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Hemolysins produced by Vibrio anguillarum have been implicated in the development of hemorrhagic septicemia during vibrio-
sis, a fatal fish disease. Previously, two hemolysin gene clusters responsible for the hemolysis and cytotoxicity of V. anguillarum
were identified: the vah1-plp gene cluster and the rtxACHBDE gene cluster. In this study, we identified the hns gene, which en-
codes the H-NS protein and acts as a negative regulator of both gene clusters. The V. anguillarum H-NS protein shares strong
homology with other bacterial H-NS proteins. An hns mutant exhibited increased hemolytic activity and cytotoxicity compared
to the wild-type strain. Complementation of the hns mutation restored hemolytic activity and cytotoxicity levels to nearly wild-
type levels. Furthermore, expression of rtxA, rtxH, rtxB, vah1, and plp increased in the hns mutant and decreased in the hns-
complemented mutant strain compared to expression in the wild-type strain. Additionally, experiments using DNase I showed
that purified recombinant H-NS protected multiple sites in the promoter regions of both gene clusters. The hns mutant also ex-
hibited significantly attenuated virulence against rainbow trout. Complementation of the hns mutation restored virulence to
wild-type levels, suggesting that H-NS regulates many genes that affect fitness and virulence. Previously, we showed that HlyU is
a positive regulator of expression for both gene clusters. In this study, we demonstrate that upregulation by hlyU is hns depen-
dent, suggesting that H-NS acts to repress or silence both gene clusters and HlyU acts to relieve that repression or silencing.

Vibrio anguillarum is the causative agent of vibriosis, a fatal
hemorrhagic septicemic disease. V. anguillarum infects more

than 50 fresh- and saltwater fish species, including various species
of economic importance to the larviculture and aquaculture in-
dustries, such as salmon, rainbow trout, turbot, sea bass, sea
bream, cod, eel, and ayu (1). Infections by this bacterium have
mortality rates of 30% to 100%, resulting in severe economic
losses to aquaculture worldwide (2).

The ability of V. anguillarum to infect and cause disease in fish
is dependent upon several virulence factors and their proper reg-
ulation (3). One of these virulence factors is hemolytic activity. In
V. anguillarum M93Sm, there are two known gene clusters that
encode at least three hemolysins (4, 5). Rock and Nelson (4) re-
ported that the vah1-plp hemolysin gene cluster (Fig. 1A) contains
at least two genes, vah1 and plp, that affect hemolytic activity.
Vah1 (encoded by vah1) is a putative pore-forming hemolysin
causing vacuolization of target cells that has strong amino acid
sequence identity to Vibrio cholerae El Tor hemolysin (hlyA) and
V. fluvialis hemolysin (5). Mutations in the divergently tran-
scribed plp gene result in both increased expression of vah1 and
increased hemolysis of sheep’s blood, suggesting that Plp (en-
coded by plp) is a putative repressor of vah1 transcription (4).
Restoration of plp by complementation restores the wild-type lev-
els of vah1 transcription and hemolysis (4). Plp is a phosphatidyl-
choline (PC)-specific phospholipase A2 (PLA2) which causes
lysis of PC-rich fish erythrocytes (L. Li et al., unpublished data).
These observations suggest that Plp plays a dual role as both a
repressor and a phospholipase. A second hemolysin gene cluster,
rtxACHBDE (Fig. 1B), was identified in V. anguillarum (5). This
gene cluster contains rtxA, which encodes a multifunctional auto-
processing repeat-in-toxin (MARTX) toxin, and specialized type
1 secretion system (T1SS) genes (rtxDBE) responsible for the se-
cretion of RtxA. RtxA exhibits cytotoxic activity that causes Atlan-
tic salmon kidney (ASK) cells to round and die (5). Loss of rtxA
function results in avirulence (5), while mutation of vah1 causes a

slight attenuation of V. anguillarum virulence (4). Strains with
mutations in both vah1 and rtxA lost 98% cytotoxicity in ASK
cells, suggesting that Vah1 and RtxA are the two major cytotoxins
when ASK cells are treated with V. anguillarum (6). These obser-
vations strongly suggest that the RtxA hemolysin is a major viru-
lence factor of V. anguillarum, while Vah1 plays a more minor role
in virulence.

The histone-like nucleoid structuring protein (H-NS) is a con-
served global regulator that belongs to a family of small nucleoid-
associated proteins including the factor for inversion stimulation
(FIS), the heat-unstable protein (HU), and the integration host
factor (IHF) (7). It has been reported that H-NS function is based
on self-oligomerization and binding to DNA motifs to create
DNA-protein-DNA bridges that can impede the movement of
RNA polymerase (8). H-NS has been shown to repress expression
of several virulence genes, including the cholera toxin (ctx) (9, 10)
and exopolysaccharide biosynthesis (vps) genes in V. cholerae (10,
11), the RTX toxin gene (rtxA1) in V. vulnificus (12), and T3SS1
genes in V. parahaemolyticus (13). In many bacterial species, re-
pression by H-NS can be relieved by other regulators, and each
bacterial system has developed specific approaches to attenuate
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the repressive action of H-NS (8). In V. vulnificus, HlyU acts as a
competitor that antagonizes the binding of H-NS, resulting in
derepression of rtxA1 (12). Transcriptional silencing of the V.
cholerae tcpA and ctx promoters by H-NS is antagonized by the
AraC-like transcriptional regulator ToxT and by IHF (10, 14, 15).
While there is no report regarding H-NS in V. anguillarum, we
hypothesize that H-NS is a regulator of the two hemolysin gene
clusters in V. anguillarum.

In this study, we identified the sequence of an hns homologue
in V. anguillarum by using the V. anguillarum M93Sm draft ge-
nome and subsequently constructed several hns mutant strains,
including an hns mutant, an hns hlyU double mutant, an hns hlyU
double mutant complemented with hns, and an hns hlyU double
mutant complemented with hlyU. The hemolytic activity and cy-
totoxicity of these strains were determined. The expression levels
of various hemolysin genes, including vah1, plp, rtxA, rtxH, and
rtxB, were also quantified for these strains. Additionally, the H-NS
binding sites in the intergenic regions in both hemolysin gene
clusters were localized. Finally, the virulence of the hns mutant
and hns-complemented strains was tested in rainbow trout (On-
corhynchus mykiss) and compared to the virulence of the wild-type
strain.

MATERIALS AND METHODS
Identification of genes in V. anguillarum. The V. anguillarum M93Sm
draft genome (unpublished data) was annotated by the RAST (Rapid An-

notation using Subsystem Technology) service (http://rast.nmpdr.org
/rast.cgi), using the default settings (16).

