of the actual variability could be explained by the
heterogeneous distribution of environmental factors not included
in the modeling approach. We can assume, for instance, that the
lactate concentration and the redox potential (40) are heteroge-
neously distributed on the cheese surface, leading to an additional
variability of bacterial behavior. Other factors related to the colo-
nial growth of L. monocytogenes on a solid matrix, such as oxygen
availability, nutrient diffusion, and metabolite accumulation,

could affect the growth of the pathogen and the behavior variabil-
ity. Although the insertion of the lactate concentration into the
model could improve the model performance, the conclusions
regarding the IBM and population approaches would remain un-
changed. The underestimation of the bacterial growth variability
also may be due simply to an underestimation of the variability of
pH and aw of the microenvironment surrounding bacterial cells.

The underestimation of the growth yield observed with the
population approach in unfavorable growth conditions (Fig. 7C)
is probably related to a low macroscale pH, while at the microscale
level the relatively high pH for some locations leads to an extensive
growth of bacterial cells facing these conditions. For instance, the
macroscale pH of 5-day-old cheeses coming from batch 2 was 5.0,
whereas the microscale pH median was equal to 4.9 (pH values
ranged from 4.7 to 5.6 [95% confidence interval]). To illustrate
the impact of pH variability, we can predict that the log10 increase
in bacterial population after 21 days at 15°C and pH 5 is approx-
imately 0.8, but this log10 increase rises to 5.3 when the pH is equal
to 5.6. This observation highlights the importance of performing
challenge tests in homogeneous food to accurately estimate the
growth rate of bacterial populations. Indeed, if challenge tests are

FIG 8 Simulated distributions of L. monocytogenes counts on smear soft cheese ripened at 13.5°C according to the IBM and microscale approaches to
physicochemical variability (A), IBM and macroscale approaches to physicochemical variability (B), population bacterial growth and microscale approaches to
physicochemical variability (C), and population bacterial growth and macroscale approaches to physicochemical variability (D). The dotted line represents the
contamination after 10 days of ripening, the dashed line represents the contamination after 15 days of ripening, and the solid line represents the contamination
after 20 days of ripening.
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performed in heterogeneous foods with high inocula, there will be
a substantial probability of finding cells surrounded by a particu-
larly favorable microenvironment leading to extensive growth.
Under these conditions, the estimated growth rate will not be
representative of the average macroscopic food characteristics.

Modeling approaches. Since we observed large differences be-
tween IBM/microscale and population/macroscale approaches
for low inocula and unfavorable environmental growth condi-
tions but small differences when conditions became more favor-
able to growth, we investigated the consequences to simplify the
complex IBM/microscale approach by shifting to population
and/or macroscale approaches in the case of an initial contamina-
tion of the cheese surface with a few cells at the beginning of the
ripening period.

IBM attempts to model a population or a community by de-
scribing the actions and properties of the individuals composing
the population. In contrast to the population approach, IBM al-
lows individual variability and regards organisms, i.e., bacterial
cells, as the fundamental entities. This is an increasingly estab-
lished approach to describe ecological communities in general
(44), and its use is also becoming more widespread in microbiol-
ogy (45–47). The drawback of this approach is the difficulty, on
one hand, of studying the single-cell behavior, which requires spe-
cific devices (10, 16), and the characterization of the microenvi-
ronment surrounding bacterial cells, which requires micrometh-
ods (40), and, on the other hand, of computing complex models to
simulate the behavior of bacterial populations issued from the
individual cells. The preferred modeling approach should be
translated into effective tools for real-world applications. There-
fore, increasing complexity due to the IBM/microscale approach
should be justified by a significant improvement in the assessment
of the evolution of small populations on heterogeneous food ma-
trices.

Contrary to predictions performed with cheese surfaces con-
taminated at different ripening ages (Fig. 7), the population ap-
proach led to higher counts than the IBM approach when simu-
lating the growth of small initial populations of L. monocytogenes
during cheese ripening (Fig. 8C and D). The mean contamination
was approximately 1 log10 higher with the population approach
than with the IBM approach after 15 days of ripening at 13.5°C,
and growth was systematically predicted with the population ap-
proach. The lower mean contamination obtained with the IBM
approach in this case is caused by very unfavorable pH conditions
at the beginning of the ripening process, corresponding to a sin-
gle-cell growth probability of a little less than 0.2. The macroscale
description of physicochemical characteristics led to lower counts
for L. monocytogenes during cheese ripening compared to those
for the microscale description (Fig. 8B and D). The contamination
was less variable and was approximately 0.5 log10 lower than the
contamination observed with the microscale variability. Finally,
the simplest usual approach, consisting of combining population
behavior and macroscale physicochemical variability (Fig. 8D),
led to a mean contamination of 0.8 log10 above the mean concen-
tration obtained with the IBM/microscale one (Fig. 8A). On the
other hand, the variability of the contamination was greatly re-
duced, with 95% of the contamination ranging from 4.2 to 5.8
log10 CFU surface�1 against 1.0 (no growth) to 6.1 log10 CFU
surface�1 for the IBM/microscale approach after 20 days of ripen-
ing. These results show that with this food model, the individual
risk linked to highly contaminated cheeses would be underesti-

mated by the classic population/macroscale approach, and that
this approach overestimates contamination of cheese where no
growth will occur.

The proposed modeling framework, combining IBM and de-
scription of the food microenvironment, seems highly suitable for
this kind of heterogeneous product to accurately assess the behav-
ior of bacteria that can contaminate foods with only a few cells
and to predict high-risk situations, as well as no-growth or poor-
growth situations corresponding asymptotically to bimodal dis-
tributions of the bacterial contamination for a given batch. At the
batch level, this IBM approach improves the usual exposure as-
sessment, considering only macroscale variability of foods (19).
Future works could explore the relevance of this approach for
other kind of foods and also when considering more or less large
between-batch variability. In the next step, this stochastic ap-
proach could be improved by characterizing other microenviron-
mental factors, and especially the biotic environment, to include
interactions with microorganisms present on the cheese surface
(48, 49), which were deliberately excluded from this study.
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