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16S rRNA sequencing, commonly used to survey microbial communities, begins by grouping individual reads into operational
taxonomic units (OTUs). There are two major challenges in calling OTUs: identifying bacterial population boundaries and dif-
ferentiating true diversity from sequencing errors. Current approaches to identifying taxonomic groups or eliminating sequenc-
ing errors rely on sequence data alone, but both of these activities could be informed by the distribution of sequences across
samples. Here, we show that using the distribution of sequences across samples can help identify population boundaries even in
noisy sequence data. The logic underlying our approach is that bacteria in different populations will often be highly correlated in
their abundance across different samples. Conversely, 16S rRNA sequences derived from the same population, whether slightly
different copies in the same organism, variation of the 16S rRNA gene within a population, or sequences generated randomly in
error, will have the same underlying distribution across sampled environments. We present a simple OTU-calling algorithm
(distribution-based clustering) that uses both genetic distance and the distribution of sequences across samples and demonstrate
that it is more accurate than other methods at grouping reads into OTUs in a mock community. Distribution-based clustering
also performs well on environmental samples: it is sensitive enough to differentiate between OTUs that differ by a single base
pair yet predicts fewer overall OTUs than most other methods. The program can decrease the total number of OTUs with redun-
dant information and improve the power of many downstream analyses to describe biologically relevant trends.

Identifying meaningful operational taxonomic units (OTUs) is a
significant bottleneck in the analysis of 16S rRNA sequences

from complex microbial communities, particularly for large data
sets generated by next-generation sequencing. Spurious sequences
created by PCR or sequencing errors can greatly inflate the total
number of OTUs (i.e., the alpha diversity) of a sample if not
treated properly (1, 2). Although attempts have been made to
address the problem of inflated alpha diversity from erroneous
OTUs (1, 3–5), there have been few attempts to make OTUs that
more accurately reflect ecologically cohesive bacterial popula-
tions.

Most common methods of forming OTUs with next-genera-
tion sequencing use a single genetic cutoff for creating OTUs. The
most common approach for calling OTUs is to cluster sequences
into groups based on sequence identity or genetic distances alone
(taxonomy-independent [6], taxonomy-unsupervised [7], or de
novo [8] clustering). Sequences are usually aligned using a pair-
wise or multiple-alignment algorithm to create a distance matrix,
and sequences are clustered based on a sequence identity cutoff.
Many heuristics have been developed to decrease the computa-
tional demand of OTU calling with various degrees of accuracy,
such as CD-HIT (9), UCLUST (8), DySC (10), and ESPRIT (11).
Another approach is to bin sequences into groups within a well-
curated database of known sequences (taxonomy-dependent [6],
phylotyping [12], or closed-reference [13] clustering). Sequences
that do not match the database are lost, even though they could
represent important, novel organisms. To overcome this problem,
novel sequences can be retained as distinct clusters (open refer-
ence), but this comes at the expense of speed and convenience. All
of these commonly applied techniques rely on a genetic cutoff,
typically �97% sequence identity, to inform OTU clustering.

Although it is common to use a single sequence identity cutoff
for clustering, more insight can be gained by adjusting the se-

quence clustering for individual taxonomic lineages (14, 15) or by
using multiple genetic cutoffs for analysis (16, 17). Hunt et al. (14)
developed a program called AdaptML to infer population bound-
aries from the ecological information on isolated strains. Different
populations were often identified within what would generally be
considered one species. Using two closely related populations pre-
dicted by AdaptML, Shapiro et al. (18) were able to investigate the
early events of bacterial speciation. Koeppel et al. (15) used a pro-
gram called EcoSim to infer units of bacterial diversity by estimat-
ing evolutionary parameters, such as periodic selection and drift,
derived from phylogenetic relationships of isolated strains. This
method can detect more total populations than are supported by
AdaptML using ecology alone (19). Both Youngblut et al. (16) and
Nemergut et al. (17) repeated their analyses at various levels of
clustering. Youngblut et al. (16) found that using an inappropriate
genetic cutoff would have changed their results. All of these stud-
ies demonstrate that more biological insight can be obtained from
diversity studies when the clustering is done at different levels for
different taxonomic lineages.

Sequencing and PCR errors and chimeras are significant issues
in next-generation 16S rRNA libraries of microbial diversity. In-
flated diversity estimates have been problematic with 454 pyrose-
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quencing (1, 3–5, 20) and Illumina data sets (21, 22). Many at-
tempts have been made to reduce the impact of sequencing error
on the estimate of total diversity from chimeric sequences and
PCR and sequencing errors (3–5). With good-quality filtering and
strict error-correcting software, many errors can be detected
and removed from the data set, reducing the effective error
rate. However, these methods do not help in identifying how
these “cleaned” sequences should be grouped into OTUs for
downstream analyses.

We hypothesized that identifying the appropriate grouping for
each taxonomic lineage and detecting many methodological er-
rors can be accomplished using the distribution of sequences
across samples. Bacteria in different populations will respond
uniquely to variation in environmental conditions, resulting in
different distributions across sampled environments. This has
been demonstrated for different taxa under a range of conditions
(14, 15) and during disturbance (16). Conversely, 16S rRNA se-
quences derived from the same population will have the same
distribution across sampled environments, whether the sequences
are from slightly different copies of the 16S rRNA gene in the same
organism or variation of the 16S rRNA sequence within a popu-
lation or are sequences generated randomly in error. Thus,
whether the underlying distribution is the same for ecological (i.e.,
the same population of bacteria) or methodological (i.e., sequenc-
ing-error) reasons, they should be considered a group and merged
into one OTU.

