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Chromatin is organized into domains that are permissive or
repressive for transcription, depending largely on regional

patterns of covalent histone modifications. These epigenetic
marks recruit nuclear factors that regulate transcription either di-
rectly or via their actions to alter chromatin accessibility. For ex-
ample, dimethylation of histone-3 at lysine-9 (H3K9Me2) recruits
repressive chromatin modifiers and, accordingly, inhibits gene
transcription. Deposition of the H3K9me2 modification is medi-
ated by the histone methyltransferases (HMT) G9a (or KMT1C)
and GLP (or KMT1D) (1). These enzymes act predominantly in
euchromatin to coordinate repressive changes in gene expression
programs during cell fate decisions (2).

The importance of G9a/GLP in human health is underscored
by diseases that are linked to perturbations in this HMT complex.
For example, G9a activity participates in the resolution of inflam-
matory responses via its repression of proinflammatory cytokines
(3). Amplification of G9a is observed in diverse classes of tumors,
and in hepatocellular carcinomas, G9a knockdown inhibits their
continued growth (4). As such, HMT enzymes, including G9a/
GLP, are attractive targets for the design of small-molecule inhib-
itors that could reverse gene repression linked to pathogenesis. In
this regard, two groups have reported inhibitors, BRD4770 and
UNC0636, which have nanomolar affinity and exquisite specific-
ity for G9a/GLP, rendering them promising compounds for fu-
ture in vivo studies (5, 6).

In this issue of Molecular and Cellular Biology, Artal-Martinez
de Narvajas et al. (7) report that treatment of tumor cell lines with
G9a inhibitors leads to the formation of autophagosome-like
structures, suggesting that G9a plays a role in regulating gene ex-
pression changes governing this cellular process. Macroautophagy
is used by nearly all cells to remove damaged organelles and extra-
neous proteins. Normally, cells in homeostasis inhibit autophagy
by the action of mammalian target of rapamycin complex 1
(mTORC1). However, upon experiencing starvation or other
types of stress, the same cells suppress mTORC1 kinase activity
and rapidly form autophagosomes (8). Initiation of macroau-
tophagy is thought to be transcription independent, because the
mTORC1 kinase directly represses the function of proteins in-
volved in autophagosome formation (Fig. 1, left). However,
recent studies have hinted that transcription-dependent steps
may drive macroautophagy following mTORC1-mediated ini-
tiation (9).

The study by Artal-Martinez de Narvajas et al. (7) now shows
that full engagement of the autophagy pathway is indeed tran-
scription dependent and requires relief of G9a repression at sev-
eral relevant genes. Specifically, the authors demonstrate that in
unstressed cells, G9a binds directly to the promoters of LC3B,
WIPI1, and DOR, whose products are required for the formation
of autophagosomes (10). In keeping with its role as a repressor,
RNA interference (RNAi)-mediated depletion of G9a enhances
H3K9 acetylation, polymerase II (Pol II) binding, and transcrip-
tion of these three genes while attenuating levels of the H3K9me2

repressive mark. Direct regulation of LC3B and WIPI1 is depen-
dent on the HMT function of G9a, since deletion of its enzymatic
SET domain reverses repression of these autophagy-associated
genes. Importantly, while G9a inhibition is sufficient to induce
autophagosome formation, it does not lead to their fusion with
lysosomes, which is required to complete the process known as
autophagic flux (11). Instead, inhibition of both G9a and
mTORC1 kinase activity is required to drive autophagy to com-
pletion.

Artal-Martinez de Narvajas et al. extend their findings to show
that G9a also restricts autophagy in primary cells, namely, human
CD4� T lymphocytes (7). Prior studies have shown that autopha-
gosomes form in these cells during T cell receptor (TCR)-medi-
ated proliferation (12). Indeed, mice rendered incapable of induc-
ing autophagy in this lineage exhibit impaired T cell proliferation
and survival (13). In their study, Artal-Martinez de Narvajas et al.
used TCR agonists and starvation each to induce autophagy in
CD4� cells and demonstrated that sustained expression of LC3B,
DOR, and WIPI1 again requires expulsion of G9a from their pro-
moters (7). While prior studies have shown that G9a is dispens-
able for lymphocyte development, this HMT is necessary for dif-
ferentiation of mature T cells into distinct functional lineages
(14). However, the connections between proliferation-induced
autophagy and differentiation into functional T cell subsets dur-
ing an immune response remain to be established.

