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SUMMARY

The most common prokaryotic signal transduction mechanisms are
the one-component systems in which a single polypeptide contains
both a sensory domain and a DNA-binding domain. Among the >20
classes of one-component systems, the TetR family of regulators
(TFRs) are widely associated with antibiotic resistance and the regu-
lation of genes encoding small-molecule exporters. However, TFRs
play a much broader role, controlling genes involved in metabolism,
antibiotic production, quorum sensing, and many other aspects of
prokaryotic physiology. There are several well-established model sys-
tems for understanding these important proteins, and structural
studies have begun to unveil the mechanisms by which they bind
DNA and recognize small-molecule ligands. The sequences for more
than 200,000 TFRs are available in the public databases, and genom-
ics studies are identifying their target genes. Three-dimensional struc-
tures have been solved for close to 200 TFRs. Comparison of these
structures reveals a common overall architecture of nine conserved o
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helices. The most important open question concerning TFR biology
is the nature and diversity of their ligands and how these relate to the
biochemical processes under their control.

INTRODUCTION

Prokaryotes use signal transduction systems to sense alterations
in the environment and respond accordingly. These signal
transduction systems can be broadly divided into two categories:
one-component systems and two-component systems (1, 2). In
one-component systems, the sensory and output functions are
located on the same polypeptide, while in two-component sys-
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TABLE 1 Major families of one-component signal transduction systems

TetR Family Regulators

One-component

system Defining features Reference(s)

AraC/XlyS Involved in regulating pathways for the catabolism of various sugars, primarily transcriptional activators, 196
C-terminal DNA-binding domain

ArgR Involved in regulating amino acid metabolism, typically function as transcriptional repressors, N-terminal 197
DNA-binding domain

ArsR/SmtB Involved in regulating metal homeostasis, primarily transcriptional repressors, DNA-binding domain located 198
near the center of the protein

AsnC/Lrp Involved in regulating amino acid metabolism, function as both transcriptional activators and repressors, 199
N-terminal DNA-binding domain

Crp/Fnr Involved in regulating many cellular processes, may function as activators and repressors, C-terminal 200
DNA-binding domain

DeoR Involved in regulating sugar metabolism, typically function as repressors, N-terminal DNA-binding domain 201

DtxR Involved in regulating metal homeostasis, primarily transcriptional repressors, N-terminal DNA-binding domain 202

Fur Involved in regulating metal homeostasis, primarily transcriptional repressors, N-terminal DNA-binding domain 202

GntR Involved in regulating numerous cellular processes, typically function as transcriptional repressors, N-terminal 203
DNA-binding domain

IcIR Involved in regulating carbon metabolism, function as both transcriptional activators and repressors, N-terminal 204
DNA-binding domain

Lacl Involved in regulating carbon metabolism, typically function as transcriptional repressors, N-terminal 205
DNA-binding domain

LuxR Involved in regulating quorum sensing, typically function as activators, C-terminal DNA-binding domain 206

LysR Involved in regulating many cellular processes, function as both activators and repressors, N-terminal DNA- 207
binding domain

MarR Involved in regulating antibiotic resistance, typically function as transcriptional repressors, DNA-binding 208
domain located near the center of the protein

MerR Involved in regulating metal homeostasis, typically function as transcriptional repressors, N-terminal DNA- 209
binding domain

Met] Involved in regulating many cellular processes, typically function as transcriptional repressors, N-terminal DNA- 3
binding domain

ModE Involved in regulating metal homeostasis, function as both transcriptional activators and repressors, N-terminal 210
DNA-binding domain

PadR Poorly characterized family, N-terminal DNA-binding domain 211

TetR Involved in regulating antibiotic resistance, typically function as repressors, N-terminal DNA-binding domain 14

Xre Involved in regulating various cellular processes, typically function as transcriptional repressors, N-terminal 212,213

DNA-binding domain

tems, the sensory and output functions are located on separate
polypeptides. While the term two-component system is better
known, one-component systems are actually much more abun-
dant in prokaryotes (2). There are at least 20 families of prokary-
otic one-component systems that can be defined by amino acid
conservation in their DNA-binding domains and are defined by
different conserved motifs (e.g., pfam and Interpro) (Table 1).
The majority of one-component systems employ a helix-turn-
helix DNA-binding domain, the exception being transcription
factors of the MetJ family, which instead contain a ribbon-helix-
helix domain (3). The DNA-binding domains are typically located
at either the N- or C-terminal end of the polypeptide, depending
on the particular family, although a few instances where the DNA-
binding domain has a more central location are apparent. It has
been suggested that there is a correlation between the location of
the DNA-binding domain and repressor and activator activity.
The suggestion was that repressors generally contain an N-termi-
nal DNA-binding domain, while activators generally contain a
C-terminal DNA-binding domain (4, 5). While this may hold true
for many transcription factors, we would advise caution because
there are well-documented exceptions to this rule (6).

The naming of protein families is characterized by a founder
effect of sorts, where the family name is derived from the first
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characterized member. One-component systems are no excep-
tion. This can be misleading, however, as not every member of a
particular family is likely to be involved in regulating the same
basic process as the founder. For example, many regulators in the
AraC family are known for their role in sugar metabolism as AraC
itself regulates genes required for arabinose catabolism (7). How-
ever, some members of the family recognize small molecules other
than sugars and play a role in the regulation of virulence, morpho-
logical development and antibiotic production (8-10). In fact,
some AraC family regulators (e.g., MarA and SoxS) are believed to
lack a ligand-binding domain and may not serve as one-compo-
nent signaling systems at all. Similar to the case for AraC family
regulators, not all ArsR or MerR homologs bind metals like the
founding member of the family. ArsR homologs have been iden-
tified as part of toxin-antitoxin systems (11), and MerR homologs
are now known to respond to various chemical stressors (12).

The TetR family of regulators (TFRs) is a large and important
family of one-component signal transduction systems (13, 14).
While members of this family are best known for their roles as
regulators of antibiotic efflux pumps, this in fact describes a mi-
nority of their functional roles. Indeed, characterized members
are known to regulate numerous aspects of bacterial physiology
and to interact with a vast array of ligands (Fig. 1).
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FIG 1 TFRs are known to interact with an exceptionally diverse set of small molecules, including antibiotics, metabolites, and cell-cell signaling molecules.

TetR FAMILY REGULATORS

altering the regulator’s ability to bind DNA. The exceptional di-

All TetR family regulators (TFRs) consist of an N-terminal DNA-
binding domain and a larger C-terminal domain. The proteins are
almost exclusively « helical and function as dimers. In most cases
the C-terminal domains interact with one or more ligands, in turn
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versity of these ligands is a chief source of interest in these regula-
tors and is a central focus in this review. The name “TFR” is de-
rived from the TetR protein, which was the first family member to
be discovered and characterized in detail. Like TetR, many TFRs
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FIG 2 TetR regulates the expression of the tetracycline resistance determinant encoded by tetA. (A) In the absence of tetracycline, a pair of TetR dimers bind to
repeated palindromic sequences in the intergenic region between tetR and tetA. (B) When present, tetracycline is bound by TetR, causing a conformational
change such that TetR can no longer bind DNA. This allows for expression of the tetracycline efflux pump encoded by tetA.

are repressors; however, there are important exceptions that are
activators or that have roles unrelated to transcription.

The inducible nature of tetracycline resistance in Escherichia
coli was recognized in the mid-1960s (15). The protein factor re-
sponsible for the regulation and induction of tetracycline resis-
tance, which we now know as TetR, was partially purified a decade
later (16). The sequence of fefR and many of the molecular details
surrounding the regulation of tetracycline resistance were unrav-
eled in the 1980s (17-21). We now know that TetR is the repressor
of the tetracycline efflux pump encoded by tetA (Fig. 2). In the
absence of tetracycline, a pair of TetR dimers bind to overlapping
operator sequences in the intergenic region between the diver-
gently transcribed fetR and tetA genes. When tetracycline is pres-
ent, it binds directly to TetR, trapping it in a conformation that is
incompatible with DNA binding (22). This allows transcription of
both tetR and tetA.

More than 240 TFRs have been at least partially characterized
(Table 2), and while TetR remains one of the central models for
the family, it is clear that TetR does not represent the enormous
diversity seen in the family. Its well-documented role as a regula-
tor of antibiotic efflux is shared by at most 25% of the TFR family
members (23). We know that other TFRs function as both repres-
sors and activators (e.g., DhaS$), serve as local or global regulators
(e.g., AmtR), and can interact with small-molecule or protein li-
gands (e.g., SImA). TFRs can be autoregulatory, can be under the
control of other transcription factors (e.g., AtrA), or may undergo
posttranscriptional regulation (e.g., HapR). In spite of many years
of investigation, central questions remain unanswered. For exam-
ple, while the repressing (i.e., DNA-bound) and induced (i.e., li-
gand-bound) conformations of TetR have been described in de-
tail, the manner in which the protein converts from one form to
the other has not. Furthermore, it is unlikely that the conforma-
tional transitions of TetR describe those of all other TFRs, and
indeed, the structure of TetR is atypical for the family as a whole
(24). Tt is unclear whether there are distinct conformational sub-
groups within the family or whether each protein is in fact unique.
More globally, in the vast majority of cases, the ligand(s) bound by
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TFRs have yet to be identified. In this review we discuss what we
can learn about TFRs from genomics and structural studies and
how this informs, and is informed by, the roles attributed to TFRs
in bacterial physiology through more detail-oriented molecular
genetic investigation. We incorporate phylogenomics as a new
means of organizing TFRs.