Fish cell line, bacterial strains, plasmids, and growth conditions.
ASK cells (American Type Culture Collection [ATCC], Manassas, VA)
were cultured at 20°C in Leibovitz-15 medium containing 100 �g/ml
streptomycin and 17% fetal bovine serum (FBS) (Life Technologies,
Grand Island, NY). All bacterial strains and plasmids used in this report
are listed in Table 1. V. anguillarum strains were routinely grown in Luria-
Bertani broth plus 2% NaCl (LB20) (17), supplemented with the appro-
priate antibiotic, in a shaking water bath at 27°C. Escherichia coli strains
were routinely grown in Luria-Bertani broth plus 1% NaCl (LB10). Anti-
biotics were used at the following concentrations: streptomycin, 200
�g/ml (Sm200); ampicillin, 100 �g/ml (Ap100); chloramphenicol, 20
�g/ml (Cm20) for E. coli and 5 �g/ml (Cm5) for V. anguillarum; kanamy-
cin, 50 �g/ml (Km50) for E. coli and 80 �g/ml (Km80) for V. anguillarum;
tetracycline, 15 �g/ml (Tc15) for E. coli, 1 �g/ml (Tc1) for V. anguillarum
grown in liquid medium, and 2 �g/ml (Tc2) for V. anguillarum grown in
solid medium.

Insertional mutagenesis. Insertional mutations were made by using a
modification of the procedure described by Milton et al. (18). Briefly,
primers SD_hns(F) and SD_hns(R) (Table 2) were designed based on the
target gene sequence of M93Sm. A 200- to 300-bp DNA fragment of hns
was then PCR amplified and ligated into the suicide vector pNQ705
(GenBank accession no. KC795685) after digestion with SacI and XbaI.
The ligation mixture was introduced into E. coli Sm10 by electroporation
using a Bio-Rad Gene Pulser II apparatus (Bio-Rad, Hercules, CA). Trans-
formants were selected on LB10 Cm20 agar plates. The construction of
pNQ705-hns was confirmed by both PCR amplification and restriction

FIG 1 V. anguillarum hemolysin genes are arranged in two gene clusters: the vah1-plp gene cluster (A) and the rtxACHBDE gene cluster (B). The GC content of
each gene cluster is shown.
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analysis. The mobilizable suicide vector was transferred from E. coli Sm10
into V. anguillarum M93Sm by conjugation (18). Transconjugants were
selected by utilizing the chloramphenicol resistance gene located on the
suicide plasmid. The incorporation of pNQ705-hns was confirmed by
PCR amplification.

Construction of hns hlyU double mutant. The hns hlyU double mu-
tant was constructed by allelic exchange of hns followed by insertional
mutation of hlyU. The allelic exchange mutation was made by using a
modification of the procedure described by Milton et al. (18). Briefly, the
plasmid pDM4 (GenBank accession no. KC795686) was used to construct
an hns::Km allelic exchange mutant as described previously (18). The 5=
region of hns was amplified using the primer pair pr40 and pr41 (Table 2),
digested with XhoI and XbaI, and then cloned into the region between the

XhoI and XbaI sites on pDM4. The 3= region of hns was amplified using
the primer pair pr42 and pr37 (Table 2), digested with XbaI and SacI, and
then cloned into the region between the XbaI and SacI sites on the deriv-
ative pDM4 plasmid containing the 5= region of hns. Finally, the kanamy-
cin resistance gene was amplified from the TOPO2.1 vector (Life Tech-
nologies) with the primer pair pr38 and pm173 (Table 2), digested with
XbaI, and inserted into the XbaI site between the 5= and 3= hns regions on
the derivative pDM4 plasmid. The resulting plasmid, pDM4-hns::Km, was
transformed into E. coli Sm10 to produce the transformant strain D112,
which was mated with V. anguillarum M93Sm. Single-crossover transcon-
jugants were selected with LB20 Kan80 Sm200 Cm5 plates, and subse-
quently, double-crossover transconjugants were selected with LB20 Kan80

Sm200 plates containing 5% sucrose. The resulting V. anguillarum mu-
tants were checked for the desired allelic exchange by PCR amplification
and then were subjected to insertional mutation of hlyU as described
above.

Complementation of the mutants. The various mutants were com-
plemented by cloning the appropriate target gene fragment into the shut-
tle vector pSUP202 (GenBank accession no. AY428809) as described by
Rock and Nelson (4). Briefly, primers hns_comp(F) and hns_comp(R)
(Table 2) were designed with a PstI site added at the 5= end of each primer.
The primer pair was then used to amplify the entire target gene plus �500
bp of the 5=-flanking region and �200 bp of the 3=-flanking region from
genomic DNA of V. anguillarum M93Sm. The DNA fragment was then
ligated into pSUP202 after digestion with EcoRI and AgeI, and the ligation
mixture was introduced into E. coli Sm10 by electroporation using a Bio-
Rad Gene Pulser II apparatus. Transformants were selected on LB10
Tc15Ap100 agar plates. The complementing plasmid was transferred from
E. coli Sm10 into the V. anguillarum mutant by conjugation (18).
Transconjugants were selected by utilizing the tetracycline resistance gene
located on the plasmid. The transconjugants were then confirmed by PCR
amplification and restriction digestion.

Hemolytic activity assay. The blood agar hemolysis assay was car-
ried out using the method described by Rock and Nelson (4). Briefly,
V. anguillarum colonies were transferred onto blood agar plates, and
hemolytic activity was determined by measuring the diameter of beta-
hemolysis on plates containing Trypticase soy agar (TSA) plus either
5% sheep blood (Northeast Laboratories Service, Waterville, ME) or
5% trout blood after 24 h at 27°C. Trout blood was taken from live,
healthy, farm-raised rainbow trout (Oncorhynchus mykiss) by use of a
3-ml sterile syringe supplemented with 10 �l 0.5 M disodium EDTA
(Sigma-Aldrich). The blood was then stored on ice and used in casting
plates within 6 h.

