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We subjected Staphylococcus aureus ATCC 29213 to serial passage in the presence of subinhibitory concentrations of magainin 2
and gramicidin D for several hundred generations. We obtained S. aureus strains with induced resistance to magainin 2 (strain
55MG) and gramicidin D (strain 55GR) that showed different phenotypic changes in membrane properties. Both exhibited a
change in membrane phospholipid content and an increase in membrane rigidity, while an alteration in net charge compared to
that of the control occurred only in the case of 55MG.

The growing problem of resistance to conventional antibiotics
in pathogens like Staphylococcus aureus and the need for new

alternatives has stimulated interest in the development of antimi-
crobial peptides (AMPs) as human therapeutics (1). This has led
to many AMPs, such as pexiganan (analogue of magainin), grami-
cidins, polymyxin, nisin, daptomycin, and defensin-mimetic mol-
ecule, being entered into clinical trials (2–6). However, it has been
argued in several in vitro studies and recent reports that the use of
AMPs in therapeutic amounts over an extended period of time
might lead to reduced susceptibility due to adaptive changes in
phenotypic and genotypic characteristics of the organism (7–13).
Therefore, the aim of our study was to examine whether S. aureus
bacteria, on continuous exposure to sublethal concentrations of
certain well-studied AMPs (magainin 2 and gramicidin D), alter
their susceptibility and whether resistant strains are selected. Since
the putative mechanism of action of the AMPs studied involves
targeting of the bacterial membrane, analyses of various cell mem-
brane (CM) parameters were performed to understand their role
in the in vitro-selected strains. (This study was presented in part at
the 113th General Meeting, American Society for Microbiology,
Denver, CO, 18 to 21 May 2013.)

To generate AMP-resistant strains, S. aureus ATCC 29213 was
chosen and two cell lines were maintained for each peptide in
Mueller-Hinton broth (MHB). Serial passage was done in two cell
lines for each AMP, one in the presence of noninhibitory and
increasing AMP concentrations (positive-selection line) and the
other in the absence of peptide (control selection line), as de-
scribed elsewhere (10). The experiment was conducted for 55 se-
rial passages, constituting 600 to 700 bacterial generations. Each
transfer was given a strain designation to indicate the serial pas-
sage number. After every 5 transfers, evolution of resistance in the
positive-selection line against magainin 2 and gramicidin D was
identified by determining the MIC in MHB, following NCCLS
guidelines (14). Further confirmation of resistance was done by
performing a bactericidal assay as described before (15, 16).

The development of resistance occurred for both of the AMPs
studied, as indicated by a gradual rise in MIC values with increas-
ing passage number in the positive-selection lines compared to the
MICs in the respective control selection lines. At the 55th passage,
the positive-selection strains showed an �8- and a 128-fold in-
crease in MIC value for magainin 2 (strain 55MG) and gramicidin
D (strain 55GR), respectively, compared to the MIC of the control
(Fig. 1A and B). The MICs of the selected strains were stable after

daily passaging on peptide-free medium for 10 consecutive trans-
fers (data not shown). Furthermore, the in vitro bactericidal assay
(Fig. 1C and D) showed a substantial increase in the number of
CFU/ml in both selected strains (55MG and 55GR) compared to
the growth of the control (55C) after treatment with different
concentrations of the respective AMPs for 1 h.

In order to understand the phenotypic modifications that the
in vitro-selected strains had undergone, analyses of various mem-
brane parameters were done. These included membrane order,
total phospholipid content, flipping of the cationic phospholipid
lysyl phosphatidylglycerol (LPG) to the outer membrane leaflet,
and net cell charge. The membrane order of S. aureus cells was
determined by measuring fluorescence polarization (Shimadzu
RF-5301 PC spectrofluorimeter) using the fluorescent probe DPH
(1,6-diphenyl-1,3,5-hexatriene) as described earlier (17, 18). The
net charge values of the S. aureus strains were determined by mea-
suring zeta potential on an electrophoresis instrument (ZC-2000;
Microtec, Japan) as described elsewhere (19, 20). For membrane
phospholipid (PL) compositional analysis, the major CM PLs of S.
aureus, phosphatidylglycerol (PG), cardiolipin (CL), and LPG,
were separated by 2-dimensional thin-layer chromatography
(TLC) using silica 60 F254 HPTLC plates (Merck) and quantified
as described before (21, 22). Outer-leaflet LPG was detected and
measured using fluorescamine, a fluorescent probe, and quanti-
fied spectrophotometrically as detailed before (21, 22). All assays
were done in triplicate and repeated in three independent exper-
iments on different days, and the results were plotted as means �
standard deviations. Statistical analysis (multiple comparisons
among data sets) was performed with one-way analysis of variance
(ANOVA) using Minitab (15). A P value of �0.01 was considered
significant.
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Our study showed interesting but different phenotypic changes in
the membrane parameters of magainin 2- and gramicidin D-re-
sistant strains (55MG and 55GR, respectively). Although their
membranes were found to be significantly more rigid than those
of control bacteria (P � 0.01), the two strains behaved differently.
For example, 55MG showed a modest increase in rigidity (polar-
ization value, 0.28 � 0.02 [mean � standard deviation]), whereas
55GR showed a substantial increase (polarization value, 0.32 �
0.03) compared to that of the control, strain 55C (polarization
value, 0.23 � 0.02). This characteristic of altered membrane order
was also observed in various S. aureus strains that are nonsuscep-
tible to other cationic AMPs, such as daptomycin and tPMP-1
(23–25). It has been postulated that for each specific AMP and
bacterial membrane interaction, there is an optimum relative
membrane order at which AMPs exert maximum activity. Altered
membrane order is an adaptation under the continuous selective
pressure of the peptide, and this could be due to shifts in fatty acid
unsaturation indices or branched-chain species (26).