GENOMICS OF TFRs

A text-based search for TetR in the NCBI protein database gives
well over 200,000 hits (as of 7 March 2013), and this number will
continue to grow due to the explosion of whole-genome se-
quences available. The N-terminal DNA-binding domain of TFR
family members is represented by conserved motifs or profiles in
the public databases (e.g., IPR001647, PS50977, and pfam00440)
and has been defined in previous reviews (14), aiding in the iden-
tification of TFRs from whole-genome sequences. While the vast
majority of these TFRs have not been characterized, the availabil-
ity of genome sequences allows us to examine different aspects of
the genomics of TFRs.

Distribution of TFRs in Bacterial Genomes

Most sequenced bacterial genomes encode at least one TFR (14,
25). In the over 200 genomes that we examined, 23, from 8 genera,
did not encode TFRs. TFRs were not found in at least some rep-
resentatives from Borrelia, Chlamydia, Chlamydophila, Franci-
sella, Helicobacter, Mycoplasma, Prosthecochloris, and Treponema.
These are predominantly pathogens with genomes under 2 Mbp
in size. In contrast, the Actinobacteria, along with other soil-dwell-
ing isolates such as Burkholderia, Pseudomonas, and Rhizobium
strains, encode the highest numbers of TFRs. Amycolatopsis (for-
merly Streptomyces) sp. strain AA4 encodes the greatest number of
TFRs of the genomes we examined, at 212. Bacteria with large
genomes tend to encode more TFRs (Fig. 3) (25). While in some
instances this may be a function of the fact that bacteria with large
genomes tend to encode a higher number of regulatory proteins,
in other instances the situation may be more complex and indicate
a preference for TFRs over other families of regulators. For exam-
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ple, Streptomyces coelicolor encodes 965 regulatory proteins in its
approximately 8.7-Mbp genome (26). Of these regulators, 153
(15.8%) are TFRs, while only 34 (3.5%) are AraC family regulators
and 40 (4.1%) are LysR family regulators (L. CuthbertsonandJ. R.
Nodwell, unpublished data). E. coli encodes 261 DNA-binding
transcription factors in its 4.6-Mbp genome, of which 13 (5.0%)
are TFRs, 28 (10.7%) are AraC family regulators, and 46 (17.6%)
are LysR family regulators (27). Exceptions where bacteria with
large genomes encode a relatively small number of TFRs include
some deltaproteobacteria (e.g., Myxococcus and Stigmatella) and
members of the phyla Planctomycetes and Verrucomicrobia. The
evolutionary significance of this, if there is any, is not clear.

In some genera we observed a wide range in the number of TFRs
in different species. For example, among the Mycobacterium spp.,
the pathogenic M. tuberculosis encodes 49 TFRs, M. leprae, known
which is to have a reduced genome, encodes only 10, and the
environmental isolates M. abscessus and M. smegmatis encode 138
and 137 TFRs, respectively. These data indicate a general trend
that the number of TFRs encoded by an organism may reflect the
diversity of environmental conditions that the organism encoun-
ters. Bacteria that grow in changeable niches, in particular the soil,
are often enriched for TFRs while those that grow in close associ-
ation with a host organism are not.

Reference(s)
372,373
373

374

84

375

77

376

39

377

378

156

PDB ID

Conservation of TFRs

hydrazone

The availability of genome sequences allows us to examine the
conservation of TFRs between strains and species. These compar-
isons may help to reveal TFRs associated with virulence traits or to
distinguish newly acquired TFRs involved in specific adaptive re-
sponses from conserved TFRs more likely to be involved in regu-
lating basic physiological processes. For example, a comparison of
the TFRs in E. coli K-12 MG1655 and E. coli O157 EDL933 reveals
that the two strains share 12 TFRs and that E. coli K-12 MG1655
encodes a single additional TFR not present in E. coli O157
EDL933. In E. coli O157 EDL933, one TFR, BdcR (formerly YjgJ),
is truncated and lacks the DNA-binding domain. Further analysis
indicates that this truncation is conserved in other O157 genomes
as well as the genomes of some Shigella species. BdcR is a regulator
of BdcA, a novel c-di-GMP-binding protein involved in biofilm
dispersal (28). BdcR expression is thought to be regulated by
NsrR, a protein that is involved in sensing nitric oxide (29) and
thatis also known to regulate other genes required for motility and
biofilm development. While data on BdcR function are scant, the
conserved deletion in E. coli O157 indicates that it may play a role
in regulating an aspect of virulence.

A comparison of the TFRs in Pseudomonas aeruginosa PAO1
and the multidrug-resistant taxonomic outlier PA7 reveals that
they have 36 TFRs in common and reveals TFRs unique to each
strain that may play a role in the differences in virulence observed
between strains. PAO1 encodes five TFRs absent in PA7 (PA1241,
PA1290, PA2020, PA2766, and PA2931), while PA7 encodes two
TFRs absent from PAO1 (PSPA7_2630 and PSPA7_4004). The
PA7-specific TFRs are encoded within genomic islands of this iso-
late (30). PA2020, MexZ (also see TFRs and Antibiotic Resistance
below), encodes a known regulator of the MexXY antibiotic resis-
tance efflux pump (31). Mutations in MexZ are associated with
isolates from chronic infections and small-colony variants (32,
33). In PA7, MexZ is truncated, lacking the DNA binding-do-
main, which leads to overexpression of MexXY and increased
aminoglycoside resistance in this isolate (34).

Carbonyl cyanide m-chlorophenyl

Known ligand(s)
Virginiamycin S

response to bile, sodium dodecyl sulfate, or novobiocin

Located in the valanimycin biosynthesis cluster

regulating tylosin production and sporulation
Global regulator of virulence factors

Gamma-butyrolactone receptor protein involved in

regulating tylosin production

Regulator of the p-glucuronidase UidA
Regulates the VexAB efflux pump which is expressed in

Gamma-butyrolactone receptor protein involved in
Located in the virginiamycin biosynthesis cluster

Located in the urdamycin biosynthesis cluster
Regulator of VceCAB efflux pump

Global regulator
Regulator of xanthine dehydrogenase

Description”

Vibrio (Listonella) anguillarum

Streptomyces virginiae

Vibrio cholerae
Streptomyces viridifaciens

Streptomyces fradiae
Streptomyces fradiae
Escherichia coli
Streptomyces fradiae
Vibrio cholerae

Vibrio tubiashii
Streptomyces coelicolor

Organism

“ MFS, major facilitator superfamily; AHL, acyl-homoserine lactone.

TABLE 2 (Continued)
XdhR (SCO1135)

TFR
TylP
TylQ
UidR
UrdK
VanT
VarR
VceR
VexR
VImE
VtpR
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FIG 3 Distribution of TFRs in sequenced genomes. Large genomes with a low number of TFRs are highlighted with a yellow box.

Analyses of TFR conservation can be expanded to include many
different species of the same genus. Conservation at the genus
level may help to distinguish TFRs more likely to be involved in
regulating basic cellular processes (e.g., fatty acid metabolism) as
opposed to adaptive functions (e.g., resistance to specific antibi-
otics) and may point to more recently acquired traits. Our analysis
of TFRs from members of the genus Streptomyces, the majority of
which encode over 100 TFRs, reveals five TFRs that are conserved
in all of the close to 70 strains sequenced as of 26 April 2013, with
another seven TFRs highly conserved and missing in only one
strain. One of these TFRs is more broadly conserved in Actinobac-
teria, while another two have been implicated in the regulation of
antibiotic production in members of the genus (6, 35). We sur-
mise that all 10 of these TFRs play an important role in regulating
general processes important to antibiotic production and devel-
opment in Streptomyces, while less conserved TFRs are more likely
to play a role in regulating specific adaptive functions such as the
catabolism of a specific carbon source or resistance to a specific
antibiotic. It is interesting to note that four of the five conserved
TFRs are type III TFRs (see “Predicting Target Genes” below) and
that the regulatory targets cannot be predicted based on genomic
orientation.

Predicting Operator Sites

Many TFRs bind palindromic, and often repeated, DNA operator
sequences. Informatics approaches to identifying TFR operator
sequences have been applied to small numbers of TFRs with suc-
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cess (24). In our experience, however, operator sites for TFRs of
unknown function are often difficult to reliably predict. In many
cases there is no obvious palindrome, and in others there are pal-
indromes upstream of genes encoding TFRs or predicted targets
that do not interact with the cognate TFR. In some cases, these
may represent binding sites for other transcription factors. Ramos
etal. (14) made use of protein-DNA crystals for QacR and TetR to
identify amino acid positions that may generally be important in
protein-DNA interactions and give specificity for a particular TFR
for its operator sequence. It would be interesting to evaluate this
approach to validate potential operator sequences identified
through palindrome analysis or to perhaps predict the operator
DNA sequence that is recognized by a TFR. Additional informa-
tion such as DNase I footprinting can aid in the prediction of TFR
operator sites from DNA sequence information (23).