Cytotoxicity assay. The cytotoxicity assay was carried out using a
modification of the method described by Li et al. (6). Cytotoxic activity of
V. anguillarum strains was determined by measurement of released lactate
dehydrogenase (LDH). ASK cells (20,000 cells/well for assays using V.
anguillarum supernatants and 10,000 cells/well for assays using washed V.
anguillarum cells) were seeded into a 96-well tissue culture plate and in-
cubated in Leibovitz-15 medium supplemented with 17% FBS at 20°C for
24 h to allow cells to attach. V. anguillarum cultures grown for 18 h were
centrifuged (9,000 � g, 5 min, 4°C). The resulting culture supernatant was
harvested and filter sterilized using 22-�m filters (Millipore Corp., Bil-
lerica, MA). The bacterial pellet was washed twice in nine-salts solution
(NSS) (19) and resuspended in fresh NSS (at �2 � 109 cells ml�1). V.
anguillarum culture supernatant (50 �l) was added to wells containing
ASK cells plus 50 �l phosphate-buffered saline (PBS) (137 mM NaCl, 2.7
mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4; pH 7.4) and incubated at
20°C for 6 h. Washed bacterial cells were added to ASK cells at a multi-
plicity of infection (MOI) of 200 and incubated at 20°C for 4 h. To deter-
mine the release of LDH, a CytoTox-ONE homogeneous membrane in-
tegrity assay kit (Promega, Madison, WI) was used following the
manufacturer’s instructions. The assay measures the generation of the
fluorescent resorufin product, which is proportional to the amount of
LDH, using an excitation wavelength of 560 nm and an emission wave-

TABLE 1 Bacterial strains and plasmids used in this study

Strain or plasmid Genotype or feature(s)
Reference
or source

Strains
V. anguillarum strains

M93Sm Spontaneous Smr mutant of
M93 (serotype J-O-1);
virulent

31

S305 hlyU mutant; Smr Cmr 6
M114 hns mutant; Smr Cmr This study
M116 hns-complemented strain;

Smr Cmr Tetr

This study

ES114 hns hlyU double mutant;
Smr Cmr Kmr

This study

ES115 hns hlyU double mutant
complemented with
hlyU; Smr Cmr Tetr Kmr

This study

ES116 hns hlyU double mutant
complemented with hns;
Smr Cmr Tetr Kmr

This study

E. coli strains
Sm10 thi thr leu tonA lacY supE

recA RP4-2-Tc::Mu::Km
(� pir) Kmr

39

M15 Nals Strs Rifs thi lac ara�

gal� mtl F� recA� uvr�

lon� (pREP4; Kmr)

Qiagen

D112 E. coli Sm10 with pDM4-
hns5=-Kan-hns3=; Cmr

Kmr

This study

Plasmids
pNQ705-1 Cmr; suicide vector with

R6K origin
40

pNQ705-hns Used for hns insertional
mutation

This study

pSUP202 E. coli-V. anguillarum
shuttle vector

39

pSUP202-hlyU Used for complementation
of hlyU

6

pSUP202-hns Used for complementation
of hns

This study

pDM4 Cmr Kanr SacBCr; suicide
vector

18

pDM4-hns5=-Kan-hns3= Used for hns deletion
mutation

This study

pQE-30 UA Expression vector with N-
terminal His6 tag

Qiagen

pQE-30 UA/H-NS Used for expression of
rH-NS

This study

Mou et al.
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length of 590 nm. Fluorescence was read by a Stratagene MX3005P QPCR
system at an excitation wavelength of 550 nm and an emission wavelength
of 570 nm.

RNA isolation. Exponential-phase cells (�0.5 � 108 CFU ml�1) and
stationary-phase cells (2 � 109 CFU ml�1) of various V. anguillarum
strains were treated with RNAprotect bacterial reagent (Qiagen, Valencia,
CA) following the manufacturer’s instructions. Total RNA was isolated
using an RNeasy kit and QIAcube (Qiagen) following the manufacturer’s
instructions. All purified RNA samples were quantified spectrophoto-
metrically by measuring absorption at 260 nm and 280 nm, using a Nano-
drop ND-1000 spectrophotometer (Thermo Fisher Scientific, Pittsburgh,
PA), and were stored at �75°C for future use.

Real-time qRT-PCR. Quantitative reverse transcriptase PCR (qRT-
PCR) was used to quantify various mRNAs by use of an Mx3005 multiplex
quantitative PCR system and Brilliant II SYBR green single-step qRT-PCR
master mix (Agilent Technologies, Wilmington, DE) with 10 ng of total
RNA in 25-�l reaction mixtures. The thermal profile was 50°C for 30 min,
95°C for 15 min, and then 40 cycles of 95°C for 30 s and 55°C for 30 s.
Fluorescence was measured at the end of the 55°C step during every cycle.
Samples were run in triplicate along with no-RT and no-template con-
trols. All experiments were repeated at least twice.

Overexpression and purification of the V. anguillarum H-NS pro-
tein. The DNA fragment encoding H-NS was PCR amplified by using
primers Pm416 and Pm417 (Table 2) and then cloned into a six-His-tag
expression plasmid, pQE30-UA (Qiagen), generating the plasmid pQE-30
UA/H-NS (Table 1), which encodes H-NS with an N-terminal fusion tag.
The correct recombinant clone (rH-NS; confirmed by sequencing) was
used for expression of the His-tagged H-NS protein in E. coli M15. Ex-
pression and purification of rH-NS were carried out using a modification
of the procedures described by Li et al. (6). Briefly, 10 ml of an overnight
bacterial culture growing at 37°C in Luria broth supplemented with 50
�g/ml kanamycin and 100 �g/ml ampicillin was added to 250 ml of the
same fresh medium. When the optical density at 600 nm (OD600) reached
0.6, 1 mM IPTG (isopropyl-�-D-thiogalactopyranoside) was added to in-
duce the expression of the H-NS protein. After bacteria were grown for an
additional 5 h at 37°C, the cells were collected and lysed by sonication
under nondenaturing conditions. The soluble supernatant containing
rH-NS was then purified from this fraction by affinity chromatography
using Ni-nitrilotriacetic acid resin columns (Qiagen) according to the
manufacturer’s instructions. The concentration of the purified rH-NS
protein was determined by measuring the absorbance at 280 nm, using a
Nanodrop ND-1000 spectrophotometer (Thermo Scientific). The purity

