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Ex vivo antimalarial sensitivity testing in human malaria parasites has largely depended on microscopic determination of schiz-
ont maturation. While this microscopic method is sensitive, it suffers from poor precision and is laborious. The recent develop-
ment of portable, low-cost cytometers has allowed us to develop and validate a simple, field-optimized protocol using SYBR
green and dihydroethidium for the accurate and objective determination of antimalarial drug sensitivity in freshly isolated Plas-
modium vivax and Plasmodium falciparum.

Microscopic examination of ex vivo matured malaria parasites
remains the gold standard method used to determine the

intrinsic sensitivity of fresh Plasmodium vivax and Plasmodium
falciparum isolates to antimalarial drugs (1–8). Ex vivo studies
involve the manipulation of primary clinical samples of Plasmo-
dium spp. in an artificial environment for no longer than 48 h. The
modified WHO microtest assay is sensitive, relatively simple, and
inexpensive and continues to be applied to a range of studies (9–
17), especially those seeking novel antimalarial therapeutics
against drug-resistant malaria (18–21). However, the microscopic
examination of Giemsa-stained thick films central to this method
is tedious and time-consuming and requires skilled microscopists.
Moreover, large inter- and intraobserver variations of parasite
staging are frequently observed (7). Attempts to find an alterna-
tive ex vivo method suitable for both P. vivax and P. falciparum
have been largely unsuccessful due to the high background noise
present in clinical isolates (caused by a number of factors, includ-
ing leukocytes, red blood cell autofluorescence, gametocytes, and
contaminating protein signatures in host plasma) compared with
the low target signal of the maturing parasite (clinical isolates
frequently have parasitemias of �0.1%) (22–24). Perhaps the
most objective and direct method to determine schizont matura-
tion is the use of flow cytometry (25–28). However, the high ex-
pense and fragility of most flow cytometers significantly limit their
use in field laboratories. Fortunately, the recent development of
relatively cheap, portable 2-laser flow cytometers (such as the Ac-
curi C6; Becton, Dickinson) for the first time allows flow cytomet-
ric evaluation of ex vivo susceptibility assays in areas where malaria
is endemic (29). Capitalizing on this new capability, we have de-
veloped a precise, accurate, fast, and simple flow cytometry (FC)
method to conduct ex vivo drug sensitivity assays of P. vivax and P.
falciparum under field conditions using only 2 colors.

Forty-eight isolates of P. vivax and 15 isolates of P. falciparum
with parasitemias of between 0.02% and 0.5%, predominantly at
the early ring stage (�80% of the total stages present), were col-
lected from patients attending clinics at the Thai-Myanmar bor-
der (collected under the approved ethics protocol FMT-019-10
[Mahidol University, Faculty of Tropical Medicine Internal Re-
view Board]). The isolates were transported to the Shoklo Malaria
Research Unit (SMRU) field laboratory within 6 h of collection;

the stages of parasitemia were assessed, and samples were then
depleted of white blood cells (WBCs) by cellulose medium fiber
(Sigma catalogue no. C6288) filtration as previously described
(30) and cultured in the presence of 8 to 514 ng/ml of chloroquine
diphosphate (molecular weight [MW], 515.9) (CQ) or 0.3 to 19
ng/ml sodium artesunate (MW, 406.4) (AS) using the protocol
described by Russell et al. (8). At harvest (�42 h postculture), the
200 �l of blood medium in each well was mixed, and 20 �l from
each well was dispensed into a small curved-bottom tube (Mi-
cronic) and stained with 2 �l of dihydroethidium (Sigma) and 5
�l of SYBR green (made up with 63 �l of phosphate-buffered
saline [PBS]) (Sigma) and incubated for 20 min at room temper-
ature. During the staining time, thick films (3 �l packed red blood
cells [RBCs]) were made from each of the wells for Giemsa stain-
ing and microscopic examination. The fluorescent staining reac-
tion was stopped after 20 min with the addition of 400 �l of PBS,
and the reaction products were stored on an ice brick until FC
analysis. The FC analysis was conducted using an Accuri C6 (Bec-
ton, Dickinson), and the gating strategy was per the method of
Malleret et al. (29) (see Fig. 1A in the supplemental material).
However, two special modifications were made to this protocol.
First, only 60,000 events rather than 300,000 events were counted
(reducing the count time per well from �1.2 min to �15 s). Note
that for parasitemias less than 0.1%, we suggest using 100,000
events (see Fig. 1B and C in the supplemental material). Second,
no CD45 staining was necessary, as �98% of the WBCs were
removed from the isolates by cellulose. Slide counts for the
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FIG 1 Representative flow cytometry plot outputs from chloroquine (CQ) and artesunate (AS) sensitivity assays conducted on P. falciparum (A) and P. vivax (B).
The target gate representing schizont development events is indicated on each plot. Underneath the plots are the corresponding micrographs of Giemsa-stained
thick films collected from the same culture wells.
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microscopy were conducted as described by Russell et al. (8).
The proportion of events in the target gate (for cytometry) or
the mature schizonts (for microscopy) at each of the treat-
ments was normalized to that in the drug-free control. The
proportion of schizont maturation at each corresponding drug
concentration was then entered into the online ICEstimator (http:
//www.antimalarial-icestimator.net/MethodIntro.htm), and the
50% inhibitory concentration (IC50) was calculated by nonlinear
regression analysis (31, 32).