Predicting Target Genes

TFRs can be classified into three types based on the orientation
and proximity of their structural gene relative to adjacent genes on
the chromosome (Fig. 4), and these relationships can be used to
predict the regulatory target gene(s) of the TFR (23). The majority
of TFRs are classified as type I: their genes show a divergent ori-
entation to one of the adjacent genes, as is the case for fefR and
tetA. This relationship is very predictive of a regulatory relation-
ship in those cases where the intergenic region between the two
genes is less than ~200 bp. A longer intergenic region does not
rule out a possible regulatory relationship; however, it is more rare
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FIG 4 Classification of TFRs based on the orientation and proximity of adja-
cent genes. (A) Type I TFRs are transcribed divergently from an adjacent gene.
A regulatory relationship is predicted when this intergenic region is less than
200 bp. (B) Type Il TFRs are predicted to be cotranscribed with and to regulate
an adjacent gene based on a distance ofless than 35 bp between genes. (C) Type
III TFRs show neither of the above-described relationships with adjacent
genes, and a regulatory relationship with the adjacent genes cannot be pre-
dicted.

in these cases. Type II TFRs are predicted to be cotranscribed with
one or more adjacent genes based on orientation and a short dis-
tance (less than 35 bp) between genes. The majority of character-
ized TFRs are known or believed to be autoregulatory, and there-
fore type II TFRs would also be predicted to regulate the
expression of cotranscribed genes. It should be noted, however,
that an extensive investigation into autoregulation by TFRs is
lacking, and certainly exceptions have been identified (e.g., AmtR
[36—38]). In some cases, autoregulation is assumed based on other
data (e.g., DNase I foot printing analysis for ActR [23]) but direct
evidence is not available. The genes encoding type III TFRs show
neither of these relationships with their neighboring genes. In
these cases, putative regulatory relationships with neighbors,
while they may exist, cannot be predicted by genomic orientation.

Using this classification for TFRs, we can begin to take an in-
ventory of the types of gene products regulated by TFRs (23). This
inventory reveals that while the best-characterized TFRs do in-
deed regulate the expression of efflux pumps like the founding
member of the family TetR, a large majority of TFRs actually reg-
ulate genes encoding cytoplasmic proteins. These proteins are al-
most exclusively predicted to be enzymes, and the diversity is ex-
traordinary and includes all of the known functional classes (23).
The biochemical functions of most of these enzymes are un-
known.

Predicting Ligands

At this time, inducing ligands are known for 61 TFRs but remain
unidentified for the vast majority of TFRs, including many of
those that have been at least partly characterized. We have em-
ployed phylogenomics as a tool to predict ligands for TFRs of
unknown function (25). Using this approach, we successfully
identified the antibiotic kijanimicin as the inducing ligand for a
previously uncharacterized TFR, KijR from Streptomyces coeli-
color. Identifying the inducing ligand for KijR provided crucial
insight into the function of its target gene, kijX, which acts as a
kijanimicin deglycosylase. As discussed above, the majority of
TFRs regulate enzymes of unknown function, and methods to
identify the small-molecule ligands for TFRs will prove invaluable
in determining the substrates and enzymatic functions carried out
by the enzymes they regulate.

TFRs encoded in antibiotic biosynthesis clusters are known to

452 mmbr.asm.org

interact with the products of those clusters (see TFRs and Antibi-
otic Resistance below) and can help us make predictions for li-
gands bound by TFRs of unknown function. For example, TFRs in
the biosynthesis clusters for two structurally related polyether
ionophores, calcimycin and monensin (TFRs SchR3 and MonRI],
respectively), form a group in our phylogenetic analysis with the
TFR of unknown function SSQG_00958 (Fig. 5A). Based on this
clustering, we predict that SSQG_00958 binds a similar polyether
ionophore and is involved in regulating resistance to the same
molecule. SSQG_00958 is transcribed divergently from a putative
exporter encoded by SSQG_00957. In another example, the gene
encoding MlaM is located in the biosynthesis cluster for a macro-
lactam antibiotic and in our phylogenetic analysis falls into a
larger group with two other TFRs, BecM and Strop_2766, located
in the biosynthesis clusters for structurally related molecules (Fig.
5B). This cluster also contains numerous other TFRs of unknown
function which we predict bind similar macrolactam antibiotics.
Ligand predictions based on phylogenomics are not limited to
antibiotics. For example, BreR binds bile acids and is thought to be
important to the survival of Vibrio cholerae in the intestinal tract
(39). BreR and AefR share 30% identity (67% similarity) and
grouped together in our analysis (Fig. 5C). AefR is involved in
regulating quorum sensing and epiphytic fitness in the plant
pathogen Pseudomonas syringae, but its inducing ligand is un-
known (40). Given the similarities between BreR and AefR, we
predict that the AefR-inducing ligand may be a phytosterol.
Phytosterols share structural similarities with bile acids, and some
(e.g., tomatidine) are known to have antimicrobial activity (41).
Combining information on TFRs from both phylogenomics
and genomic context can also provide a powerful tool for predict-
ing small-molecule ligands for TFRs. As the majority of TFRs are
transcribed divergently from their target genes, in cases where the
function of the target gene is known, this organization can lead to
a prediction of a possible TFR ligand. For example SCO4099 from
S. coelicolor is transcribed divergently from SCO4098, which en-
codes a putative streptogramin A acetyltransferase (vat) homolog.
Our phylogenomics analyses coupled with additional database
searches identify numerous TFRs sharing high similarity to
SCO4099 in other actinomycetes; however, no ligands have been
identified for any of them (Fig. 6) (25). These homologs are tran-
scribed divergently from additional gene products implicated in
resistance to streptogramin antibiotics (e.g., vgaA and vgbA) as
well as gene products known to be involved in antibiotic resistance
but not specifically in streptogramin resistance (e.g., mgtA/oleD
and ereA). Using a combination of genomics approaches, we can
predict that SCO4099 and related TFRs may bind a streptogramin
antibiotic and that the genes regulated by these TFRs include both
known and potentially novel streptogramin resistance genes.

TFR STRUCTURAL BIOLOGY

General Structure of TFRs

X-ray crystal structures are currently available for close to 200
TFRs. Despite the vast sequence divergence seen in TFRs, struc-
tural data reveal that all family members share common structural
features both in the DNA-binding domains (which are conserved
in terms of primary sequence) and also in the ligand-binding do-
mains (which are not) (24) (Fig. 7). The overall conserved struc-
ture of TFRs consists of nine a helices. The DNA-binding domain
is composed of helices 1 to 3. Helices 2 and 3 form a helix-turn-
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FIG 5 Phylogenomics can be used to predict small-molecule ligands for TFRs of unknown function. (A) The TFR of unknown function SSQG_00958 is
predicted to bind a polyether ionophore based on grouping with MonRII and SchR3. (B) TFRs encoded in the biosynthesis clusters for macrolactam antibiotics
cluster together, leading to the prediction that all of the TFRs in this group interact with macrolactam antibiotics. (C) AefR may recognize a phytosterol based on

clustering with BreR. (Adapted from reference 25.)

helix motif, with helix 3 serving as the recognition helix that fits
into the major groove upon DNA binding. The length of helix 1 is
variable and can range from 12 to 23 residues (24). In many TFRs,
helix 1 is preceded by a positively charged region responsible for
making contacts with the DNA minor groove (see below) (42).
The ligand-binding domain is formed by conserved helices 4 to
9. Contacts between helix 1 of the DNA-binding domain and he-
lices 4 and 6 of the ligand-binding domain link the two domains
and are responsible for transmitting structural changes between
the two domains upon ligand binding (see below). The ligand-
binding domain can be divided into two structural subdomains.
Helices 5 to 7 form a central triangle, while helices 8 and 9 make up
the dimerization interface, forming a four-helix bundle with the
same helices from the other monomer. In addition to the nine
conserved helices, some TFRs, including TetR itself, contain a
long insertion between helices 8 and 9 that may be involved in

September 2013 Volume 77 Number 3

additional contacts to make up the dimer interface. It has been
noted that while TetR serves as an important model for the family,
its structure, along with that of another model TFR, QacR, is ac-
tually atypical compared to the majority of TFRs of known struc-
ture (24).

Interactions of TFRs with DNA

As of February 2013, structures have been solved for seven TFR-
DNA complexes: CgmR, DesT, HrtR, QacR, SimR, TetR, and
TM1030 (42-47). Based on the TFR-DNA structures currently
available, it is clear that while TFRs share structurally similar
DNA-binding domains, the mechanisms involved in DNA bind-
ing differ in significant ways between proteins. As discussed above,
the DNA-binding domain is composed of helices 1 to 3, with helix
3 being responsible for the majority of DNA contacts. Helices 3
and 3’ recognize adjacent major grooves; thus, the spacing be-
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FIG 6 Combining information from genomic context with phylogenomics can also lead to ligand predictions for TFRs. (A and C) All of the TFRs in the group
shown (A) (data are from reference 25) are type I TFRs predicted to regulate genes involved in streptogramin resistance (C). (B) Structure of the streptogramin

antibiotic pristinamycin.

tween these two helices in the TFR dimer is crucial for structural
compatibility with stable DNA binding. In all cases investigated to
date, this spacing is the target of conformational changes associ-
ated with ligand binding (see below). In general, TFR binding
seems to induce a bend in the DNA, although at present there is no
sequence or structural explanation for what determines either the
direction of bending (toward or away from the TFR) or the degree
of bending (43, 44, 47).

For some TFRs (e.g., TetR and QacR) the majority of TFR-DNA
contacts are base specific, while for others (e.g., CgmR, DesT,
HrtR, and SimR) the majority of TFR-DNA contacts are with the
phosphate backbone. In the TetR-DNA complex, Lys48, located
C-terminal to the DNA-binding domain, also makes an important
DNA contact. The equivalent residue in SimR, Lys71, makes a
similar contact, but this contact is absent from other TFR-DNA
structures, including DesT and QacR. In SimR, additional DNA
contacts are made between the N-terminal “arm” of SimR and the
DNA minor groove. Positively charged arginine residues in the
arm of SimR mediate these contacts. Sequence alignments and
structural predictions reveal that a similar arm may be found in
the majority of TFRs (42).