Our goal was to develop a simple algorithm using the distribu-
tion of 16S rRNA sequences across samples to inform the creation
of OTUs for large next-generation sequencing studies. This
method accommodates differences in the level of genetic differen-
tiation across taxa and reduces the number of redundant OTUs
from sequences within the same population or created by se-
quencing error. To apply this method to 16S rRNA surveys created
from next-generation sequencing, we developed an algorithm that
uses distribution information, the relative abundances of se-
quences within all samples, and genetic distance to inform clus-
tering. We compare this method (distribution-based clustering
[DBC]) to commonly applied closed-reference (i.e., phylotyping),
open-reference (i.e., a hybrid of phylotyping and de novo cluster-
ing), and de novo clustering methods using experimental mock-
community data sets. We test the accuracy and sensitivity of all
clustering methods in identifying true input sequences, clustering
sequencing and methodological errors with the input sequences
they are derived from, and retaining the information contained in
the distribution of sequences across samples. Distribution-based
clustering reflects the true distribution of input templates or or-
ganisms more accurately than OTUs from methods using se-
quence identity alone. Finally, we compare the results of each
clustering method on a set of unknown samples from a stratified
lake, showing that DBC calls fewer OTUs than either the de novo
or open-reference method yet is able to discriminate OTUs differ-
ing by a single base pair that show evidence of differing ecological
roles. The source code, test data, and user guide are freely available
for download at https://github.com/spacocha/Distribution-based
-clustering.

MATERIALS AND METHODS
Previously generated mock community. We used an experimental mock
data set that was previously generated (23) to test our clustering method.
Data were downloaded from the supplemental data page of the Gor-

don laboratory website for the paper (http://gordonlab.wustl.edu
/TurnbaughSE_2_10/PNAS_2010.html). The quality-filtered, denoised,
and chimera-free data set was used for further analysis (http://gordonlab
.wustl.edu/TurnbaughSE_2_10/Mock_nochimeras.fna.gz); all sequences
were trimmed to 210 bases, and the first 14 bases were removed. The input
sequences (http://www.w3.org/1999/xlink� xlink:href��http://gordonlab
.wustl.edu/TurnbaughSE_2_10/MockIsolatesV2.fna.gz) and the input
distributions from Table S3 in the supplemental material for reference 23
were also used in the analysis. Distribution information across samples
was not included in the Mock_nochimeras.fna file, so it was derived
from matching sequences in the cleaned data set (http://www.w3.org/
1999/xlink� xlink:href��http://gordonlab.wustl.edu/TurnbaughSE_2
_10/Mock_clean.fna.gz).

The representative sequence for Providencia alcalifaciens was misla-
beled as Providencia rettgeri, as was evident from the distribution of the
sequence across samples (which corresponded to the P. alcalifaciens dis-
tribution [see Fig. S1a in the supplemental material]), and matched many
P. alcalifaciens strains in the NCBI nr database. The P. rettgeri sequence
was replaced with the sequence from the data set that had the correct
corresponding distribution (see Fig. S1b in the supplemental material)
and that matched many P. rettgeri sequences in the NCBI nr database.

Mock-community generation. The second mock community used
for much of this analysis was created from an environmental-clone library
of 16S rRNA sequences from a lake sample. The DNA templates were 16S
rRNA sequences on purified, linearized plasmids (i.e., Sanger clones) as
described in the supplemental material, and approximately 800 bp was
sequenced from the forward primer 27F (24). The input concentration of
each DNA template was measured using a 2100 Bioanalyzer (Agilent
Technologies Inc., Santa Clara, CA). DNA templates were mixed together
into nine different mock communities ranging from simple (com1), with
five DNA templates added, to complex (com9), with 40 total DNA tem-
plates. The DNA templates were mixed to create a range of final concen-
trations. Specific information about mock-community composition can
be found in Tables S1 and S2 in the supplemental material.

Library construction and sequencing. Mock-community libraries
for paired-end Illumina sequencing were constructed using a two-step
16S rRNA PCR amplicon approach diagramed in Fig. S2 in the supple-
mental material. The first-step primers (PE16S_V4_U515_F, 5= ACACG
ACGCT CTTCC GATCT YRYRG TGCCA GCMGC CGCGG TAA-3=;
PE16S_V4_E786_R, 5=-CGGCA TTCCT GCTGA ACCGC TCTTC
CGATC TGGAC TACHV GGGTW TCTAA T 3=) contain primers U515F
and E786R targeting the V4 region of the 16S rRNA gene, as described
previously (25). Additionally, a complexity region in the forward primer
(5=-YRYR-3=) was added to help the image-processing software used to
detect distinct clusters during Illumina next-generation sequencing. A
second-step priming site is also present in both the forward (5=-ACACG
ACGCT CTTCC GATCT-3=) and reverse (5=-CGGCA TTCCT GCTGA
ACCGC TCTTC CGATC T-3=) first-step primers. The second-step prim-
ers incorporate the Illumina adapter sequences and a 9-bp barcode for
library recognition (PE-III-PCR-F, 5=-AATGA TACGG CGACC ACCGA
GATCT ACACT CTTTC CCTAC ACGAC GCTCT TCCGA TCT 3=; PE-
III-PCR-001-096, 5=-CAAGC AGAAG ACGGC ATACG AGATN
NNNNN NNNCG GTCTC GGCAT TCCTG CTGAA CCGCT CTTCC
GATCT 3=, where N indicates the presence of a unique barcode listed in
Table S3 in the supplemental material).

Real-time PCR before the first-step PCR was done to ensure uniform
amplification and avoid overcycling all templates. Both real-time and
first-step PCRs were done similarly to the manufacture’s protocol for
Phusion polymerase (New England BioLabs, Ipswich, MA), as described
in the supplemental material. Samples were divided into four 25-�l rep-
licate reactions during both first- and second-step cycling reactions and
cleaned using Agencourt AMPure XP-PCR purification (Beckman
Coulter, Brea, CA). Environmental libraries were created as previously
described using the two-step primer-skipping library protocol (26). The
libraries were multiplexed together with other libraries not used in this
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study and sequenced using the paired-end approach on either the Ge-
nome Analyzer IIx or HiSeq 2000 Illumina sequencing machine at the
BioMicro Center (Massachusetts Institute of Technology [MIT], Cam-
bridge, MA). For environmental libraries and mock-community samples,
respectively, 144 and 100 bases were sequenced from the forward and
reverse orientations of the construct.