After 42 h of culture in the drug-free controls, the schizont
“target gate” on the cytometer plot corresponding to the cluster of
events with the highest levels of DNA (SYBR green, y axis) and
RNA (dihydroethidium, x axis) can be clearly discerned for both
species (Fig. 1), with the number of events in the FC plot target
gate corresponding to the presence or absence of schizonts in the
thick films (Fig. 1). As it is important to ensure that later-stage
parasites and gametocytes initially present in the precultured iso-
late (time 0) do not confound the events in the schizont gate post-
culture, we ran an FC analysis on these initial samples. Any back-
ground events present near the target gate were then later
subtracted from the events present at gates of the control and
treatments postculture.

The culture success rate for both species was good, with
95.8% (46/50) and 86.7% (13/15) of P. vivax and P. falciparum
samples, respectively, reaching at least 60% schizonts in the
drug-free control after at least 42 h culture. Of the 46 successful
P. vivax cultures, we were unable to model the IC50 data for one
of the CQ assays.

The geometric mean IC50s of P. vivax CQ and AS determined
by microscopy and FC were 17.93 ng/ml (95% CI, 16.2 to 19.84;
n � 45) versus 17.20 ng/ml (95% CI, 15.52 to 19.07; n � 46) and
0.57 ng/ml (95% CI, 0.45 to 0.72; n � 45) versus 0.66 ng/ml (95%
CI, 0.51 to 0.86; n � 45), respectively (Fig. 2C). For P. falciparum,
the geometric mean IC50s of CQ and AS determined by micros-
copy and FC were 45.82 ng/ml (95% CI, 24.22 to 84.2; n � 13)
versus 46.22 ng/ml (95% CI, 24.22 to 88.2; n � 13) and 3.47 ng/ml
(95% CI, 2.38 to 5.1; n � 13) versus 3.97 ng/ml (95% CI, 2.78 to
5.67; n � 13) (Fig. 2A). Paired t test analysis showed that the only
comparison where there was a significant difference was the sen-
sitivity of P. vivax to AS (Fig. 1C) (P � 0.01). It should be noted
that the interspecies differences between the IC50s for CQ and AS
are expected and already noted in numerous studies; however, the
mechanism behind this still remains unknown.

Bland-Altman analysis indicated good agreement between the

FIG 2 Ex vivo sensitivities of Plasmodium falciparum (A) and Plasmodium vivax (C) to chloroquine (CQ) and artesunate (AS), compared using
microscopy and flow cytometry (Accuri C6). Solid horizontal lines and associated values are the geometric mean IC50 (ng/ml). A paired t test showed that
there was a significant difference (P � 0.01) between the AS and FC IC50s, as calculated by microscopy. Bland-Altman comparisons of IC50s for P.
falciparum (B) and P. vivax (D) (AS and CQ combined) were determined by microscopy and flow cytometry. The upper and lower 95% limits of agreement
are denoted by the dotted lines.
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methodologies (independent of drug type used) (Fig. 2B and D).
There was a slight bias toward higher IC50s with the flow cytom-
etry method for both P. falciparum (�0.03 log10 units) and P.
vivax (�0.025 log10 units).

In summary, the antimalarial sensitivity data for the new FC
assay matched those of the traditional microscopy very closely. In
the one case where there was a significant difference between the
IC50 analysis of FC and microscopy, the actual mean difference in
AS IC50 for P. vivax was less than 0.1 ng/ml, which is unlikely to be
of biological significance. This 0.1-ng/ml disparity should also be
put in the context of interreader variability between microsco-
pists, which in our experience can be an order of magnitude
greater. It should also be noted that the time to acquire data from
the FC method is only �2 min per drug (8 wells), compared to 18
min by microscopy. While assay described here used an extended
exposure of AS (42 h), we have also used a more physiological 2-h
“pulse exposure” of AS at the beginning of the FC assay to mimic
the �1-h half-life pharmacokinetic profile of this drug in vivo (this
results in an �10-fold increase in the AS IC50[data not pre-
sented]). In conclusion, our data support the use of this simple FC
protocol as a precise and more objective alternative to the micro-
scopic determination of antimalarial drug sensitivity in fresh iso-
lates of P. vivax and P. falciparum. Further studies involving a
wider range of drugs are planned.
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