The QacR-DNA complex is distinct from that of other TFRs in

454 mmbr.asm.org

that two QacR dimers bind cooperatively. Unlike many other
transcription factors (e.g., the lambda phage repressor cI), where
this cooperativity is due to protein-protein interactions between
adjacent dimers (48), in QacR, cooperative binding is brought
about by an alteration in the structure of DNA. Specifically, the
interaction of QacR with DNA causes local underwinding that
increases the distance between adjacent major grooves, and it is
this conformation that most favorably forms the repressed com-
plex with two QacR dimers. A slight widening of the major groove
was also seen in the structure of DesT in complex with oleoyl
coenzyme A (oleoyl-CoA) and DNA, indicating that this struc-
tural change is not limited to the QacR-DNA complex.

TFR-Ligand Interactions

At this time, ligands have been identified for 61 TFRs and X-ray
crystal structures solved for 21 TFR-ligand complexes (Table 2).
This information allows us to begin comparing the types of li-
gands recognized by TFRs and the mechanisms of ligand recogni-
tion. The known TFR ligands are extraordinarily diverse and in-
clude antibiotics, bile acids and other toxic molecules, cell-cell
signaling molecules, carbon sources, proteins, fatty acids and fatty
acid derivatives, and metal ions (Fig. 1, 5, and 6). This diversity
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Top view

Front view

Side view

FIG 7 TFRs share nine conserved o helices. In the front view, the DNA-
binding domain is made up of helices 1 to 3. In the side view, helices 5 to 7 in
the ligand-binding domain form a central triangle. In the top view, helices 8
and 9 from each monomer form a four-helical bundle that makes up the dimer
interface. The structure of Rha06780 (PDB ID 2NX4) is shown, as it shows a
structure typical of TFRs (24).

supports a role for TFRs in regulating an equally diverse array of
cellular processes from basic carbon and nitrogen metabolism to
quorum sensing and antibiotic resistance. Structures are available
for TFRs in complex with simple ligands such as citrate and
resorcinol (49) to very complex molecules such as acyl-CoA de-
rivatives (44) and antibiotics with multiple functional groups such
as simocyclinone (50).

There are many ways that TFRs can interact with ligands. Struc-
tural data suggest that there are at least three different points at
which ligands can enter a TFR ligand-binding site (Fig. 8). For
example, ActR, QacR, SmeT, TetR, and TtgR all have a “side en-
try” opening distal to the dimerization interface that is believed to
be the site of access for different ligands (22, 51-54). Ligands ap-
pear to enter CmeR, CgmR, HrtR, LfrR, and SimR via an entry
point closer to the “front” of the protein (43, 46, 50, 55, 56).
Finally, DesT, EthR, and FadR exhibit a relative “top entry” (44,
57, 58). It is unclear what, if anything, these differing mechanisms
of ligand entry mean in terms of the type of ligand bound or the
structural influence of ligand binding. For RolR and RutR, which
bind resorcinol and uracil, respectively, there is no obvious en-
trance to the ligand-binding pocket (49). Rather, the ligand is
trapped inside an otherwise inaccessible proteinaceous cage
(Fig. 8).

Each tetracycline-binding pocket in TetR is composed primar-
ily, but not exclusively, of residues from an individual monomer
(22). This is also seen for the ligand-binding pockets of the major-
ity of TFRs (e.g., ActR, CmeR, and QacR [53, 54, 56]). In contrast,
the SimR ligand-binding cavity is composed of residues from both
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monomers such that each binds either the aminocoumarin or the
angucyclinone moiety of the simocyclinone ligand (50).

Two molecules of Mg”* -tetracycline are bound by each dimer
of TetR (22). This is also the case for many TFRs (e.g., SimR,
CmeR, and MphR [50, 56, 59]), but different drug-binding stoi-
chiometries are seen in some others. In the case of ActR, each ActR
dimer is capable of binding either two molecules of actinorhodin
or four molecules of (S)-2,4-dinitrophenyl acetate [(S)-DNPA]
(54). In contrast, each dimer of LfrR binds only a single molecule
of proflavine (55). Like LfrR, the majority of QacR-ligand struc-
tures show a single ligand within one monomer of each dimer.
However, one structure of QacR in complex with two different
ligands, ethidium and proflavine, within the same monomer has
been solved (60). For CgmR, different binding stoichiometries are
seen for different drugs, and the size of the drug is thought to play
arole in the number of molecules required for CgmR derepression
(43). TtgR also shows an interesting stoichiometry of binding to
the plant antimicrobial phloretin, binding two molecules within
one monomer and one in the other (51), while in SmeT, two
molecules of triclosan were seen within a single monomer, while
none were observed in the other (61).

Structures are available for four TFRs (CgmR, EbrR, QacR, and
TtgR) in complex with different drugs, and analysis of these struc-
tures may shed light on how a single TFR may recognize a diverse
set of ligands (43, 51, 53, 60). Based on the structures currently
available, different drugs appear to be accommodated by different
drug-binding sites within a single binding cavity. The structure of
QacR has been solved in complex with six different cationic drugs.
It shows a large binding pocket (1,100 A”) lined with negatively
charged residues that form several separate drug-binding sites. In
CgmR, ethidium bromide and methylene blue were found in the
same inducer-binding pocket but were bound by different net-
works of hydrogen bonds. Structures are available for TtgR in
complex with five different ligands, two antibiotics and three plant
antimicrobials. TtgR contains a large, mainly hydrophobic, bind-
ing pocket with two distinct drug-binding sites: a high-affinity site
and a general binding site. The high-affinity site is smaller and was
occupied by only one of the five TtgR ligands. The general binding
site is broader and was found to be occupied by all five ligands.

The first two reported structures of EthR were solved in con-
junction with a fortuitous ligand, in once case hexadecyl octanoate
(58) and in the other two cases uncharacterized molecules consist-
ing of a six-membered ring (62). These structures have been crit-
ical in the design of synthetic EthR ligands (see below), and sub-
sequent structures of EthR have been solved in complex with a
number of these molecules (63—65). In one study, two related
analogs were found to bind EthR with different orientations, sup-
porting the extremely plastic nature of the EthR ligand-binding
pocket (63). While EthR is known to recognize a large variety of
ligands, only a small number of residues were found to be in con-
tact with all ligands (66).

Similar to the case of EthR, the structure of CmeR shows how
two structurally similar molecules can fit very differently into the
same binding pocket (56). The structure of CmeR has been solved
in complex with two structurally similar bile acids, taurocholate
and cholate. Despite the similarity of these molecules, they were
found within the same binding pocket but in opposite orienta-
tions, lying antiparallel to each other. Not only is DesT able to
recognize different ligands, both saturated and unsaturated fatty
acids, but its ability to do so is crucial to its function (44). Binding
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FIG 8 TFRs display different ligand entry points. Based on current TFR-ligand structures, the ligand-binding cavity may be accessible from the side (e.g., ActR),
front (e.g., SImR), or top (e.g., DesT) of the TFR. In some structures (e.g., RolR), the ligand is not accessible to the external environment and the entry point
cannot be determined. SImA interacts with a protein rather than a small-molecule ligand. Residues involved in protein-protein interactions are colored in red.

of the unsaturated oleoyl-CoA increases DNA-binding affinity,
while the saturated palmitoyl-CoA serves as the inducer. DesT
activity is regulated by the ratio of the two different ligands rather
than through a single ligand. A Phe-rich cluster in DesT senses
which ligand is bound. This changes the hydrophobic core to cre-
ate a binding cavity tailored to each particular ligand.

Crystal structures are also available for seven uncharacterized
TFRs in complex with bound ligands (3EGQ, 3CJD, 3KKD, 2QIB,
2D6Y, 4ICH, and 2IEK). It is difficult to determine if these TFR-
ligand interactions are biologically relevant, but in at least one
case, the genes adjacent to the TFR on the chromosome, and hence
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the predicted regulated genes (23) (see Genomics of TFRs above),
indicate a potentially relevant relationship. The TFR Jann_2994
from the alphaproteobacterium Jannaschia sp. strain CCS1 was
crystalized with stearic acid (PDB ID 3CJD). Jann_2994 is adja-
cent to a putative PspA homolog, which is potentially involved in
regulating cytoplasmic membrane integrity as well as a putative
fatty acid desaturase.

At least three TFRs, AmtR, DhaS$, and SImA, are known to in-
teract with proteins rather than small-molecule ligands (GInK,
DhaQ, and FtsZ, respectively) (67-69). Residues of SImA involved
in interactions with the cell division protein FtsZ have recently
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been identified (70). These residues form an active site on the
ligand-binding domain that in the crystal structure of SImA is
partially blocked by the DNA-binding domain (Fig. 8). The au-
thors proposed that in the DNA-bound form of SImA, the entire
FtsZ interaction interface would be exposed, with implications for
SImA function (see TFRs and Cell Division below) (70).

Two TFRs, SczA and ComR, bind metals, but the molecular
details of these interactions are not known (71, 72). Further struc-
tural studies will provide clues as to the mechanisms surrounding
how TFRs specifically recognize metal ions.

Mechanism of Induction by Ligands

Structures are available for six TFRs (TetR, QacR, HrtR, DesT,
SimR, and CgmR) in both DNA-bound and ligand-bound con-
formations, providing insight into the structural mechanism of
derepression (22, 42-47, 50, 53). It has been noted that in most
apo-protein structures, the TFR most closely resembles the li-
gand-bound or induced form rather than the DNA-bound form.
It is therefore unlikely that the comparison of apo and ligand-
bound structures provides a meaningful insight into induction
and that it is necessary to compare the ligand-bound and DNA-
bound forms.