Pre- and postclustering quality control. Raw data were quality fil-
tered using QIIME (version 1.3.0) (27) before processing with any clus-
tering algorithm. The fastq files were processed using the split_library_
fastq.py program of QIIME, truncating sequences when the base quality
dropped below a Phred quality score of 17, which corresponds to a prob-
ability of error around 0.02 (using the command line options –last_bad-
_character Q -r 0). This quality filter stringency was chosen because it was
found to result in the smallest Jensen-Shannon divergence (JSD) from the
true distribution using com9 (see Fig. S3 in the supplemental material).
Only sequences at least 99 bp long after quality filtering were retained
(command line option -min_per_read_length 99). All other parameters
were default parameters. After quality filtering, the complexity region
between the adapters and the primer (see Fig. S2 in the supplemental
material), along with the primer sequence, was removed using the trim-
.seqs program in mothur (version v.1.23.1) (28) and trimmed to 76 bp
with a custom perl script (https://github.com/spacocha/Distribution
-based-clustering/blob/master/bin/truncate_fasta.pl). All sequences not
matching the first 15 bases of the primer were removed.

After each clustering algorithm, representative sequences were picked
using QIIME pick_rep_set.py or a custom perl script (https://github.com
/spacocha/Distribution-based-clustering/blob/master/bin/pick_most_ab
_from_ablist.pl), using the most abundant sequence in the OTU as the
representative. The sequences were used to determine which OTUs were
correct (i.e., matched an input sequence) or incorrect (i.e., did not match
an input sequence). OTUs were removed if the representative sequence
did not align with the part of the 16S rRNA gene that was amplified
(positions 13862 to 15958 of the Silva-based bacterial reference align-
ment; http://www.mothur.org/w/images/9/98/Silva.bacteria.zip) with at
least 76 bp. OTUs with less than 2 counts or 11 counts were filtered out
using QIIME’s filter_otu_table.py (command line option -c 2 or -c 11)
(see Table 2).

Closed-reference, open-reference, and de novo clustering methods.
QIIME was used to make closed-reference (i.e., phylotype) and open-
reference (i.e., a hybrid of phylotyping and de novo approaches) OTUs as
described above. Closed- and open-reference clustering were done with
the pick_reference_otus_through_otu_table.py flow from QIIME. Both
methods used the 12_10 greengenes 97% reference OTU collection (ftp:
//greengenes.microbio.me/greengenes_release/gg_12_10/gg_12_10_otus
.tar.gz) as the reference and UCLUST as the clustering algorithm (pick_o-
tus:otu_picking_method uclust_ref), and new clusters were suppressed
for closed-reference (pick_otus:suppress_new_clusters) but not for open-
reference clustering. Example scripts are presented in the supplemental
material.

mothur (v.1.23.1) (28) was used to form de novo OTUs using average
neighbor hierarchical clustering following some of the standard protocol
for processing 16S rRNA data (http://www.mothur.org/wiki/454_SOP).
Sequences were aligned to the Silva reference alignment and trimmed
using the align.seqs and screen.seqs/filter.seqs commands, respectively. A
distance matrix was created and used to cluster the sequences for the
calling of final OTUs using dist.seqs and cluster commands, respectively.
A list of commands can be found in the supplemental material. The total
numbers of OTUs were similar after chimera checking and lineage re-
moval.

USEARCH (v. 6.0.307; drive5) was used to create the USEARCH de
novo OTU with custom perl scripts for pre- and postprocessing, as de-
scribed in the supplemental material, which are available at https://github
.com/spacocha/Distribution-based-clustering/blob/master/bin.

Distribution-based clustering theory. Distribution-based clustering
works by identifying bacterial populations at different levels of genetic

differentiation for different taxonomic lineages by relying on the distri-
bution of sequences across samples (i.e., the ecology) to determine where
to draw population boundaries. Sequences that differ by only 1 base but
that are found in different samples, suggesting they did not arise from the
same underlying distribution, should be considered separately in down-
stream analyses and put into different OTUs (Fig. 1a). Conversely, 16S
rRNA sequences drawn from the same underlying distribution across
samples could be generated from differences between 16S rRNA operons
in the same organism or variation of the 16S rRNA gene within a popula-
tion or generated from random sequencing errors from a true sequence in
the sample. These sequences should be grouped together and considered a
unit (Fig. 1b). A statistical test (i.e., the chi-squared test) can be used to
determine whether two sequences have similar distributions across librar-
ies. Applying these metrics can merge sequences derived from the same
population (e.g., sequencing error or interoperon variation) but retain
ecologically distinct sequence types, even if they occur at the same genetic
distance. It is important to note that the distribution-based approach will
generate more spurious OTUs when sequencing errors are created in a
nonrandom way across samples (i.e., higher error rates in a subset of
libraries).

Distribution-based clustering algorithm. Distribution-based clus-
tering requires two input files, an OTU-by-library matrix and a distance

FIG 1 Schematic showing how the distribution-based clustering algorithm
forms OTUs. Similar symbols represent sequences originating from the same
template, organism, or population. Gray shading represents dominant se-
quences, and white represents low-abundance variants or errors. OTUs are
represented as ovals or circles encompassing one or more symbols. (a) Hypo-
thetical phylogenetic tree of the genetic relationship between various se-
quences represented by different symbols and shading. The distribution of two
dominant sequences across one environmental parameter is shown. Using
both the genetic and distribution information, distribution-based clustering
identifies these as sequences originating from different organisms or popula-
tions and puts them in different OTUs. (b) Phylogenetic relationship and
distribution of a dominant sequence and a low-abundance variant across some
ecological parameter. Based on the sequence identity and distribution, distri-
bution-based clustering merges these sequences in the same OTU. (c) Using
genetic information alone, there is no way to achieve the desired clustering of
sequences by symbol. Using a higher sequence identity cutoff will keep all
dominant sequences in separate OTUs but will keep some low-abundance or
erroneous sequences in different OTUs. Alternatively, using a lower identity
cutoff, all low-abundance variants will be merged with the abundant variants,
but the diamonds and squares are merged, as well.
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matrix. Both the distribution and abundance are obtained from the OTU-
by-library matrix. The distance matrix is important for ordering se-
quences according to increasing distance from the candidate sequences, as
described below. Any method can be used to create a distance matrix. We
use FastTree (29) with the -makematrix option, using both the aligned
and unaligned sequences as inputs. This creates Jukes-Cantor-corrected
distances and balances speed with accuracy. While this method works well
on these mock communities, other distance matrices may be used as in-
put, which may or may not improve accuracy.