TABLE 2 Primers used in this study

Primer Sequence (5= to 3=)a Use and description Reference

SD_hns(F) GCTAGGAGCTCCAGCTTGAAGAAGCACTAGA hns insertional mutation, forward primer, SacI site This study
SD_hns(R) GCTAGTCTAGACCAGAAAGTGCAGAAATTAA hns insertional mutation, reverse primer, XbaI site This study
hns_comp(F) GCTAGCTGCAGTCGGCGATAAAACCTTTCAC hns complementation, forward primer, PstI site This study
hns_comp(R) GCTAGCTGCAGGTTTACCTGAACGTGACGAC hns complementation, reverse primer, PstI site This study
Pm416 TTAAATCTCGAATTCTTCTAGAGATTTACC hns open reading frame, forward primer This study
Pm417 ATGTCTGAATTAACAAAAACTCTACTTAAT hns open reading frame, reverse primer This study
pr40 CGGCTACTCGAGAGATTTACCTGCATCAAGTTG hns 5= region, forward primer, XhoI site This study
pr41 CGGCTATCTAGAGCACTTTCTGGTGAAACTAAG hns 5= region, reverse primer, XbaI site This study
pr42 CGGCTATCTAGAATTAATGCGCTTACATCAATA hns 3= region, forward primer, XbaI site This study
pr37 CGGCTAGAGCTCAGAAGCACTAGATAAATTAAC hns 3= region, reverse primer, SacI site This study
pr38 CGGCTATCTAGAGAAAAGCTTGAACACGTAGAA Kanamycin resistance gene, forward primer, XbaI site This study
Pm173 ACTGATCTAGATCAGAAGAACTCGTCAAGAAG Kanamycin resistance gene, reverse primer, XbaI site This study
RT vah1-R1 GACCGCCGAATCGATGATGAATC vah1 qRT-PCR, forward primer 4
pvah1JR GGTAGGACTGATGCCCACCTACAA vah1 qRT-PCR, reverse primer This study
plpF RT CAGACGACCACCAGTAACCACTAA plp qRT-PCR, forward primer 4
plpR RT GCAATCATGATGACCCAGCAACAG plp qRT-PCR, reverse primer 4
Pm111 GGAAATTATTCCGCCGACGATGGA rtxA qRT-PCR, forward primer 5
Pm112 GCCGATACCGTATCGTTACCTGAA rtxA qRT-PCR, reverse primer 5
Pm285 GTGATGGTAGAAAACCTGCGG rtxH qRT-PCR, forward primer This study
Pm286 ATGTCTGAGAAATTTGTCCAAACA rtxH qRT-PCR, reverse primer This study
iPCR rtxB R CCGCTAACCGCATTGATATTAAGCTTGGC rtxB qRT-PCR, forward primer This study
Pm104 TCACAATCGCCCCAACTTGCCTTG rtxB qRT-PCR, reverse primer This study
Pm297 ACTGAGAGCTCGGTGTTGTTAAAGGCTATGGC hlyU qRT-PCR, forward primer 6
Pm298 ATCGATCTAGAGTATCCACTAACCCATCTCTT hlyU qRT-PCR, reverse primer 6
Pm412 CCGTATTTTCTGCAATCGCCATGG vah1 promoter region (probe 1), forward primer, 5=

labeled with FAM
6

Pm324 CACATATTGACTGATTATAATTTTATTGATATT vah1 promoter region (probe 1), reverse primer 6
pr323a AGGGTTTTTATAAATCCTAATTTAGATA plp promoter region (probe 2), forward primer, 5=

labeled with FAM
This study

Pm320 GAATACCCATTTTTTATTTTTTCAGACC plp promoter region (probe 2), reverse primer 6
Pm327 GTATTTTCTGCAATCGCCATG vah1-plp (probe 3) intergenic region, forward primer 6
Pm413 CACCTTTGTGGCGAATTATTAATAGATCTT vah1-plp (probe 3) intergenic region, reverse primer,

5= labeled with FAM
6

Pm414 CAGTGGCTCATAAAAGCAGTTGC rtxB-rtxH intergenic region (probe 4), forward
primer, 5= labeled with FAM

6

Pm318 CAGCGGTAAGTAGACTGATA rtxB-rtxH intergenic region (probe 4), reverse primer 6
Pm315 CTCAGACATAAATAAATCACC rtxB-rtxH intergenic region (probe 5), forward primer 6
Pm415 CAGCGGTAAGTAGACTGATAAGCAATG rtxB-rtxH intergenic region (probe 5), reverse primer,

5= labeled with FAM
6

a Underlined sequences are engineered restriction sites.
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of rH-NS was assessed by SDS-polyacrylamide gel electrophoresis, with
only a single band visible following staining with Coomassie blue.

DNase I protection assay. DNA probes for the intergenic region of
each of the hemolysin gene clusters were amplified from V. anguillarum
genomic DNA by PCR (Table 2). Probes were labeled with 6-carboxyfluo-
rescein (FAM) at the 5= end (see Fig. S1 in the supplemental material). The
assay was carried out using a method modified from the work of Li et al.
(6). Briefly, 7.5 � 1011 copies of DNA probe and various amounts of
rH-NS (up to 3 �M) were incubated for 1 h at 27°C in a total volume of 20
�l containing 4 �l of 5� binding buffer, 1 �g poly-L-lysine, and 1 �g
poly(dI-dC) (DIG gel shift kit, 2nd generation; Roche Applied Science,
Indianapolis, IN). The DNA-protein complex was then digested by add-
ing 0.005 U RQ1 RNase-free DNase (New England BioLabs, Ipswich, MA)
in a total volume of 25 �l containing 2.5 �l of 10� concentrated reaction
buffer at 37°C for 15 min. The reaction was stopped by heating at 95°C for
10 min. The DNA was purified using a QIAquick PCR purification kit
(Qiagen) and a QIAcube according to the standard protocol, except that
the elution volume was adjusted to 30 �l. The DNA in the eluate (3 �l) was
added to 9 �l Hi-Di formamide containing 1 �l GeneScan 600 LIZ size
standard (Applied Biosystems), and the mixture was submitted to capil-
lary electrophoresis fragment analysis (Rhode Island Genomics and Se-
quencing Center).

GC content plotting. The GC contents of the two gene clusters (Fig. 1)
were plotted using the GC-Profile program (http://tubic.tju.edu.cn
/GC-Profile) (20) with the following settings: halting parameter of 1 and
minimum length to segment of 100 bp.