In all cases, ligand binding is associated with increased separa-
tion of the DNA-binding domains of the two TFR monomers
relative to the DNA-bound form. This may be accompanied by
further conformational changes involving helix 4 and helix 6,
which are in direct contact with the DNA-binding domain. In
TetR, ligand binding causes a shift in helix 6 resulting in the pen-
dulum-like motion of helix 4. Using equilibrium protein-unfold-
ing experiments, Reichheld et al. (73) provided evidence that TetR
does not occupy two distinct folded states (i.e., DNA bound and
tetracycline bound) but rather that ligand binding increases the
folding cooperativity between the N- and C-terminal domains. It
was suggested by Reichheld et al. (73) that this increases the sta-
bility of a conformation in which the DNA-binding domains are
too far apart to support binding to adjacent major grooves in the
DNA.

Similar to the case for TetR, a pendulum-like motion was noted
in helix 4 of both QacR and CgmR, but in these cases, ligand
binding caused a coil-to-helix transition in helix 5 and a relocation
of helix 6 in QacR. In CgmR, a widening of the inducer-binding
pocket and shift in helix 6 was observed. In HrtR, heme binding
was shown to cause a coil-to-helix transition in helix 4, resulting in
a rigid-body motion of the DNA-binding domain to an orienta-
tion not compatible with DNA binding. The case of DesT is per-
haps not as simple, as DNA-binding and induced forms of the
protein are both bound to ligands, albeit different ones. In the
DNA-free form (bound to the inducing ligand palmitoyl-CoA as
opposed to oleoyl-CoA), a helix-to-coil transition of helix 4 is seen
along with an ordering of the L8-L9 loop and movement of helix 6
and helix 7. These changes in DesT again result in a widening of
the distance between the DNA-binding domains. SimR represents
yet another variation, where there is no reorientation between the
DNA-binding and ligand-binding domains but rather a rigid-
body motion of the two SimR monomers relative to each other
that results in a widening between the two DNA-binding domains.

It is difficult to posit a universal structural model for the tran-
sition between the repressing and induced conformations for
TFRs, and indeed, it is unclear whether there are true commonal-
ities throughout the family. Certainly key structural elements, in-
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cluding the conserved helices of the DNA-binding domain and the
conserved helix 5 to 7 triangle and four-helix dimerization inter-
face, are relevant. While at first glance it may be difficult to directly
apply the Reichheld model for allosteric regulation of TetR (73) to
SimR given that there is no reorientation between the DNA-bind-
ing and ligand-binding domains in the case of SimR, structural
flexibility along the monomer interface may be important in this
case. The ligand-binding cavity of SimR is composed of residues
from both monomers, and as a result ligand binding will undoubt-
edly decrease the flexibility between them. Recent work has chal-
lenged the Reichheld model (74); however, this work was based
primarily on X-ray crystallographic analysis of the protein bound
to artificial peptide inducers and therefore should be interpreted
with caution. Our view is that nuclear magnetic resonance (NMR)
analysis of one or more TFRs, preferably for those where there are
X-ray data on both the ligand- and DNA-bound forms (e.g.,
CgmR, DesT, HrtR, QacR, SimR, or TetR), in which the structural
transitions that occur upon ligand binding are monitored would
be an ideal means of settling debate in this area.

TFRs AND ANTIBIOTIC RESISTANCE

There are numerous TFRs involved in regulating resistance to
antibiotics and other toxic compounds. These TFRs can be di-
vided into three categories: (i) TFRs regulating self-resistance in
antibiotic-producing organisms, (ii) TFRs regulating specific an-
tibiotic resistance in nonproducing organisms, and (iii) TFRs reg-
ulating multidrug resistance.

TFRs Regulating Self-Resistance in Antibiotic-Producing
Organisms

Numerous TFRs have been identified in the biosynthesis clusters
for antibiotics and other secondary metabolites in species of Strep-
tomyces and related actinobacteria. Of these, six TFRs, i.e., ActR,
KijA8, LanK, PhlF, SimR, and VarR, have been shown to bind the
products of the biosynthetic pathways in which they are encoded
(25, 75-79). These TFRs primarily regulate the expression of ef-
flux pumps required for antibiotic export but may also regulate
the expression of late-stage biosynthetic genes.

Actinorhodin is a benzoisochromanequinone antibiotic pro-
duced by S. coelicolor. The biosynthetic pathway for this com-
pound is encoded in a 22-kb region that includes the actR gene and
its target operon actAB, which encodes two efflux pumps believed
to export actinorhodin from the cell. The biosynthesis of acti-
norhodin involves a typical type II polyketide synthase that first
generates an 18-carbon octaketide (80). This molecule is tailored
into a 3-ring intermediate, and, late in the pathway, two of these
intermediates are covalently joined to generate the mature six-
ring compound. ActR binds both the final biosynthetic product
actinorhodin and three-ring biosynthetic intermediates, includ-
ing (S)-DNPA (79). Genetic evidence suggests that in acti-
norhodin-producing cells (S)-DNPA and/or other 3-ring inter-
mediates serve to activate the expression of efflux genes, the only
known self-resistance mechanism, before the final product is syn-
thesized (81). Furthermore, there are now several reports that the
export proteins are required for efficient, high-yield biosynthesis
of actinorhodin (81, 82). The biochemical basis for reduced acti-
norhodin biosynthesis in cells defective in the actAB operon is not
well understood, but it has been interpreted as evidence that initial
activation of the actinorhodin export genes is primarily depen-
dent on intermediates. However, it is also clear that sustained
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expression of the actinorhodin efflux pumps throughout the cul-
ture (i.e., including cells that produce actinorhodin and those that
do not) requires the actinorhodin final product (81). Thus, acti-
norhodin is believed to act as a cell-cell signal to trigger export and
resistance in nonproducing cells.

Like ActR, LanK and SimR are also able to bind both the final
products of the biosynthetic pathways in which they are encoded
and biosynthetic intermediates. LanK from Streptomyces cyanoge-
nus S136 is located in the biosynthesis cluster for the glycosylated
angucyclic polyketide antibiotic landomycin A. LanK regulates
both the landomycin A efflux pump encoded by lan] and the
downstream gene lanZ1 (78). LanZ1 is an epimerase required for
synthesis of sugar residues required for later-stage landomycin
biosynthesis. Thus, as is the case for ActR, at least one step in the
induction of the LanK target operon involves the interaction of the
repressor with an immature landomycin intermediate. TFRs are
also located in the biosynthesis clusters for the related angucycli-
none antibiotics urdamycin and saquayamycin, but the role of
these TFRs in regulating antibiotic biosynthesis and export has
not been investigated (83, 84).

SimR is located in the biosynthesis cluster for simocyclinone D8
in Streptomyces antibioticus Tt 6040 (85, 86). Simocyclinone D8 is
a structurally complex inhibitor of DNA gyrase (87, 88). The final
molecule is composed of four parts: an angucyclic polyketide, a
D-olivose sugar, a tetraene linker, and an aminocoumarin moiety.
SimR regulates expression of the simocyclinone efflux pump en-
coded by simX and is induced by both simocyclinone D8 and the
intermediate simocyclinone C4, which lacks the aminocoumarin
functional group (76). It is not clear, however, that the interaction
of SimR with the C4 intermediate is biologically relevant. Unlike
the ActR case, where intermediates are bound more tightly than
the finished product, or the LanK case, where induction is re-
quired for the completion of biosynthesis, the C4 intermediate
binds more weakly than the mature D8 molecule, and there are no
known biosynthetic steps that depend on the SimX export pro-
tein.

TFRs are encoded in many of the antibiotic biosynthesis gene
clusters found in actinomycetes; however, they are also associated
with the biosynthesis of other classes of compounds in a great
many organisms. For example, PhlIF is located in the 2,4-di-
acetylphloroglucinol biosynthesis cluster of Pseudomonas fluore-
scens (89). Biosynthesis of 2,4-diacetylphloroglucinol is of inter-
est, as it occurs via a type III polyketide synthase (PKS) thought to
be rare in bacteria (90). PhIF binds to the intergenic region be-
tween phlF and phlA, repressing expression of the phlABCD
operon (75). DNA binding is enhanced in the presence of salicy-
late and disrupted by the biosynthetic product of the cluster 2,4-
diacetylphloroglucinol.

TFRs are also present in the biosynthesis clusters for diverse
polyketides, including ansamycins (e.g., rifQ in the rifamycin clus-
ter [91]), macrolactams (e.g., mlaM in the ML-449 cluster [92]),
and polyether ionophores (e.g., schR3 in the calcimycin cluster
[93]). TFRs are not limited to polyketide biosynthesis clusters but
are found in biosynthesis clusters for nonribosomal peptides (e.g.,
acmP and acmU in the actinomycin cluster [94]) and nucleoside
antibiotics (e.g., amiP in the amicetin cluster [95]).