Overall, this study establishes a new regulatory pathway that
represses the initial stages of autophagy (7). Reversal of G9a-me-
diated transcriptional repression, in conjunction with mTORC1
inhibition, drives autophagy, recovering nutrients that maintain
viability during cellular stress and proliferative bursts. In addition,
Artal-Martinez de Narvajas et al. (7) provide numerous avenues
for future studies. For example, the mechanisms by which G9a is
removed or displaced from promoters at autophagosome genes as
well its relationship to other chromatin modifiers, such as the
autophagy-associated histone acetyltransferase hMOF (15), re-
main to be determined. To date, at least two transcription factors,
TFEB and JunB, have been implicated in the regulation of au-
tophagy (9, 16). As Atral-Martinez de Narvajas et al. suggest the
leading candidate for links to G9a repression of autophagy in T
lymphocytes is JunB, which is a component of signaling pathways
downstream of TCR activation. Another interesting possibility for
future exploration is a role for G9a in autophagy that is indepen-
dent of its function in histone modification. Perhaps the G9a/GLP
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complex methylates directly lysines on proteins involved in au-
tophagosome formation.

Finally, the study described here (7) should stimulate further
exploration of the therapeutic potential for this G9a-mediated re-
pression pathway. Indeed, perturbations of autophagy have been im-
plicated in cancer, neurodegeneration, autoimmunity, and the devel-
opment of diabetes (8). The therapeutic potential of G9a inhibitors
for reversal of these pathogenic processes was bolstered by a recent
study showing that BRD4770 can synergize with other inducers of
autophagy to block the growth of pancreatic cancer cells in vitro (17).
Together, G9a, mTORC1, and autophagy stand at the crossroads of
molecular targets for inhibitors that could ultimately find clinical ap-
plications for the treatment of multiple pathologies.

ACKNOWLEDGMENTS

This work was supported by NIH grants AI079732 (E.M.O.) and
AI007163 (P.L.C.).

REFERENCES
1. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H,

Sakihama T, Kodama T, Hamakubo T, Shinkai Y. 2005. Histone meth-
yltransferases G9a and GLP form heteromeric complexes and are both
crucial for methylation of euchromatin at H3-K9. Genes Dev. 9:815– 826.

2. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda
M, Takeda N, Niida H, Kato H, Shinkai Y. 2002. G9a histone methyl-
transferase plays a dominant role in euchromatic histone H3 lysine 9
methylation and is essential for early embryogenesis. Genes Dev. 16:1779 –
1791.

3. Chen X, El Gazzar M, Yoza BK, McCall CE. 2009. The NF-�B factor
RelB and histone H3 lysine methyltransferase G9a directly interact to gen-
erate epigenetic silencing in endotoxin tolerance. J. Biol. Chem. 284:
27857–27865.

4. Kondo Y, Shen L, Suzuki S, Kurokawa T, Masuko K, Tanaka Y, Kato H,
Mizuno Y, Yokoe M, Sugauchi F, Hirashima N, Orito E, Osada H, Ueda
R, Guo Y, Chen X, Issa J-PJ, Sekido Y. 2007. Alterations of DNA
methylation and histone modifications contribute to gene silencing in
hepatocellular carcinomas. Hepatol. Res. 37:974 –983.

5. Yuan Y, Wang Q, Paulk J, Kubicek S, Kemp MM, Adams DJ, Shamji
AF, Wagner BK, Schreiber SL. 2012. A small-molecule probe of the
histone methyltransferase G9a induces cellular senescence in pancreatic
adenocarcinoma. ACS Chem. Biol. 7:1152–1157.

6. Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A,
Labrie V, Wigle TJ, Dimaggio PA, Wasney GA, Siarheyeva A, Dong A,
Tempel W, Wang S-C, Chen X, Chau I, Mangano TJ, Huang X-P,
Simpson CD, Pattenden SG, Norris JL, Kireev DB, Tripathy A, Edwards
A, Roth BL, Janzen WP, Garcia BA, Petronis A, Ellis J, Brown PJ, Frye
SV, Arrowsmith CH, Jin J. 2011. A chemical probe selectively inhibits
G9a and GLP methyltransferase activity in cells. Nat. Chem. Biol. 7:648.

7. Artal-Martinez de Narvajas A, Gomez TS, Zhang J-S, Mann AO, Taoda
Y, Gorman JA, Herreros-Villanueva M, Gress TM, Ellenrieder V, Bu-
janda L, Kim D-H, Kozikowski AP, Koenig A, Billadeau DD. 2013.
Epigenetic regulation of autophagy by the methyltransferase G9a. Mol.
Cell. Biol. 33:3983–3993.

8. Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease.
Cell 132:27– 42.

9. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B,
Walther TC, Ferguson SM. 2012. The transcription factor TFEB links
mTORC1 signaling to transcriptional control of lysosome homeostasis.
Sci. Signal. 5:ra42. doi:10.1126/scisignal.2002790.

10. Wu J, Dang Y, Su W, Liu C, Ma H, Shan Y, Pei Y, Wan B, Guo J, Yu
L. 2006. Molecular cloning and characterization of rat LC3A and LC3B—
two novel markers of autophagosome. Biochem. Biophys. Res. Commun.
339:437– 442.

11. Hansen TE, Johansen T. 2011. Following autophagy step by step. BMC
Biol. 9:39.

12. Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins SC, Jin S, Lu B. 2006.
Autophagy is induced in CD4� T cells and important for the growth
factor-withdrawal cell death. J. Immunol. 177:5163–5168.

13. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He Y-W. 2007. A critical
role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp.
Med. 204:25–31.

14. Thomas LR, Miyashita H, Cobb RM, Pierce S, Tachibana M, Hobeika
E, Reth M, Shinkai Y, Oltz EM. 2008. Functional analysis of histone
methyltransferase g9a in B and T lymphocytes. J. Immunol. 181:485– 493.

15. Füllgrabe J, Lynch-Day MA, Heldring N, Li W, Struijk RB, Ma Q,
Hermanson O, Rosenfeld MG, Klionsky DJ, Joseph B. 2013. The histone
H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy.
Nature doi:10.1038/nature12313.

16. Yogev O, Goldberg R, Anzi S, Yogev O, Shaulian E. 2010. Jun proteins
are starvation-regulated inhibitors of autophagy. Cancer Res. 70:2318 –
2327.

17. Yuan Y, Tang AJ, Castoreno AB, Kuo S, Wang Q, Kuballa P, Xavier R,
Shamji AF, Schreiber SL, Wagner BK. 2013. Gossypol and an HMT G9a
inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell
Death Dis. 4:e690. doi:10.1038/cddis.2013.191.

G9a 

mTORC1 

H3K9me2 

mTORC1 

LC3B 
DOR 
WIPI1 

H3K9ac 

Prolifera�on 
“Nutrient needy” 

Res�ng, 
Nutrient-Rich 

G9a 

PO4 
ULK1 

ULK1 

LC3 

Auto-
phagosome 
forma�on 

Ac�ve 

Ac�ve Inac�ve 

Pol II 

Inac�ve 

TCR Agonist 
or 
Starva�on 

FIG 1 Repression of autophagosome formation by G9a. Under resting, nutrient-rich conditions (left), G9a represses autophagosome genes LC3B, DOR, and
WIPI1 by modifying the chromatin around gene promoters with the repressive H3K9me2 mark. In the cytoplasm, mTORC1 kinase phosphorylates and
inactivates complexes containing ULK1 that drive autophagosome formation. Upon starvation or during T cell proliferation (right), G9a and H3K9me2 are
removed from relevant promoters, leading to expression of LCB3, DOR, and WIPI1, which are essential components of autophagosomes. This transcription-
dependent process synergizes with inactivation of mTORC1, which releases restrictions on ULK1 complexes and guides autophagic flux to its completion.
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