OTUs are built in a stepwise manner (Fig. 2) in the following six steps.
(i) Choose a candidate sequence. This sequence will either be added to an
existing OTU or create a new OTU with itself as the representative, de-
pending on the results of the subsequent steps. Consider candidate se-
quences from the pool of existing unique sequences in order of decreasing
abundance. Abundance is defined as the number of times each sequence
has been seen across all libraries. (ii) Choose an OTU from the pool of
existing OTUs, sorted by decreasing distances of the representative se-
quence from the candidate. An OTU is evaluated if the representative
sequence of the OTU is within the maximum genetic variation allowed to
be within the same population (default -dist 0.1, the Jukes-Cantor-cor-
rected distance of 0.1). Jukes-Cantor-corrected genetic distances were cal-
culated using the -makematrix flag of FastTree (29), but other distance
matrices can be used. The important information is the relative relation-
ship of OTU representatives to the candidate sequence. Additionally, ge-
netic distance is determined from the minimum of aligned and unaligned
distances to reduce the impact of misalignment. If an OTU is found whose
representative sequence is within the genetic-distance cutoff, proceed to
step 3. Otherwise, stop the search and go to step 6. (iii) Determine whether
the representative sequence of the candidate OTU satisfies the abundance
criteria. The abundance of the representative sequence must be greater
than a user-defined abundance threshold, defined as a k-fold increase over
the abundance of the candidate sequence. To remove sequencing errors,
thus creating OTUs that represent true sequences (not populations), a
10-fold abundance threshold is appropriate (-abund 10, default). This
high abundance threshold restricts the total number of comparisons to
OTUs with representatives that are much more abundant than the candi-
date sequences, which is common for sequences generated in error. To

create OTUs that represent populations, a lower abundance threshold
should be used, allowing comparisons with candidate sequences that are
at an abundance similar to that of the OTU representative (-abund 0).
This low abundance threshold provides the possibility to merge sequences
together that were generated from interoperon variation or sequence vari-
ation with the population. If the representative sequence satisfies the
abundance criteria, proceed to step 4. Otherwise, return to step 2 and
choose another candidate OTU. (iv) Determine whether the candidate
and representative sequences are distributed across samples in similar
manners. The candidate sequence will be merged into the OTU unless
there is evidence that its distribution is different from the distribution of
the representative. The distributions of the candidate sequence (i.e., the
observed distribution) and the OTU representative sequence (i.e., the
expected distribution) are similar if the chi-squared test results in a P value
above a user-defined cutoff (default � 0.0005). Sequences with low
counts (e.g., singletons) will also result in high P values. P values are
calculated using the R statistical language (chisq.test) or simulated
(chisq.test:simulate.p.value) when the expected value is below 5 for more
than 80% of the compared values. As an additional option, the JSD can be
used. The JSD is commonly used to measure the distance between two
distributions and can be applied when the difference between distribu-
tions is statistically significant but distributed in a similar manner (i.e., the
chi-squared test is too sensitive). The JSD will commonly merge distribu-
tions that look similar by eye but are found to have statistically significant
differences. However, it cannot be used as the sole metric, as it performs
poorly on distributions with low counts. If the distributions are different,
the next OTU is evaluated (step 2). Otherwise, proceed to step 5. (v) Add
the sequence to the OTU. If the candidate sequence is distributed similarly
to the representative sequence of the candidate OTU, the candidate se-
quence is added to the OTU and step 1 is repeated. (vi) Define OTU
representatives. If none of the existing OTUs satisfy the criteria outlined
above, an OTU is created with the candidate sequence as the representa-
tive of the OTU. This new OTU will not be merged with OTUs, but other
sequences may be added.

Default parameters were chosen after varying each parameter in iso-
lation and evaluated based on the total number of correct, merged, and
incorrect-sequence OTUs (see Fig. S4 in the supplemental material). De-

FIG 2 Outline of the decision-making process used during distribution-based clustering. The rounded rectangles indicate the beginning and end of the process,
and the arrows point to the next step in the process. The hexagons indicate a loop, with the sorting criteria shown within the hexagon. The diamonds indicate a
decision step, with the question contained within the diamond and arrows directing how the program will respond. The rectangles indicate action steps, where
sequences are categorized as either representatives (rep.) of a new OTU or merged into an existing OTU.
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fault parameters were used to cluster the mock-community sequences
generated in this study. The previously generated, cleaned data set (23)
was clustered with the following parameters: the distance cutoff was 0.05,
the abundance criterion was 0, and the Jensen-Shannon divergence was
used with a cutoff of 0.07. Ideally, these parameters would be optimized
for different platforms.

Complete versus parallel algorithms. With the “complete” process,
all sequences were analyzed together in the analysis. In the “parallel” pro-
cess, sequences were preclustered with a heuristic approach (see below),
and sequences in each cluster were processed separately, in parallel. How-
ever, sequences could be preclustered with different algorithms (e.g.,
nearest-neighbor single-linkage clustering), as long as the number of se-
quences that were grouped with their nearest neighbor was maximized.
Data were preclustered with UCLUST into clusters for the new and pre-
viously generated mock communities, respectively, using a progressive
clustering algorithm (https://github.com/spacocha/Distribution-based
-clustering/blob/master/ProgressiveClustering.csh). Clustering was ac-
complished in several iterations by gradually relaxing the cutoff threshold.
Sequences were first sorted by abundance and clustered with the UCLUST
algorithm at 0.98 (1 bp difference is already below 0.99). The seeds of these
clusters were sorted by abundance and clustered again at 0.97. This was
repeated to the lowest threshold value of 0.9 for the mock communities
generated in this study and 0.95 for the Turnbaugh et al. mock community
(23). The resulting files were consolidated to make a list of clustered se-
quences. The distribution-based algorithm is used in parallel on se-
quences in these clusters. If the abundance of all members of the group is
lower than the abundance threshold, the cluster remains intact (i.e., a
low-count cluster with no information). However, the cluster is divided
when two OTU representative sequences are identified.