Another notable disparity observed was the relative net charge
of the in vitro-selected strains as measured by zeta potential. As
seen by the results shown in Fig. 2, strain 55MG exhibited a re-
markable increase in its cationic charge (3 mV), while in strain
55GR, the zeta potential was almost the same (�14 mV) as that of
the control (�18 mV). The difference in zeta potentials between
the positive-selection and control S. aureus strains reached statis-
tical significance (P � 0.001). The increase in net charge in 55MG
was manifested by a substantial increase in the synthesis of the
cationic phospholipid LPG in its membrane compared to the syn-
thesis of LPG in the membrane of the control strain 55C (Fig. 3A).
In addition, �3-fold greater (P � 0.01) translocation of LPG to
the outer membrane leaflet was observed in 55MG than in the

control (Fig. 3B). These findings are corroborated by previous
reports that increased LPG content and its flipping to the outer
membrane leaflet contribute to an increased positive charge in the
staphylococcal cell surface (27). This underscored the potential
for a charge-mediated repulsion of the peptide as one possibility
for the magainin 2 resistance phenotype. On the contrary, trans-
location of the cationic phospholipid to the outer membrane leaf-
let in strain 55GR did not differ from that in the control (Fig. 3D),
in spite of increased synthesis of total LPG (Fig. 3C). This could be
one of the reasons why the net charge remained almost the same in
55GR as in the control. This phenomenon of increased LPG con-
tent without an effect on bacterial net charge was also reported by
us and other scientists previously (17, 28). Liposome-based data
suggested that, apart from surface charge regulation in AMP-CM

FIG 1 (A, B) MIC (mg/liter) values for S. aureus ATCC 29213 during serial passage in the absence of AMP (control selection line) and with increasing
concentrations of AMPs (positive selection lines) magainin 2 (A) and gramicidin D (B). (C, D) CFU/ml in control and selected S. aureus strains exposed to
different concentrations of magainin 2 (C) and gramicidin D (D). **, P � 0.01 (one-way ANOVA; Minitab).

FIG 2 Zeta potentials of control and selected S. aureus strains. *, P � 0.001
(one-way ANOVA; Minitab).
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interaction, LPG plays an additional role of stabilizing membrane
integrity (29). It is also to be noted that, since gramicidin D is a
neutral AMP (unlike magainin 2, having a net charge of �4), its
mechanism of bactericidal action is not driven by electrostatic
interaction. Rather, other factors, such as membrane rigidity, cell
wall alteration, or hydrophobic interactions, might contribute to
resistance to gramicidin D in S. aureus. It is postulated that the
negatively charged phospholipids are required for the initial
“docking” of AMPs within target CMs (30). Therefore, it was not
surprising that the increase in LPG content in both 55MG and
55GR concomitantly reduced the proportion of negatively
charged PG in our study.

In summary, the current study demonstrated the emergence of
resistance in S. aureus under consistent in vitro exposure to
magainin 2 and gramicidin D. S. aureus cells adapted differently to
defend themselves from the lethal action of the two test AMPs. An
increase in net charge along with a rigid membrane may account
for resistance toward the cationic AMP magainin 2, while an in-
crease in membrane rigidity combined with an alteration of mem-
brane composition may contribute to the adaptive response to the
neutral gramicidin D in S. aureus. Considering the urgent need for
the introduction of AMPs as alternative therapies to combat bac-
terial infection, a study of this kind is of the utmost importance to
enable minimization of the emergence of organisms resistant to
AMPs and to develop AMPs as potentially useful antimicrobial
agents.
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