Fish infection studies. Various V. anguillarum strains were tested for
virulence in rainbow trout (Oncorhynchus mykiss) by intraperitoneal (i.p.)
injection. Briefly, V. anguillarum cells grown in LB20 supplemented with
appropriate antibiotics for 22 h at 27°C were harvested by centrifugation
(9,000 � g, 5 min, 4°C), washed twice in NSS, and resuspended in NSS
(�2 � 109 cells ml�1). Initial cell density was estimated by measurement
of the OD600. The actual cell density of NSS suspensions was determined
by serial dilution and spot plating. All fish were examined prior to the start
of each experiment to determine that they were free of disease or injury. It
should be noted that all the negative-control fish survived. Fish were anes-
thetized with tricaine methanesulfonate (Western Chemical, Ferndale,
WA) at 100 mg/liter for induction and 52.5 mg/liter for maintenance. V.
anguillarum strains were injected i.p. into fish in 100 �l NSS vehicle. Fish
that were between 15 and 25 cm long were injected with bacteria diluted
with NSS at a dose of �4 � 105 CFU/fish, or with NSS only as a negative
control. Ten fish were used for each experimental group. Fish inoculated
with different bacterial strains were maintained in separate 10-gallon
tanks with constant water flow (200 ml/min) at 19 � 1°C. The tanks were
separated to prevent possible cross-contamination. Death due to vibriosis
was determined by the observation of gross clinical signs and was con-
firmed by the recovery and isolation of V. anguillarum cells resistant to the
appropriate antibiotics from the head kidneys of dead fish. Observations
were made for 14 days. All fish used in this research project were obtained
from the URI East Farm Aquaculture Center. All fish infection protocols
were approved by the URI IACUC.

Statistical analysis. Two-tailed Student’s t tests assuming unequal
variances were used for statistical analyses for all experiments except
the fish infection experiment (P values of 	0.05 were considered sta-
tistically significant). For fish infection experiments, a Kaplan-Meier
survival analysis with the log rank significance test was performed on
fish survival percentages (P values of 	0.05 were considered statisti-
cally significant).

RESULTS
Identification of hns in V. anguillarum. The V. anguillarum hns
gene (GenBank accession number KC795684) was found in the
RAST annotation of the V. anguillarum M93Sm draft genome
(unpublished data). It encodes a predicted 137-amino-acid pro-
tein with a molecular mass of 15,299 Da and has strong homology

to H-NS proteins found in a variety of Vibrio species, including
Vibrio harveyi (92% similarity and 84% identity), Vibrio corallii-
lyticus (84% similarity and 76% identity), V. cholerae (90% simi-
larity and 82% identity), V. parahaemolyticus (90% similarity and
85% identity), and V. vulnificus (93% similarity and 87% iden-
tity).

Mutation of hns increases hemolytic activity. It was previ-
ously shown that V. anguillarum wild-type cells exhibit beta-he-
molysis on 5% TSA-sheep blood agar (5). When the hemolytic
activity of the hns mutant (M114) was tested on 5% TSA-sheep
blood agar, it was found that mutation of hns resulted in increased
hemolysis compared to that of the wild type (M93Sm) (Fig. 2).
Furthermore, when the hns mutation was complemented (M116;
hns�), hemolysis was reduced to levels below those of the wild type
(Fig. 2), suggesting that H-NS is a negative regulator of at least one
of the two hemolysins (RtxA and Vah1). The lower hemolytic
activity was probably due to the overexpression of H-NS, since
pSUP202 is a multicopy plasmid.

Mutation of hns increases cytotoxicity against ASK cells. It
was previously demonstrated that both vah1 and rtxA contribute
to the cytotoxicity of V. anguillarum cells against ASK cells (5). In
order to determine whether hns acts to regulate cytotoxic activity,
we tested the cytotoxic activities of both culture supernatants and
washed cells of the hns mutant and the hns-complemented mutant
(hns�) and compared them against those of culture supernatant
and washed cells of the wild type (M93Sm). The results showed
that mutation of hns significantly increased the cytotoxicity of
both V. anguillarum culture supernatant (
40%) and cells (MOI
of 200) (�80%) against ASK cells compared to the cytotoxicity of
wild-type V. anguillarum M93Sm. Complementation of the hns
mutation significantly decreased cytotoxicity of both culture su-
pernatant and cells against ASK cells compared to the cytotoxic
activity of the hns mutant (Fig. 3A and B). These data support the
suggestion that hns negatively regulates at least one of the two
hemolytic/cytotoxic activities encoded by rtxA and vah1.

H-NS negatively regulates hemolysin genes at the transcrip-
tional level. Since the two hemolysin/cytotoxin gene clusters are
each organized into two divergent transcriptional units (Fig. 1),
with intergenic regions shown to bind HlyU (6), we wanted to
investigate the effects of H-NS upon the expression of the various
genes within the gene clusters. Real-time qRT-PCR was per-
formed to quantify expression of members of the hemolysin gene
clusters, including vah1, plp, rtxA, rtxH, and rtxB, in the wild-type
strain (M93Sm), the hns mutant, and the hns-complemented mu-
tant (hns�) during both the exponential and stationary growth
phases. Real-time qRT-PCR data revealed that for the hns mutant
compared to the wild type during the exponential and stationary
growth phases, expression of rtxA increased 2.91- and 2.14-fold,
respectively; expression of rtxB increased 1.28- and 1.43-fold, re-

FIG 2 Hemolytic activity of V. anguillarum wild-type (M93Sm), hns mutant
(hns�) and hns-complemented mutant (hns�) strains on TSA-5% sheep
blood agar after 24 h at 27°C.
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spectively; expression of rtxH increased 4.56- and 2.39-fold, re-
spectively; expression of vah1 increased 16.21- and 20.01-fold,
respectively; and expression of plp increased 31.27- and 36.88-
fold, respectively (Fig. 4; see Table S1 in the supplemental mate-
rial). Furthermore, complementation of the hns mutation down-
regulated the expression of these genes back to or below wild-type
levels. The data strongly suggest that H-NS is a negative regulator
of gene expression from both the rtxACHBDE and vah1-plp gene
clusters.

Mutation of hns does not affect the expression of hlyU. Since
HlyU was previously shown to bind to the intergenic regions of
both hemolysin gene clusters to increase their transcription (6),
we wanted to determine whether mutation of hns would affect
hlyU transcription. Real-time qRT-PCR was performed to mea-
sure the expression of hlyU in the wild-type strain (M93Sm), the
hns mutant, and the hns-complemented mutant (hns�) during
the exponential and stationary growth phases (see Fig. S2A in the
supplemental material). No statistically significant difference in
expression of hlyU was found between M93Sm and both the hns
mutant and the hns-complemented mutant (hns�) in either the
log phase or stationary phase (see Fig. S2A). These results rule out
the possibility that H-NS regulates hemolysin gene expression by
regulating the expression of hlyU.