KijR and Pip from S. coelicolor are involved in regulating anti-
biotic resistance in a nonproducing organism (see below) and are
closely related to KijA8 and VarR, respectively (25) (Fig. 9), raising
the possibility that KijR and Pip were acquired by horizontal gene
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FIG 9 Grouping of TFRs involved in antibiotic resistance. (A and B) KijA8
and KijR (A) and VarR and Pip (B) group together in phylogenomics analysis,
indicating that KijR and Pip may have been horizontally acquired from an
antibiotic-producing organism. (C) Many TFRs controlling the expression of

multidrug efflux pumps cluster together in phylogenomics analysis. (Adapted
from reference 25.)
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transfer from a producing organism. KijA8 regulates expression of
the putative kijanimicin efflux pump encoded by kijA5 in response
to kijanimicin in the producing organism Actinomadura kijaniata
(25). Similarly, VarR regulates expression of the virginiamycin
efflux pump in Streptomyces virginiae in response to virginiamycin
S (77). Environmental microbes are highly resistant to antibiotics
(96) and provide a reservoir for resistance elements in other envi-
ronmental microbes as well as in clinically relevant pathogens (97,
98). This raises questions as to the possible origins of other TFRs,
for example, TetR and MphR of E. coli, in producing organisms.
No TFR has been identified in the biosynthesis clusters for oxytet-
racycline or chlorotetracycline, but a TFR is present in the cluster
for the glycosylated anticancer tetracycline SF2575, although our
analysis does not show a close relationship to TetR from E. coli (25,
99). The closest homolog of MphR is, however, found in the en-
vironmental microbe Myxococcus xanthus (25, 59), revealing pos-
sible origins for MphR in the environment.

TFRs Regulating Specific Antibiotic Resistance in
Nonproducing Organisms

The first characterized TFR, TetR, the founding member of the
family, is the regulator of tetracycline resistance. Despite this, only
a limited number of TFRs have been implicated in specific antibi-
otic resistance in nonproducing organisms: TetR, KijR, MphR,
and Pip and the paralogous TFRs LmrA and QdoR.

Like for TetR, the target of Pip in S. coelicolor (SCO4025) is
efflux pump gene of the major facilitator superfamily, pep
(SCO4024) (100). Unlike tetR and tetA, pip and pep are cotrans-
cribed. As discussed above, Pip shares a high degree of similarity
with VarR in the viginiamycin biosynthesis cluster.

KijR and MphR regulate enzymes involved in antibiotic inacti-
vation (25, 101). KijR regulates the expression of kijX, which en-
codes a novel antibiotic deglycosylase, and shares similarity with
kijA8 in the kijanimicin biosynthesis cluster (see below) (25).
MphR regulates expression of mphA, encoding a macrolide phos-
photransferase, and mrx, encoding a membrane protein required
for high-level resistance (101, 102). Another, unnamed TFR is
found upstream of genes encoding a macrolide phosphotransfer-
ase (mphB) and a putative methyl esterase (rdmC-like) required
for high-level macrolide resistance in some strains of E. coli as well
as Streptococcus uberis (103). Despite the fact that they both regu-
late macrolide resistance genes, this unnamed TFR and MphR
were found in separate groups in our analysis (25).

LmrA and QdoR are paralogous TFRs in Bacillus subtilis that
bind plant flavonoids (104). LmrA and QdoR regulate expression
of their own genes as well as those for LmrB, Qdol, and YxaH. The
LmrA/QdoR regulon is organized into two operons: ImrA-lmrB
and gdoR-qdol-yxaH. LmrB is an efflux pump of the major facil-
itator superfamily. Qdol is a quercetin dioxygenase, responsible
for flavonoid inactivation. YxaH is a membrane protein of un-
known function.

Rather than regulating a specific antibiotic resistance mecha-
nism, EthR from M. tuberculosis regulates the expression of EthA,
an enzyme required for activation of the antibiotic ethionamide
(105-108). While EthA is active against a broad range of sub-
strates, including two other tuberculosis prodrugs, isoxyl and thi-
acetazone (106, 109, 110), the natural substrate for EthA is an
unknown molecule believed to be distinct from ethionamide
which is not an inducer of ethA expression. Due to its toxicity,
ethionamide is currently used as a second-line drug primarily in
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the treatment of drug-resistant strains of tuberculosis. Activators
of EthR are of interest for use in conjunction with ethionamide, as
they would increase EthA expression, and therefore activation of
ethionamide, allowing for lower ethionamide concentrations to
be used (64).

TFRs Involved in Regulating Multidrug Resistance

TFRs are also involved in regulating a number of multidrug resis-
tance pumps, including AcrAB in E. coli, which is regulated by
AcrR, and MexXY from Pseudomonas aeruginosa, which is regu-
lated by MexZ (111, 112). The AcrAB efflux pump in E. coli is
under the control of several global regulators, including MarA,
Rob, SoxS, and SdiA (113, 114). AcrR is thought to play a role in
fine-tuning the expression of acrAB rather than serving as an on-
off switch (112). Nevertheless, mutations in acrR alone result in
increased expression of acrAB and are associated with antibiotic-
resistant clinical isolates (115). AcrR has been shown to interact
with various synthetic compounds, including ethidium, profla-
vine, and rhodamine 6G (116); however, the physiological rele-
vance of these ligands for AcrR and other TFRs regulating multi-
drug resistance pumps such as QacR may be questionable.
Clinically, the so-called multidrug resistance pumps, particularly
those of the RND family, are a major source of antibiotic resis-
tance in Gram-negative bacteria (117). However, multidrug resis-
tance is typically the result of mutations in the regulators (118) of
these pumps, indicating that multidrug resistance is not the native
function of these pumps and that they serve other natural func-
tions (119). Identifying bona fide interacting partners for the reg-
ulators of these pumps, whether they are small-molecule or pro-
tein ligands, will help to elucidate their roles under physiological
conditions. A role for AcrAB in removing toxic metabolites has
been suggested (120), and it would be interesting to test these
putative acrAB inducers as ligands for AcrR.

The MexXY transporter of P. aeruginosa is expressed under
conditions of ribosome stress, including the presence of antibiot-
ics that target the ribosome (121). Expression of mexXY is con-
trolled by the TFR MexZ and requires ArmZ (PA5471) (122),
which interacts with MexZ (31, 123). armZ encodes a homolog of
RtcB, an RNA ligase involved in recovery from stress-induced
RNA damage (124), and is cotranscribed with PA5470, which en-
codes a homolog of PrfH. PfrH is thought to function as a peptide
release factor that recognizes mRNA signals other than normal
stop codons, possibly signals that result from RNA damage (125).
While antibiotics that target the ribosome induce MexZ expres-
sion, MexZ does not appear to interact directly with these antibi-
otics but rather responds to effects downstream of ribosome dis-
ruption. Similarly, while the MexXY efflux pump functions as a
multidrug efflux pump, its native function is not antibiotic efflux
per sebut rather its increased expression is a response to ribosome
stress. Our phylogenetic analysis reveals a group containing many
TFRs regulating putative multidrug efflux pumps (Fig. 9). This
group includes, for example, AcrR and EnvR of E. coli, MexZ and
NalD of P. aeruginosa, and MtrR of Neisseria gonorrhoeae. Further
studies will be required to determine whether this shared group-
ing is indicative of a common interacting partner (small molecule
or protein) for these TFRs and a common function for the efflux
pumps that they regulate.

mmbr.asm.org 459


http://mmbr.asm.org

Cuthbertson and Nodwell

TFRs AND CELL-CELL SIGNALING
GBL Signaling

Gamma-butyrolactone (GBL) signaling molecules are involved in
the regulation of antibiotic production and morphological devel-
opment in Streptomyces and other actinomycetes and are the most
well characterized signaling molecules in these species. A-factor
from Streptomyces griseus was the first GBL to be characterized,
and its identification predates that of the acyl-homoserine lactone
quorum-sensing molecules of Gram-negative bacteria (126). The
TFR ArpA is the A-factor receptor in S. griseus and is part of a large
group of closely related TFRs (Fig. 10) that bind GBLs and related
signaling molecules such as avenolide from Streptomyces avermiti-
lis (127) and the methylenomycin furans from S. coelicolor (128).
In some cases, such as that of ArpA in S. griseus, GBL signaling
plays a major role in both antibiotic production and morpholog-
ical development (9). In other cases, such as that of ScbR and the
GBL SCB1 in S. coelicolor, some global effects have been noted;
however, the predominant role of GBL signaling is in the regula-
tion of a single antibiotic gene cluster (129, 130).

The clustering of all known and predicted GBL receptors in our
analysis shows the separate clustering of the so called “pseudo”-
GBL receptors and helps to identify putative receptors not associ-
ated with GBL biosynthetic enzymes (Fig. 10). Pseudo-GBL recep-
tors such as JadR2 from S. venezuelae and ScbR2 from S. coelicolor
are reported to play a role in the GBL signaling alongside their
cognate GBL receptor (i.e., JadR3 [SVEN_5968] and ScbR) by
regulating expression of GBL biosynthesis enzymes (131, 132).
GBL signaling systems regulate antibiotic biosynthesis, and one
report suggests that pseudo-GBL receptors may interact with the
final antibiotic product being regulated (133). While the biologi-
cal relevance of these data is questionable due to the high concen-
tration of antibiotic used in these studies, the idea that pseudo-
GBL receptors play a role in GBL signaling pathways is an
interesting one.

While the majority of GBL receptors and pseudoreceptors are
associated with GBL biosynthetic enzymes, a number of orphan
receptors, not associated with biosynthetic gene clusters or resis-
tance genes, have also been identified. Our data provide support
for previous reports concerning the role of some of these proteins,
namely, CprA and CprB from S. coelicolor, in regulating secondary
metabolite biosynthesis and morphological differentiation in
Streptomyces (130, 134). Some bacteria are known to recognize
and even metabolize the quorum-sensing signals produced by
other bacteria (135). For example, E. coli and Salmonella enterica
do not produce acyl-homoserine lactones but are able to sense
them through the receptor SdiA (136). It is tempting to speculate
that the role of orphan GBL receptors (e.g., CprA and CprB) and
GBL receptors in bacteria not known to produce GBLs (e.g.,
MSMEG_2193 and MSMEG_2195) may be to recognize GBLs
produced by other microbes.