Assessment of accuracy. We assessed how well the resulting OTUs
represent the true input sequences. We expect sequences originating from
the same input organism or template to be clustered together and se-
quences originating from different input organisms or templates to re-
main distinct, even with as little as 1 bp of difference between them. The
corresponding input organisms or template for each resulting sequence
was determined as the smallest distance (the minimum of aligned and
unaligned distances) to an input sequence for each unique sequence. Se-
quences were weighted by abundance, so more abundant sequences re-
sulted in more total counts.

To assess the accuracy of each method against our criteria, we used two
measures of a test’s accuracy, the F-score and the Matthew’s correlation
coefficient (MCC). True positives (TP) are defined as a pair of sequences

in the same OTU originating from the same input organism or template.
False positives (FP) are defined as a pair of sequences in different OTUs
originating from the same input. True negatives (TN) are defined as a pair
of sequences in different OTUs originating from different inputs. False
negatives (FN) are defined as a pair of sequences in different OTUs orig-
inating from the same input or if either of a pair of reads was not assigned
to an OTU (only affecting closed-reference clustering). These were calcu-
lated with various scripts using the resulting OTU list from each algo-
rithm, along with a mapping file indicating the input (determined as
described above) and a translation file mapping reads to libraries (https:
//github.com/spacocha/Distribution-based-clustering/tree/master
/confusion_matrix_calc).

The F-score was calculated as follows: F-score � 2 � (precision �
recall)/(precision � recall), where precision is defined as TP/(TP � FP)
and recall is defined as TP/(TP � FN). The MCC was calculated as previ-
ously described (30): MCC � (TP � TN � FP � FN)/�[(TP � FN)(TP
� FP)(TN � FP)(TN � FN)], with TP, FP, TN, and FN as defined above.

Comparison with the input community. To compare the resulting
OTU-by-library matrix with the expected distribution (see Table S3 of
Turnbaugh et al. [23] and Table S2 in the supplemental material), we used
the JSD from mock community com9 and Uneven2 library for the Turn-
baugh et al. (23) data set for comparison. OTUs were paired to an input
sequence through the sequence representative (i.e., the most abundant
sequence in the OTU) with a match to an input sequence or by the most
abundant OTU with a best Blast hit to the input organism. The total
abundance of reads mapping to each OTU from com9 or Uneven2 was
compared to the concentration of each corresponding mock-community
member (Fig. 3c and 4c). The JSD was calculated with dist_mat (metric �
JS) using PySurvey (https://bitbucket.org/yonatanf/pysurvey).

Nucleotide sequence accession numbers. All clone sequences were
submitted to GenBank (accession no. KC192376 to KC192544). Illumina
data were submitted to the Sequence Read Archive under study accession
numbers SRP029590 (mock community) and SRP029470 (environmen-
tal sample).

RESULTS
Distribution-based clustering goals. Our goal was to develop a
clustering algorithm that merges sequences derived from the same
input organism or template but keeps separate those originating
from different input organisms or templates (Fig. 1). Sequences
derived from the same input could represent microdiversity from

FIG 3 Distribution-based clustering results in more correct OTUs, fewer incorrect OTUs, and more accurately clustered reads originating from the same
template in a mock community. (a) Total numbers of correct (left axis) and incorrect (right axis) OTUs predicted by each clustering method. A correct OTU is
one in which the representative sequence matches one of the input sequences. (b) Accuracy of each clustering method at grouping together reads originating from
the same template as measured by both the F-score and Matthew’s coefficient correlation. (c) The JSD is used as a measure of distance from the input of resulting
communities created by applying each clustering method.
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interoperon variation, closely related organisms within the com-
munity with highly similar functions and the same fitness across
sampled environments, or sequencing error. However, we also
wanted an algorithm that has the sensitivity to detect different
populations, even if the similarity between sequences in different
populations is greater than what is typically used for species des-
ignations (i.e., above 97% sequence identity) or within the range
of sequencing error. We compare the resulting method using two
different experimental mock communities to demonstrate how
this algorithm compares to more commonly applied clustering
methods based on sequence identity alone.

Distribution-based clustering more accurately clusters se-
quences created in error. Distribution-based clustering creates
OTUs that more accurately represent the input sequences based
on the total number of OTUs, how sequences are grouped to-
gether into OTUs, and the distribution of OTUs across samples.
Thirty-eight mock template sequences remain in distinct OTUs in
both distribution-based and open-reference clustering, resulting
in the largest number of OTUs containing at least one of the input
sequences (Fig. 3a, Correct). De novo clustering has fewer correct
OTUs because some sequences are merged into the same OTU.
Closed-reference clustering retains fewer correct OTUs because
some of the community members do not match the database with
sufficient identity. Distribution-based clustering predicts the low-
est number of spurious, incorrect OTUs (Fig. 3a, Incorrect).
Open-reference clustering predicts the largest number of incor-
rect OTUs of all methods.

Distribution-based clustering also groups reads originating
from the same template sequence together more accurately. A
typical benchmark of OTU accuracy is whether the algorithms
cluster sequences that are within a specific genetic distance or
sequence identity threshold (12). However, our benchmark is
whether reads that originate from the same mock template are
grouped together and reads originating from different templates
are kept apart. The F-score and Matthew’s correlation coefficient
are both measures of classification accuracy that have been used
previously to benchmark OTU definitions (12). By either metric,
distribution-based clustering outperforms all of the other meth-

ods at accurately discriminating input sequences (Fig. 3b). De
novo clustering predicts more true positives than distribution-
based clustering but also predicts about 10 times more false posi-
tives than distribution-based clustering (Table 1) because it tends
to overcluster the closely related true sequences. Closed-reference
clustering has the lowest scores due to a large number of false
negatives for sequences that do not match the database.