Upregulation of hemolysin genes by hlyU is hns dependent.
As noted above, Li et al. (6) showed that an hlyU mutant (S305)
had decreased hemolytic activity on sheep blood agar compared to
that of the wild type and that complementation of hlyU (S307)
resulted in increased activity compared to that of the wild type. In
an effort to determine the roles of hns and hlyU in the regulation of
hemolysin gene transcription, we examined the hemolytic activity
and measured the transcription of hemolysin genes (vah1, plp,
rtxA, and rtxB) in each hemolysin transcriptional unit. The first set
of these determinations was carried out with cells lacking a func-
tional hlyU gene: the hlyU mutant, the hns hlyU double mutant
(ES114), and the hns hlyU double mutant complemented with hns
(ES116; hns�) (Fig. 5). Determinations of hemolytic activity and
hemolysin gene expression were also done for wild-type M93Sm.

FIG 3 (A) Cytotoxicity of culture supernatants from V. anguillarum wild-type
(M93Sm), hns mutant (hns�), and hns-complemented mutant (hns�) strains
against ASK cells after 6 h at 20°C. (B) Cytotoxicity of washed cells of V.
anguillarum wild-type (M93Sm), hns mutant (hns�), and hns-complemented
mutant (hns�) strains against ASK cells after 4 h at 20°C (MOI � 200). Aster-
isks represent P values of 	0.05 between two bracketed strains. Error bars
represent 1 standard deviation.

FIG 4 Expression of rtxA, rtxB, rtxH, plp, and vah1 determined by qRT-PCR analysis of V. anguillarum wild-type (M93Sm), hns mutant (hns�), and
hns-complemented mutant (hns�) strains during logarithmic (Log)- and stationary (Sta)-phase growth. The data presented are representative of two indepen-
dent experiments. Each value is the average for three replicates. Asterisks represent P values of 	0.05 between two bracketed strains. Error bars represent 1
standard deviation.

FIG 5 (A) Hemolytic activity of V. anguillarum wild-type (M93Sm), hlyU
mutant (hlyU�), hns hlyU double mutant (hns�/hlyU�), and hns-comple-
mented hns hlyU double mutant (hns�/hlyU�) strains on TSA-5% sheep
blood agar after 24 h at 27°C. (B) Expression of rtxA, rtxB, plp, and vah1
determined by qRT-PCR analysis of V. anguillarum wild-type (M93Sm), hlyU
mutant (hlyU�), hns hlyU double mutant (hlyU�/hns�), and hns-comple-
mented hns hlyU double mutant (hlyU�/hns�) strains during logarithmic
(Log)- and stationary (Sta)-phase growth. The data presented are representa-
tive of two independent experiments. Each value is the average for three rep-
licates. Asterisks represent P values of 	0.05 between two bracketed strains.
Error bars represent 1 standard deviation.
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Hemolytic activity in the hlyU mutant decreased compared to that
of wild-type M93Sm, as previously reported by Li et al. (6). In
contrast, hemolytic activity in the hlyU hns double mutant in-
creased over that in M93Sm, and when hns was used to comple-
ment the double mutant, hemolysis decreased to the levels seen in
the hlyU mutant (compare Fig. 5A with Fig. 2). Changes in tran-
scription of rtxA, rtxB, vah1, and plp corresponded with the
changes in hemolysis (Fig. 5B; see Table S1 in the supplemental
material). Specifically, transcription of each gene (rtxA, rtxB,
vah1, and plp) increased in the absence of a functional hns gene
and decreased in the presence of a functional hns gene.

The second set of determinations was carried out with cells
lacking a functional hns gene: the hns mutant, the hns hlyU double
mutant, and the hns hlyU double mutant complemented with
hlyU (ES115; hlyU�) (Fig. 6). Determinations of hemolytic activ-
ity and hemolysin gene expression were also done for wild-type
M93Sm. In the absence of a functional hns gene, hemolytic activity
increased regardless of the presence or absence of hlyU (Fig. 2 and
6A). Determinations of hemolysin transcription by qRT-PCR cor-
responded with the results of the hemolysis assay (Fig. 6B). In the
absence of hns, rtxA and rtxB expression increased over the levels
in wild-type cells. For rtxA, all increases were 
2-fold and were
significant (P 	 0.05). For rtxB, increases were small (generally
	2-fold) and generally not significant. The presence or absence of
hlyU had little or no effect (	2-fold) on rtxA and rtxB gene ex-
pression (Fig. 6B; see Table S1 in the supplemental material). Sim-
ilarly, in the absence of a functional hns gene, expression of both
vah1 and plp increased 
9-fold in both exponential- and station-
ary-phase cells, regardless of the presence or absence of a func-
tional hlyU gene (Fig. 6B; see Table S1). As with the rtxACHBDE
gene cluster, our data show that in the absence of hns, comple-
mentation with hlyU gave only minimal changes in expression of
both vah1 and plp (around 2-fold) over that in the hns mutant

strain, with almost no change in vah1 and plp expression between
the two strains (Fig. 6B; see Table S1). These data indicate that
upregulation of hemolysin genes by hlyU is hns dependent.

H-NS binds to the intergenic regions of both hemolysin gene
clusters. Previously, Li et al. (6) demonstrated that HlyU binds to
the intergenic regions between the divergently transcribed genes
of each of the two hemolysin gene clusters to upregulate gene
expression. In an effort to determine whether H-NS acted in a
similar fashion to help regulate expression of the hemolysin gene
clusters in V. anguillarum, we carried out DNase I protection as-
says as described in Materials and Methods. The results of these
experiments revealed that rH-NS protected multiple regions in
both the rtxB-rtxH and vah1-plp intergenic regions (Fig. 7). These
regions are AT-rich (72 to 74% AT) and correspond to other
H-NS binding sites described for other bacteria (21–27) (Fig. 8).
The H-NS binding sites cover the promoter regions of all four
genes (rtxB, rtxH, plp, and vah1), with little or no overlap with the
HlyU binding site in each of the intergenic regions (Fig. 8) (6). In
the vah1-plp intergenic region, rH-NS bound to five sites, cover-
ing the �10 and �35 regions of both the plp and vah1 promoters,
but did not cover the HlyU binding site. In the rtxB-rtxH inter-
genic region, rH-NS bound to six sites, covering the �35 regions
of both the rtxB and rtxH promoters. In addition, rH-NS also
bound to a seventh site, just within the rtxB coding sequence.
rH-NS was also found to protect the three rtxB-proximal bases of
the HlyU binding site (Fig. 8).