Quorum Sensing

In Vibrio cholerae, the TFR HapR plays a major role in quorum-
sensing regulation at high cell density (137). HapR orthologs in
other species of Vibrio include LuxR of V. harveyi (not to be con-
fused with transcription factors of the LuxR family such as LuxR of
V. fischeri) and LitR of V. fischeri. The crystal structures of HapR as
well as the orthologous SmcR are available (138, 139), and while
they both show a putative ligand-binding cavity, none of the
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known quorum-sensing molecules have been reported to bind
these proteins. Instead, expression of HapR is regulated at the
posttranscriptional level through interactions of hapR mRNA
with a number of small RNAs (sRNAs) (140). Recent data indicate
an integration of cell density with nutrient availability in quorum
sensing (141), raising the possibility that another type of small-
molecule signal may serve as a ligand for HapR. The TFR DarR
from M. smegmatis has been shown to interact with cyclic-di-AMP
(142), providing a precedent for interactions between TFRs and
second messengers.

TFRs AND CARBON METABOLISM

TFRs have been implicated in both central pathways for carbon
metabolism as well as peripheral pathways for the catabolism of
specific carbon sources, including the degradation of pollutants
and other waste products (e.g., DhaR and MnbR [143, 144]).
AcnR in Corynebacterium glutamicum controls the expression of
the aconitase gene, acn. Aconitase is a tricarboxylic acid cycle en-
zyme that converts citrate to isocitrate and is thought to be an
important control point in tricarboxylic acid cycle activity in Co-
rynebacterium (145). Structures are available for AcnR (Protein
Data Bank [PDB] ID 4AC6, 4ACI, and 4AF5) and show a bound
molecule of citrate with evidence for another putative ligand-
binding pocket (146). Further studies will be required to deter-
mine if AcnR indeed binds multiple small-molecule ligands.

Numerous TFRs have been identified as regulators of the ex-
pression of catabolic pathways for different carbon sources. For
example, in Lactococcus lactis, DhaS regulates the expression of
dihydroxyacetone kinase, which is required for glycerol catabo-
lism (69). Unlike the majority of TFRs, Dha$ interacts with a
protein rather than a small molecule and acts as a transcriptional
activator. MdoR from Mycobacterium sp. strain JC1 also acts as a
transcriptional activator (147). MdoR regulates expression of the
mdo gene, which is required for oxidation of methanol. The TFRs
NicS, PaaR, and RolR are involved in the regulation of metabolism
pathways for nicotinic acid, phenyl acetic acid, and resorcinol,
respectively (148-150). In each case, the TFR has been shown to
interact with the molecule being degraded or a catabolic interme-
diate.

TFRs AND NITROGEN METABOLISM

AmtR is a master regulator of nitrogen metabolism in Corynebac-
terium (37). The AmtR regulon is composed of at least 33 genes.
These encode proteins that import and metabolize different nitro-
gen sources as well as other regulators of nitrogen metabolism.
Unlike most of the characterized TFRs, AmtR interacts with a
protein rather than a small-molecule ligand. Consistent with its
role in controlling nitrogen assimilation, AmtR interacts with the
adenylylated form of GInK, which accumulates under conditions
of nitrogen limitation (67). To date, residues important for this
interaction have not been characterized. AmtR homologs are
found in Actinobacteria, including some species of Mycobacte-
rium, Nocardia, Rhodococcus, and Streptomyces (25, 151). In Strep-
tomyces, two OmpR-like regulators, GInR and GInRII, are the
master regulators of nitrogen metabolism (152). Although not
present in Corynebacterium, GInR homologs are more conserved
in actinobacteria than AmtR homologs; however, there are a few
species that encode both (151). Mycobacterium abscessus, Nocar-
dia farcinica, Rhodococcus jostii, Streptomyces avermitilis, and
Streptomyces scabies all encode both AmtR and GInR homologs. In
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these species, the genes for the AmtR homologs are divergent to
genes involved in the import and degradation of urea (Fig. 11A),
suggesting that like AmtR, they may regulate nitrogen metabo-
lism. The gene for another AmtR homolog in Mycobacterium
smegmatis is located in an operon with genes for a putative enoyl-
CoA hydratase and a putative fatty acid-CoA ligase, which do not
play an obvious role in nitrogen metabolism. Bioinformatic anal-
ysis suggests that mycobacteria contain putative GInR-binding
sites throughout their chromosomes, while AmtR-binding sites in
strains encoding AmtR homologs were not identified (151). It is
tempting to speculate that in strains encoding both GInR and
AmtR homologs, AmtR may function as a local rather than a
global repressor.

In E. coli, RutR is the master regulator of pyrimidine metabo-
lism. RutR regulates transcription of the divergently transcribed
rut operon, encoding gene products involved in the degradation
of pyrimidines for use as a nitrogen source. RutR also regulates a
number of other targets located elsewhere on the chromosome,
including the carAB, gadAX, gadBC, ygiF-gInE, and gcl-hyi-gIxR
operons, which are involved in various aspects of pyrimidine and
glutamate metabolism (153). A homolog of RutR, PydR, has been
identified as the regulator of genes required for pyrimidine degra-
dation via the reductive pathway in Pseudomonas putida (154). A
crystal structure is available for RutR in complex with its inducing
ligand uracil (155). Residues involved in uracil binding are con-
served in PydR, indicating that PydR may also be a uracil-respon-
sive transcription factor (154). Our analysis shows separate RutR
and PydR subclades within a larger group of TFRs probably in-
volved in the metabolism of pyrimidines as well as possibly pu-
rines (Fig. 11B). P. aeruginosa encodes four RutR-PydR homologs,
and based on genomic context, all four homologs are likely to play
arole in nucleotide metabolism. This RutR-PydR group serves as
an example of how very similar TFRs may regulate different path-
ways involved in the same overall physiological process, in this
case nucleotide metabolism. Another example of this is the in-
volvement of FabR and DesT in regulating fatty acid saturation in
E. coli and P. aeruginosa, respectively (see TFRs and Lipid Metab-
olism below).

XdhR from S. coelicolor regulates the expression of the diver-
gently transcribed four-gene operon encoding the subunits of,
and a maturation factor for, xanthine dehydrogenase. Xanthine
dehydrogenase activity is responsible for the conversion of xan-
thine to uric acid, which can be broken down and used as a nitro-
gen source. XdhR may therefore provide a link between primary
metabolism, morphological development, and antibiotic produc-
tion in Streptomyces (156), and our analysis shows that XdhR is
indeed well conserved in this genus. The potato pathogen Strep-
tomyces scabies carries two xdhR homologs (Fig. 11C). SCAB82081
encodes an ortholog of XdhR, while the role of SCAB83171 is
unclear. We have also identified XdhR homologs in a number of
Gram-negative bacteria (e.g., Pseudomonas putida and Rahnella).
These XdhR homologs are predicted to regulate a putative short-
chain dehydrogenase of unknown function. Given the phyloge-
netic grouping, these XdhR homologs and the short-chain dehy-
drogenases they regulate should be investigated for a role in
purine metabolism.

TFRs AND LIPID METABOLISM

There are numerous parallels between the biosyntheses of
polyketide antibiotics and fatty acids. We have noted above the
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involvement of TFRs in regulating resistance to numerous Fatty Acid Biosynthesis and Degradation
polyketide antibiotics, including tetracycline. TFRs also play a ma-
jor role in regulating fatty acid metabolism as well as the metabo-
lism of other lipid compounds, including sterols.

FasR from C. glutamicum is a regulator of lipid biosynthesis. In a
fasR mutant, 17 genes were differentially expressed, including
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fasA, fasB, accB, accC, and accDI (157). In addition, two other
TFRs were found to be differentially expressed in the fasR mutant,
one of which, Clg1640, may also play a role in fatty acid metabo-
lism. CIg1640 is found in a group with FadR from Pseudonocardia
autotropica (Fig. 12A). In P. autotropica, FadR controls an operon
involved in fatty acid degradation (158). Also located in this group
are the AtrA homologs from Streptomyces. AtrA is a pleiotropic
regulator of antibiotic production in Streptomyces (6). The induc-
ing ligand for AtrA is unknown, but given its grouping with two
TFRs involved in fatty acid metabolism, a fatty acid derivative
should be investigated. Transcriptomics studies support a role for
Avel, the AtrA ortholog of Streptomyces avermitilis, in the regula-
tion of carbon flux toward antibiotic production. Indeed, genes
involved in fatty acid metabolism were downregulated in an avel
mutant (159). FasR itselfis located in a group with another known
regulator of antibiotic production in S. coelicolor, SCO1712 (160)
(Fig. 12B), further highlighting a connection between fatty acid
metabolism and antibiotic production. It is worth highlighting
that AtrA acts as a transcriptional activator, in contrast to the role
of most TFRs as repressors (6).

While FasR is currently the only known TFR involved in fatty
acid biosynthesis, numerous TFRs are known to play a role in fatty
acid degradation. In addition to FadR from P. autotropica (see
above), two other TFRs have been called FadR. FadR from B.
subtilis regulates five operons required for fatty acid degradation
and recognizes long-chain fatty acyl-CoAs (161). FadR from Ther-
mus thermophilus controls the expression of numerous genes im-
plicated in fatty acid degradation (57). Although there are cur-
rently three TFRs bearing the name FadR, none grouped together
in our analysis (25). While the available data support a role for all
three TFRs in fatty acid degradation, the above proteins are clearly
not orthologous.