Distribution-based clustering produces a resulting community
that is more similar to the input community in both the total
number and relative abundance of OTUs. The number of reads
mapping to each OTU from one high-quality library (com9) was
compared to the input sequences using the Jensen-Shannon di-
vergence (Fig. 3c). Distribution-based clustering (both complete
and parallel applications [see “Complete versus parallel algo-
rithms” above for details]) had the smallest Jensen-Shannon di-
vergence from the input community of all clustering algorithms.
Both de novo algorithms result in the largest divergence from the
true distribution of all clustering methods because some input
sequences are merged together. Closed-reference clustering dis-
carded many input sequences that did not match the database,
resulting in a larger calculated divergence from the input commu-

FIG 4 Distribution-based clustering predicts fewer OTUs and more accurately clustered reads originating from the same organism in a cleaned, denoised, and
chimera-free mock community. (a) Total number of OTUs predicted by each clustering method. (b) Accuracy of each clustering method at grouping together
sequences that originated from the same organism, as measured by both the F-score and Matthew’s coefficient correlation. (c) The JSD is used as a measure of
distance from the input of resulting communities created by applying each clustering method.

TABLE 1 Abilities of clustering algorithms to group reads from the
same input sequence together into the same OTU

Resulta

No. predicted

Distribution based De novo Reference based

Complete Parallel USEARCH Avgb Open Closed

TP 8.57E8 8.45E8 9.46E8 8.60E8 6.61E8 6.68E8
FP 6.86E7 5.08E7 7.36E8 3.92E8 1.32E4 1.10E4
TN 1.48E11 1.48E11 1.48E11 1.48E11 1.48E11 1.37E11
FN 2.02E8 2.14E8 1.13E8 1.99E8 3.98E8 1.15E10
a TP, a pair of sequences in the same OTU with the same sequence of origin; FP, a pair
of sequences in different OTUs with the same sequence of origin; TN, a pair of
sequences in different OTUs with different sequences of origin; FN, a pair of sequences
in different OTUs with the same sequence of origin or if either of a pair of reads was not
assigned to an OTU (only affects closed-reference clustering).
b Avg, average-linkage hierarchical clustering.
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nity. Open-reference clustering does not merge as many input
sequences as de novo clustering and does not discard any true
sequences like closed-reference clustering but was still less accu-
rate than distribution-based clustering.

Filtering out low-abundance OTUs. Low-abundance OTUs
are often discarded because they do not contain much informa-
tion. We also compared the total numbers of OTUs remaining
after filtering to various levels (Table 2). After filtering out single-
tons (i.e., OTUs with less than 2 counts), distribution-based clus-
tering still predicts many fewer OTUs than any other method for
the mock community and fewer than de novo and open-reference
clustering in the environmental sample. However, the total num-
bers of OTUs are similar after filtering out OTUs with 10 or fewer
counts.

DBC more accurately groups sequences from the same or-
ganism. The mock community generated by Turnbaugh et al. (23)
provides the opportunity to highlight the power of this approach
at grouping together sequences originating from the same organ-
ism while still keeping the power to resolve closely related organ-
isms that have a unique distribution across samples. The input of
this mock community came from DNA extracted from 67 organ-
isms. The data in this analysis were previously cleaned and de-
noised, and chimeras were removed (23). Thus, the following re-
sults describe how well this method does at clustering sequences in
the absence of sequence error.

Distribution-based clustering is better than other methods at
merging together sequences that originated from the same input
organism and accurately representing the input distribution. The
complete and parallel versions of distribution-based clustering
predicted 76 and 75 total OTUs, respectively, the smallest total
number of OTUs of all clustering methods (Fig. 4a). It also more
accurately grouped together reads that originated from the same
organism (Fig. 4b) and more accurately captured the distribution
of the input sequences (Fig. 4c). Closed- and open-reference clus-
tering never grouped together sequences that originated from dif-
ferent organisms (i.e., no false positives) but did not merge as
many sequences that originated from the same organism in the
same OTUs (i.e., fewer true positives), not clustering together
enough sequences (i.e., underclustering). Both de novo ap-
proaches tended to merge sequences originating from closely re-
lated organisms (i.e., more false positives) but also more often
grouped together sequences from the same organism (i.e., more

true positives), grouping together too many sequences (i.e., over-
clustering). These results highlight the drawback of using genetic
information alone, which will necessarily either overcluster or un-
dercluster sequences, as depicted in the example in Fig. 1c. Using
the distribution of sequences across samples is the only way to
cluster more sequences by their inputs when the levels of genetic
variation are different across taxonomic lineages.

Comparison with unknown samples. Along with compari-
sons between clustering methods in a simple, well-defined mock
community, we also applied all clustering methods to an environ-
mental-sample set. This sample set was generated from 25 samples
from a depth profile of a stratified lake sample (Mystic Lake, Win-
chester, MA), where different depths corresponded to distinct
biogeochemical conditions. We generated two data sets for this
analysis. First, we made an Illumina 16S rRNA library from DNA
extracted from water collected approximately every meter from
the surface to the bottom (22-m depth). Additionally, we generated
Sanger-sequencing-based 16S rRNA clone libraries (Sanger data set)
from two depths, 6 and 21 m (described in the supplemental mate-
rial). The distribution of the Illumina library sequences was used in
the clustering method, and Illumina sequences that matched differ-
ent Sanger clones were used as a control comparison, since these
sequences were observed independently in the Illumina and Sanger
data sets.

Closed-reference clustering overfilters environmental data.
The closed-reference clustering method predicts the smallest
number of OTUs of all methods (Fig. 5a). Although the total num-
ber of OTUs in the sample is unknown, the Illumina sequences
that match the Sanger library mock community can be used to
compare clustering methods on the unknown sample; 89 Illumina
sequences match one or more of the Sanger sequences. As we saw
with the simple mock community, which was generated from
clones of these sequences, the closed-reference method discards
many sequences that are missing representative sequences in
the database. Closed-reference clustering discards 15 of the 89
sequences with more than 1,000 counts across all libraries. The
most abundant discarded sequence is classified as cyanobacte-
ria, with a distribution that corresponds to a peak in oxygen
below the thermocline. This suggests that the very low number
of OTUs predicted by the closed-reference method is an under-
estimate and that the method excluded biologically interesting
information.