The vah1-plp and rtxACHBDE gene clusters are unlikely to
have been acquired horizontally. Recently, it was reported that a
major role of H-NS proteins is to silence horizontally acquired
genetic elements distinguished by AT-rich sequences (25–27).
This raised the question of whether either or both of the hemoly-
sin gene clusters (rtxACHBDE and vah1-plp) might be xenogeneic
in origin. We examined the GC contents of the two gene clusters
and compared them to the average GC content of the whole ge-
nome of V. anguillarum. The results of this examination revealed
that the GC content of the rtxACHBDE gene cluster is 47.3% and
the GC content of the vah1-plp gene cluster is 42.5%. Both values
are very similar to the average GC content of the whole genome
(44.51%) of V. anguillarum (28). The intergenic regions do have
low GC/elevated AT percentages, with the plp-vah1 intergenic re-
gion having 26% GC and the rtxB-rtxH region having 28% GC
(Fig. 1). Additionally, examination of the published V. anguilla-
rum 775 genome (GenBank assembly ID GCA_000217675.1) re-
vealed that the placement of the hemolysin genes in relation to the
surrounding genes, within 7.5 kbp to 10 kbp of DNA flanking each
gene cluster, is the same as that found in strain M93Sm. Further-
more, we saw no evidence of any tRNA genes, transposase genes,
interrupted genes, or pseudogenes in these surrounding regions.
Finally, when we examined the codon usage patterns of the hemo-
lysin genes and compared them to those for the chromosomes in
which they are found (chromosome I for the rtx genes and chro-
mosome II for the plp and vah1 genes), no significant differences
were observed. These observations suggest that while the two he-
molysin gene clusters are negatively regulated by H-NS, they were
not acquired horizontally.

The hns mutant has attenuated virulence against rainbow
trout. Since the expression of both hemolysin gene clusters is af-
fected by H-NS, we tested the virulence of M93Sm, the hns mu-
tant, and the hns-complemented mutant (hns�). Groups of 10
rainbow trout were infected by i.p. injection as described in Ma-

FIG 6 (A) Hemolytic activity of V. anguillarum wild-type (M93Sm), hns mu-
tant (hns�), hns hlyU double mutant (hns�/hlyU�), and hlyU-comple-
mented hns hlyU double mutant (hns�/hlyU�) strains on TSA-5% sheep
blood agar after 24 h at 27°C. (B) Expression of rtxA, rtxB, plp, and vah1
determined by qRT-PCR analysis of V. anguillarum wild-type (M93Sm), hns
mutant (hns�), hns hlyU double mutant (hns�/hlyU�), and hlyU-comple-
mented hns hlyU double mutant (hns�/hlyU�) strains during logarithmic
(Log)- and stationary (Sta)-phase growth. The data presented are representa-
tive of two independent experiments. Each value is the average for three rep-
licates. Error bars represent 1 standard deviation.
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terials and Methods, using wild-type M93Sm, the hns mutant, or
the hns-complemented mutant of V. anguillarum in NSS at a dose
of �4 � 105 CFU/fish, or using NSS only as a negative control. All
M93Sm-infected trout died by day 4, while 60% of hns mutant-
infected trout died by day 14. These results (Fig. 9) show that there
is a significant difference (P � 0.005) in virulence between the
M93Sm wild type and the hns mutant. Complementation of hns
restored virulence back to wild-type levels, with 90% mortality by
day 4. Thus, there was a significant difference (P � 0.029) in the
virulence of the hns� and hns mutant strains and no significant
difference (P � 0.413) between the wild-type and hns� strains.

At first glance, the decline in virulence for the hns mutant ap-
pears to be counterintuitive, since both hemolysin gene clusters
are upregulated in the hns mutant. However, hns is considered
important for bacterial fitness by properly regulating virulence
and other genes during growth (26, 27). To determine whether the
loss of hns affected the growth of V. anguillarum, we tested the
growth of M93Sm, the hns mutant, and the hns-complemented

mutant (hns�) in LB20 (see Fig. S3 in the supplemental material).
While the three strains grew to nearly identical cell densities
(OD600 � 1.04 for M93Sm, 0.97 for the hns mutant, and 0.97 for
the hns-complemented mutant) at stationary phase, the hns mu-
tant had a longer generation time than the wild type (58 min
versus 48 min; P 	 0.05). However, complementing the hns mu-
tation did not result in a shorter generation time than that of the
hns mutant (60 min versus 58 min), suggesting that there is no
correlation between virulence in fish and fitness in LB20 for these
three strains.

DISCUSSION

Vibriosis caused by V. anguillarum has been recognized as a major
problem for salmonid culture due to the significant economic
losses it causes (29). While this bacterium uses a variety of viru-
lence factors, including iron transport/siderophore systems (30),
the EmpA metalloprotease (31, 32), motility (33, 34), lipopolysac-
charides (LPS) (33, 34), and exopolysaccharides (EPS) (35), it is

FIG 7 Capillary electrophoresis of FAM-labeled DNA probe 1 (A) and probe 2 (B), specific for the vah1-plp intergenic region, and probe 4 (C), specific for the
rtxB-rtxH intergenic region, from DNase protection assays in the presence (black lines) and absence (gray lines) of rH-NS, demonstrating that H-NS binds to
specific sequences in the vah1-plp and rtxB-rtxH intergenic regions and protects against DNase I digestion. DNA probes were prepared and labeled with FAM,
incubated with rH-NS (0 or 3 �M) followed by DNase I, and then analyzed by DNA fragment analysis as described in Materials and Methods. The binding region
sequences are indicated by double black underlining. The underlined DNA fragments indicate those that are more common in the presence of rH-NS (black lines)
than in its absence (gray lines). The location of each probe is shown in Fig. S1 in the supplemental material.
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the hemolysins/cytotoxins that directly kill host cells (4, 5) and are
thought to be the major contributors to the hemorrhagic septice-
mia that is characteristic of vibriosis (2). Previously, we identified
and described three hemolysin/cytotoxin genes of V. anguillarum
M93Sm: vah1 (4, 36), rtxA (5), and plp (4; L. Li, X. Mou, and D. R.
Nelson, unpublished data). The three hemolysin genes (and asso-
ciated transport genes) are organized into two gene clusters (Fig.
1). Additionally, both hemolytic activity and expression of the
three hemolysin genes (vah1, plp, and rtxA) are higher in log phase
than in stationary phase (6). Recently, we reported that HlyU pos-
itively regulates the expression of both hemolysin gene clusters by
specifically binding to the vah1-plp and rtxB-rtxH intergenic re-
gions (6).