In M. tuberculosis, at least two TFRs are known to play a role in
lipid metabolism, Fad35R and Mce3R. Fad35R controls the ex-
pression of an acyl-CoA synthetase encoded by Fad35 in response
to fatty acid derivatives (162). Mce3R represses the transcription
of the virulence-related mce3 locus as well as other genes required
for fatty acid degradation. Mce3R is among a group of TFRs con-
taining duplicated TFR domains within a single peptide. Our anal-
ysis has shown that the N- and C-terminal TFR domains form
separate clusters within the same group (Fig. 12C). This indicates
that the N-terminal domains are more similar to each other than
they are to the C-terminal domains, and this group of TFRs may
be the result of a single duplication and gene fusion event. Al-
though the inducing ligand for Mce3R has not been identified, it is
located within a larger group with Fad35R (Fig. 12C), indicating
that it may likewise be induced by a fatty acid derivative.

PsrA from P. aeruginosa responds to long-chain fatty acids to
control expression of fad genes (163). In addition, PsrA plays a
role in resistance to cationic antimicrobial peptides, antibiotic
production, quorum sensing, and virulence, indicating that PsrA
and long-chain fatty acids play an important role in the physiology
of this important opportunistic pathogen.

Lipid Saturation

As mentioned above, FabR from E. coli and DesT from P. aerugi-
nosa regulate different pathways involved in the same overall
physiological process, in this case fatty acid saturation. Our phy-
logenetic analysis shows that they are located in the same group
(25) (Fig. 12D). FabR regulates the expression of fabA and fabB,
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which are required for the synthesis of unsaturated fatty acids
(164). The genes encoding FabA, FabB, and FabR are all located in
different areas of the chromosome, and unlike most TFRs, FabR is
not autoregulatory (165). While not essential for DNA binding by
FabR, unsaturated thioesters (i.e., acyl-ACP or acyl-CoA) were
found to enhance binding, while the FabR-DNA interaction was
disrupted in the presence of saturated thioesters (165). DesT
shows a similar pattern of ligand binding, where DNA binding is
enhanced by unsaturated acyl-CoAs and disrupted by saturated
acyl-CoAs (166). DesT regulates the expression of desC and desB,
which are divergently transcribed from desT (166). The desC and
desB genes encode a reductase and an acyl-CoA desaturase, re-
spectively. Whereas FabR regulates the biosynthesis of unsatu-
rated fatty acids, DesT regulates gene products required for the
desaturation of preformed acyl chains.

Synthesis and Degradation of Storage Polymers

In Pseudomonas putida, PhaD controls the expression of genes
involved in polyhydroxyalkanoate (PHA) metabolism (167).
PHAs are produced as carbon storage granules and are being in-
vestigated for their potential as alternative plastics (168). PHA
polymers are synthesized from (R)-3-hydroxyacyl-CoA, which
can be produced from various intermediates of fatty acid degra-
dation. Although not experimentally demonstrated, PhaD is
thought to bind a fatty acyl-CoA intermediate of B oxidation
(167). Interestingly, PhaD is located in a larger group with
NGO0393 and NMB0810 from Neisseria gonorrhoeae and Neisse-
ria meningitidis, respectively (Fig. 12E). The NGOO0393 and
NMBO0810 orthologs are one of only two TFRs encoded by each
species. The roles of NGO0393 and NMB0810 in the metabolism
of storage polymers have not been investigated.

Terpene Utilization

Terpenes, including cholesterol, are an important class of natural
product built from isoprene units. Two TFRs, KstR and KstR2,
control cholesterol degradation in M. tuberculosis (169—172). The
genes in the KstR and KstR2 regulons are known to be upregulated
in vivo and are important for virulence of M. tuberculosis (173).
Specific inducing ligands for KstR and KstR2 have not been iden-
tified. Although KstR and KstR2 are located in separate groups
(Fig. 12F and G), other TFRs in both groups further suggest a role
in terpene metabolism. For example, Rv0767c is in the same group
as KstR and is located in an operon with Rv0764c, encoding a
putative steroid demethylase. KstR2 is in a group with AtuR from
P. aeruginosa. AtuR controls the expression of genes required for
acyclic terpene utilization (174). A number of TFRs (CampR,
Cmtl, CmtR, CymR, and Psbl) that control the utilization of cyclic
terpenes such as camphor and p-cymene have also been identified
(175-179).

TFRs AND AMINO ACID METABOLISM

Three TFRs, AguR, LiuQ, and McbR, are involved in regulating
amino acid metabolism. While AguR and LiuQ act as local regu-
lators controlling the expression of adjacent genes involved in
amino acid degradation, McbR acts as a global regulator for sulfur
metabolism.

Agmatine is an intermediate in the arginine decarboxylase
(ADC) pathway for arginine degradation (180). In P. aeruginosa
PAOI, the TFR AguR controls expression of the aguAB operon,
involved in agmatine utilization, and is induced by agmatine
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(181). AguR is conserved in many members of the genus Pseu-
domonas but is absent from P. aeruginosa PA14, where an alterna-
tive operon for agmatine metabolism also plays a role in biofilm
formation (182).

The TFR LiuQ has been identified using comparative genomics
as the regulator of the liuABCD genes, required for the degrada-
tion of branched-chain amino acids in Burkholderiales (183). Al-
though DNA binding was not experimentally tested, a putative
LiuQ binding site was identified.

McbR from C. glutamicum is a global regulator of sulfur me-
tabolism, including the genes required for the biosynthesis of sul-
fur-containing amino acids (184, 185). DNA binding by McbR is
modulated by the small molecule S-adenosylhomocysteine, a by-
product of methylation reactions (185). Deletion of mcbR causes
numerous pleiotropic effects on additional aspects of growth and
metabolism, indicating that McbR plays a central role in regulat-
ing numerous physiological processes in C. glutamicum (186).

TFRs AND COFACTOR METABOLISM

Biotin

In many bacteria, BirA controls the expression of biotin biosyn-
thesis genes (187). BirA is a bifunctional protein acting as the
biotin-protein ligase as well as a transcriptional regulator. In some
organisms, BirA lacks the transcriptional regulatory domain and
the biotin biosynthesis genes are controlled by other transcription
factors. In alphaproteobacteria, the GntR family regulator BioR
controls the expression of biotin biosynthesis genes (188), while in
Corynebacterium and certain related actinobacteria, the TFR BioQ
is the regulator of biotin biosynthesis (189). BioQ interacts with a
13-bp palindromic region upstream of a number of biotin biosyn-
thesis genes. Biotin itself was not found to disrupt the BioQ-DNA
interaction in vitro, but this does not rule out the possibility of a
biotin intermediate serving as a ligand for BioQ.

Heme

Two TFRs, HrtR from Lactococcus lactis and HemR from Pro-
pionibacterium freudenreichii, have been implicated in heme
homeostasis. HemR is a putative regulator of genes required for
the conversion of glutamate to protoheme in P. freudenreichii.
It is transcribed divergently from hemX, encoding a putative
heme transporter. The details of HemR DNA binding and li-
gand binding have not been investigated (190). L. lactis does
not synthesize heme. HrtR senses intracellular heme and regu-
lates expression of a heme exporter encoded by HrtBA (191).

TFRs AND CELL DIVISION

SImA from E. coli binds and antagonizes polymerization of the
bacterial tubulin homolog FtsZ, preventing cell division from oc-
curring over the chromosome, in a process known as nucleoid
occlusion (68, 192, 193). SImA is not known to interact with a
small molecule but rather interacts directly with the tubulin-like
cell division protein FtsZ. This interaction is believed to be impor-
tant for preventing the formation of cell division septa around
unsegregated chromosomes. In one model for SImA function
(70), the FtsZ interaction interface on SImA is completely exposed
only when SImA is bound to DNA. Hence SImA affect FtsZ po-
lymerization only in areas where DNA is present.

Based on our analysis (25), SImA homologs are found in most
members of the gamma- and betaproteobacteria. Exceptions in
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which this mechanism appears to be absent include Acinetobacter,
Francisella, Legionella, Pseudomonas, Stenotrophomonas, Xan-
thomonas, and Neisseria. A possible SImA ortholog in Bordetella
parapertussis was found to be the product of a pseudogene. In E.
coli, the absence of both the Min system, also involved in regulat-
ing FtsZ function, and SImA results in a synthetic lethal phenotype
(68). How FtsZ ring placement is regulated in Gram-negative bac-
teria such as Myxococcus, Campylobacter, and Bacteroides where
both the Min system and SImA are absent is unknown, but evi-
dence suggests that there are as yet-unidentified factors involved
in nucleoid occlusion (194).

In Bacillus, Noc, a protein unrelated to SImA, controls nucle-
oid occlusion. Noc is a homolog of ParB chromosome-partition-
ing proteins. The TFR RefZ, however, is involved in regulating the
transition from medial to polar cell division during sporulation,
possibly as a direct effector of FtsZ polymerization (195). Our
analysis does not indicate a close relationship between SImA and
RefZ.

FUTURE DIRECTIONS AND CHALLENGES

TFRs play an important role in regulating numerous aspects of
bacterial physiology. Through genomics and structural studies,
we have learned a great deal regarding the types of gene products
regulated by TFRs and the mechanisms by which TFRs interact
with both DNA and small molecules. Although genomics allows
us to predict the target genes for the majority of TFRs, this cannot
be done for type III TFRs, and other methodologies must be em-
ployed. Different models still exist as to the structural changes that
TFRs undergo upon ligand binding and the precise molecular
mechanisms behind derepression, and future NMR studies may
help to resolve discrepancies in the current data. Determination of
the identities of the small-molecule ligands, or other interacting
partners, bound by the more than 200,000 TFRs in the public
databases probably represents the most understudied and chal-
lenging area of TFR biology, and future work will be required to
identify these ligands.
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