Overclustered environmental data. De novo and open- and
closed-reference clustering overclustered the data, resulting in
skewed environmental distributions for many OTUs compared
with distribution-based clustering. Merged sequences with differ-
ent distributions produced low correlations between the resulting
OTU and the matching Sanger clone for different clustering meth-
ods because merged sequences had very distinct profiles (e.g.,
Fig. 5b). The distribution of five OTUs formed by de novo
(USEARCH) clustering resulted in correlations below 0.9 with the
matching Sanger sequence (see Table S4 in the supplemental ma-
terial). Three OTUs formed by open- and closed-reference clus-
tering algorithms had low correlations with the matching Sanger
sequence (see Table S4). However, the correlation of the matching
Sanger sequence with distribution-based clustering OTUs was
high in all cases. This suggests that other clustering methods are
more likely to overcluster sequences with distinct environmental
distributions than distribution-based clustering.

Distribution-based clustering is accurate and flexible. The

TABLE 2 Total numbers of OTUs remaining after filtering out low-
abundance OTUs

Method

No. of OTUs remaininga

Mock community Environmental sample

No
filter �1 �10

No
filter �1 �10

DBC (complete) 124 82 63 NA NA NA
DBC (parallel) 175 136 83 14,234 11,762 6,087
De novo

(USEARCH)
390 226 86 23,616 17,261 7,875

De novo (avg
linkage)

336 169 70 NA NA NA

Closed reference 700 430 160 9,799 7,867 4,046
Open reference 385 257 119 23,047 15,833 6,310
a Filtering criteria: either all OTUs were included (No filter) or only OTUs with greater
than 1 (�1) or greater than 10 (�10) counts were included. NA, not applicable.
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distribution-based clustering method predicted a low number of
OTUs yet retained distinct profiles for highly similar sequences.
Distribution-based clustering predicted about 9,000 fewer OTUs
than both de novo and open-reference clustering (Fig. 5a). When
singletons (i.e., OTUs with 1 count) were filtered out, distribu-
tion-based clustering still predicted several thousand fewer total
OTUs than either de novo or open-reference clustering. However,
after filtering out OTUs with less than 10 counts across all librar-
ies, the difference was less obvious (Table 2). Distribution-based
clustering was also sensitive enough to keep closely related se-
quences with distinct distributions in separate OTUs (Fig. 5b).

Distribution-based clustering can function to identify all likely
sequences in the sample (i.e., remove sequencing error) or be used
to group all sequences together that are within a population (i.e.,
ecologically relevant populations). To eliminate sequencing error,
the representative sequence of the OTU must be at least 10-fold
more abundant than other sequences in the OTU, since sequences

created in error are typically less than 10% of the abundance of the
original sequence. This is comparable to the analysis done with the
mock community generated from 16S plasmid templates (Fig. 3).
Under these conditions, the sequences shown in Fig. 5c would
remain distinct OTUs. However, it may be redundant to consider
each sequence a separate OTU because they are genetically similar
and distributed in similar manners. Thus, the distribution-based
algorithm can also be adjusted to merge the sequences in Fig. 5c by
using no abundance cutoff and comparing the sequence distribu-
tions with the JSD (see Materials and Methods for details). This is
comparable to the analysis done on the mock community gener-
ated from genomic DNA extracted from different organisms (Fig.
4). Under the adjusted parameters, distribution-based clustering
predicted a total of 11,871 OTUs and created three OTUs with
more than one sequence matching Sanger clones, including the
sequences in Fig. 5c.

Run time of each clustering algorithm. The total computa-

FIG 5 Evaluation of clustering methods on environmental samples from a stratified lake. (a) Total number of OTUs predicted by each clustering method for the
entire lake. (b) Sequences displaying distinct ecological distributions but merged by all clustering algorithms except distribution-based clustering. The solid line
is the distribution of the resulting cluster, comprised mainly of two sequences (dotted and dashed lines). Distribution-based clustering keeps the two sequences
distinct, but all other methods merge them into one OTU. (c) Sequences that represent microdiversity within the environmental sample. The distribution-based
clustering algorithm can be adjusted so that these sequences either remain distinct or can be clustered.
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tional time for distribution-based clustering is much longer than
that of any of the other clustering methods. Table 3 shows typical
run times for approximately 500,000 total reads (5,489 unique
sequences) in the mock community and 7.5 million reads
(120,601 unique sequences) in the environmental sample. Only
the parallelized distribution-based clustering used multiple pro-
cessors to complete, and the run times of the other methods could
be improved even further by using multiple processors. However,
it is clear that there is a significant difference in speed between
distribution-based clustering and the other methods.

Issues affecting sequence and distribution accuracy. The se-
quences and distribution of OTUs across libraries should repre-
sent the true distribution as accurately as possible. Recommenda-
tions made from previous studies were followed during library
construction to reduce PCR amplification biases, including re-
ducing the cycle number and pooling replicate PCRs (31, 32).
While these measures help, the resulting sequences and distribu-
tions across libraries are primarily affected by two things: mis-
matches between the primer and template sequences and se-
quence-specific errors of the Illumina sequencing platform from a
poor-quality run.

Sequence-specific sequencing errors. The distribution-based
clustering method is sensitive to errors that are generated in a
nonrandom way across samples. Since the algorithm assumes that
differences in the distribution of sequences across samples repre-
sent important information, this assumption is invalid when dif-
ferences are due to methodological errors. In our analysis, the
most obvious cause of nonrandom errors is combining sequenc-
ing data from different runs with varying quality scores (see Fig. S5
in the supplemental material), as certain errors were generated at
a higher frequency on one flow cell than the other (see Fig. S6a in
the supplemental material). This causes the erroneous sequences
to have a significantly different distribution than the sequences
they were derived from (see Fig. S6b in the supplemental mate-
rial), and they are thus retained as distinct OTUs. As expected,
distribution-based clustering performs very well on simulated
data when the error rate is constant across libraries but is substan-
tially worse when error rates are nonconstant (see Table S5 in
the supplemental material). Thus, distribution-based clustering

would have been even more accurate had all of the samples been
sequenced on the same flow cell.

Sequence-specific errors are obvious when a stringent quality
filter is applied to a low-quality sequencing lane. After removing
templates with primer site mismatches, Fig. 6 shows little decrease
in the correlation between the observed and expected frequencies
for a good-quality sequencing run after quality filtering (Fig. 6a
and b). In a library from the poor-quality lane (flow 2, lane 1;
com4 to com6), the correlation with the input concentration is
high for unfiltered data (R2 � 0.96287) (Fig. 6c). However, the
correlation between the input concentration and the resulting se-
quences breaks down with more stringent quality filtering (R2 �
0.49601) (Fig. 6d). This is likely due to sequence-specific errors, a
problem identified previously with Illumina sequencing technol-
ogy (33–35). When using data from poor-quality sequencing
runs, OTUs from more stringent quality filtering represent true
sequences, but the relative abundances may be highly skewed.

DISCUSSION

We present a novel method of calling OTUs that uses the ecology
of the organisms they represent to inform the clustering. Typi-
cally, only genetic information is considered when forming OTUs.
Incorporating information such as abundance and distribution
into the OTU formation process creates OTUs that more accu-
rately cluster sequences by the template or organism of origin and
improves the information content of the resulting OTUs.

The gross trends in the data are similar, regardless of clustering
algorithms. Principal-coordinate analysis (PCoA) plots, which
identify the most obvious differences between samples, were sim-
ilar across clustering methods (see Fig. S7 and S8 in the supple-
mental material). PCoA is particularly effective when the variable
of interest (e.g., depth or disease state) is associated with major
changes in community structure but is less effective at detecting
subtle variations in community structure. Furthermore, it cannot
pinpoint the specific sequences that drive these associations.
Other approaches, such as univariate tests, including the Mann-
Whitney U test and Fisher’s exact test, and statistical learning
techniques, such as random-forest classification, can test for asso-
ciations between bacterial species abundance and environmental
metadata (36). Optimizing the clustering algorithm to detect such
associations will increase the chances of gaining important biolog-
ical insight. Thus, accurate OTU formation may not be as critical
when trends in the data can be discerned at higher taxonomic
levels, such as the ratio of Bacteroidetes to Firmicutes in obesity
(37). However, differences between closely related organisms are
crucial for identifying evolutionary and ecological mechanisms
(18). In such cases, distribution-based clustering may be one of
only a few tools that can be used to distinguish the signal from the
noise of sequencing errors.

Run time is currently a severe limitation to implementing dis-
tribution-based clustering on very large data sets. Although many
improvements can be made to the algorithm itself to increase the
speed of the program (likely with lower accuracy), any implemen-
tation will likely be more computationally intensive than other
methods, since it involves processing additional information.
Steps can be taken to reduce the total run time, such as increasing
the abundance skew (e.g., 100-fold more abundant representative
sequences), decreasing the total-distance cutoff allowed for form-
ing clusters (e.g., a cutoff of 0.05), or filtering out low-abundance
sequences (e.g., singletons). All of these steps decrease the total

TABLE 3 Representative clustering times for mock-community samples
with various algorithms

Clustering method

Total run time (h:min:s)a

Mock
communityb

Environmental
samplec

Distribution-based clustering (complete) 1:09:40 NA
Distribution-based clustering (parallel)d 0:21:31 7:58:57
De novo (avg neighbor) 0:06:36 NA
De novo (USEARCH) 0:00:23 0:00:26
Closed reference 0:06:09 1:26:23
Open reference 0:06:05 1:23:25
a Times are approximated by the difference between the start time and end time in the
shell script examples in the supplemental material. NA indicates that the method was
not performed.
b The mock community contains 565,498 total reads and 5,489 unique sequences.
c The environmental sample contains 7,539,779 total reads and 120,601 unique
sequences.
d The distribution-based clustering algorithm was the only one that was parallelized; 60
to 100 different processes were run at one time. The other methods would have had
improved speeds if run in parallel.
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number of pairwise comparisons and reduce the run time.
However, they will also decrease the accuracy of the algorithm
at removing incorrect OTUs (see Fig. S4 in the supplemental
material).

There are some cases where the distribution-based clustering
method should be used with caution. Distribution-based cluster-
ing predicts the most accurate OTUs when sequences are distrib-
uted in an ecologically meaningful way across samples, as in the
mock community or in a stratified lake. However, methodological
issues creating nonrandom errors across samples (e.g., different
error rates across sequencing cells or runs) will increase the num-
ber of erroneous sequences that distribution-based clustering will
keep as distinct OTUs (see Table S5 in the supplemental material).
Nevertheless, distribution-based clustering still creates the most
accurate OTUs of all clustering methods, even with the method-
ological errors found in the analysis. Users should also consider
whether grouping sequences using a statistical test of similarity
will impact the statistics of their downstream analyses.

Although no method formed OTUs that were as accurate as the

distribution-based method with these mock communities, there
are situations when different methods might be a more appropri-
ate choice. Closed-reference clustering has the advantage of speed
and convenience, especially for downstream processing, because
information about the reference sequences can be precomputed
(e.g., phylogenetic trees and taxonomic information). De novo
clustering may be a good choice for higher-taxonomic-level anal-
yses, as overclustering species should not affect phylum-level
changes across samples, especially when the total number of pre-
dicted OTUs can affect the results. Open-reference clustering is
less discriminating and tends to grossly overestimate the number
of OTUs. However, it seems to be a good alternative when looking
for trends between closely related organisms, especially if low-
abundance OTUs can be filtered out.

When applied appropriately, each of the different clustering
methods analyzed here can facilitate the discovery of important
trends in 16S rRNA library sequence data. The introduction of the
distribution-based clustering method gives researchers an addi-
tional tool that allows distinct OTUs to be retained even if they

FIG 6 Template abundance is highly correlated with the input concentration when templates do not have mismatches in the primer-binding site. Additionally,
stringent quality filtering can decrease the correlation with the input concentration for poor-quality sequencing runs. (a and b) Data from a high-quality
sequencing run. (c and d) Data from a low-quality sequencing run. (a and c) Unfiltered data. (b and d) Filtered data. Abundance is determined as the number
of reads with the best Blast hit to the mock-community sequence. Input concentrations were measured experimentally from the mock-community DNA
template. Trend lines and corresponding correlation coefficients (R2) are shown for reads with primer site matches only (black square).
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differ at a single base pair in a background of high microdiversity
or sequencing error.
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