In this study, we examined the role of H-NS in the regulation of
hemolysin activity and gene expression in V. anguillarum M93Sm.
Initially, the hns homologue in V. anguillarum was identified using

the V. anguillarum M93Sm draft genome, and an hns mutant and
hns-complemented strain were constructed. Mutation of hns re-
sulted in increased hemolytic activity on 5% TSA-sheep blood
agar, while complementation of the hns mutation reduced hemo-
lysis to levels below those of the wild type (Fig. 2). Mutation of hns
also increased the cytotoxicity of both V. anguillarum culture su-
pernatant (diluted 1:1 with PBS) and V. anguillarum cells (at an
MOI of 200) against ASK cells, while complementation of the hns
mutation reduced cytotoxic activity (Fig. 3). Transcription of the
three hemolysin genes (and related rtx genes) in the presence and
absence of hns corresponded with hemolysin and cytotoxin activ-
ity, with increased transcription in the hns mutant and decreased
transcription in the hns-complemented mutant (Fig. 4; see Table
S1 in the supplemental material). These data show that H-NS is a
negative regulator of hemolytic and cytotoxic activity by acting as
a repressor of hemolysin gene expression.

The results presented here correspond with the well-docu-
mented role of H-NS as a repressor and silencer of many genes in
Gram-negative bacteria, especially in the repression of virulence
genes (8). Recently, Liu et al. (12) demonstrated that expression of
rtxA1 in Vibrio vulnificus is repressed by H-NS and that HlyU acts
as an antirepressor by interfering with H-NS binding to the up-
stream regulatory region of rtxA1. Specifically, data from compet-
itive gel mobility shift assays between HlyU and H-NS showed that
HlyU could displace H-NS from the promoter, with binding at a
low concentration, and that H-NS needs a much higher concen-
tration to displace the bound HlyU protein (12). Similarly, our
data show that H-NS represses expression from both hemolysin
gene clusters in V. anguillarum, regardless of the presence of hlyU,
and that upregulation of hemolysin gene expression by HlyU is
dependent upon the presence of hns (Fig. 5 and 6; see Table S1).
These observations strongly suggest that in V. anguillarum, H-NS
functions to repress transcription of both hemolysin gene clusters

FIG 8 Intergenic regions of the vah1-plp (A) and rtxACHBDE (B) gene clusters. The transcriptional start sites are shown as bold, italicized sequences and labeled
“�1.” The �10 and �35 promoter sequences are shown as bold, italicized sequences and labeled “�10” and “�35.” Ribosomal binding sites are shown as bold,
italicized sequences and labeled “RBS.” Sequences protected by HlyU are shown in bold italics and labeled “HlyU protection.” Sequences protected by H-NS are
underlined.

FIG 9 Survival percentages for rainbow trout injected i.p. with NSS only
(mock; gray dashed line) or with �4 � 105 CFU/fish of wild-type M93Sm
(gray solid line), the hns mutant (hns�; black solid line), or the hns-comple-
mented mutant (hns�; black dashed line). Each experimental group had 10
fish. V. anguillarum cells were suspended in NSS. Asterisks represent P values
of 	0.05 between two bracketed strains.
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and that HlyU acts as an antirepressor. Additionally, both gene
clusters are arranged as divergently transcribed genes, with one
HlyU binding site in the center of each intergenic region (Fig. 8)
(also see Fig. 7 in the work of Li et al. [6]) flanked by 2 to 4 H-NS
binding sites that extend toward the promoter sites (Fig. 8). The
sites protected by rH-NS (Fig. 8) are AT-rich. The five H-NS bind-
ing sites in the vah1-plp intergenic region have A�T% values that
range from 64.5% to 84.3%, while the seven H-NS-protected sites
in the rtxB-rtxH intergenic region have A�T% values that range
from 47.4% to 81.25%. In contrast, the flanking structural genes
have much lower A�T% values. The A�T% for plp is 57%, that
for vah1 is 55.7%, that for rtxACH is 51.6%, and that for rtxBDE is
54.5% (Fig. 1). This reveals an interesting discontinuity between
the structural genes and the intergenic regulatory regions. A sim-
ilar discontinuity is also seen between the rtx structural genes and
the intergenic regions in V. vulnificus and V. cholerae. Addition-
ally, the fact that the structural genes have A�T% values nearly
identical to that for the whole genome of V. anguillarum (55.49%)
suggests that these virulence genes were not acquired horizontally.
This is further supported by the observations detailed above
showing that there is no evidence of any tRNA genes, transposase
genes, interrupted genes, or pseudogenes in the 7.5 to 10 kbp of
DNA flanking the hemolysin gene clusters. Furthermore, codon
usage in the hemolysin genes is not significantly different from
that in the chromosomes in which the gene clusters reside.

It has been suggested that self-oligomerization and binding of
H-NS to AT-rich DNA to form DNA-protein-DNA bridges im-
pede the movement of RNA polymerase, thus repressing gene ex-
pression (8). H-NS repression may be reversed by different mech-
anisms (8). In V. cholerae, the binding site of the transcriptional
activator ToxT overlaps H-NS binding sites. ToxT displaces H-NS
and directly activates transcription (15). In contrast, the activa-
tion of pagC and ugtL transcription from H-NS-mediated repres-
sion in Salmonella enterica requires both SlyA and PhoP, with SlyA
displacing H-NS and PhoP acting as a transcriptional activator
(37). There are several SlyA and H-NS binding sites in the pagC
promoter region, with little or no overlap between the sites (37).
In V. vulnificus, the binding site of the antirepressor HlyU is far
upstream of the transcription start site (positions �376 to �417)
for the rtxA1 operon and overlaps two H-NS binding sites (12).
Binding of HlyU to DNA relieves the H-NS repression at all H-NS
binding sites of the rtxA1 promoter region (12). Our results dem-
onstrate that in V. anguillarum, HlyU relieves H-NS repression
but does not act to directly activate transcription. We have not yet
identified a transcriptional activator of hemolytic activity. How-
ever, our data do indicate that transcription from both hemolysin
gene clusters is higher during exponential-phase growth than dur-
ing stationary-phase growth. Additionally, the binding sites for
HlyU and H-NS in the V. anguillarum rtxH-rtxB intergenic region
are much closer to the �1 transcription start sites than is the case
in V. vulnificus CMCP6. In V. vulnificus, the five H-NS binding
sites are at positions �289 to �459 relative to the transcription
start site of rtxH (vv20481) (12), while the H-NS binding sites in
V. anguillarum are at positions �23 to �100 for rtxH-proximal
sites and positions �42 to �70 for rtxB-proximal sites (Fig. 8).
These differences probably reflect the relative sizes of the inter-
genic regions for each organism. In V. vulnificus CMCP6, the in-
tergenic region between rtxH and rtxB is 1,028 nucleotides (nt),
while in V. anguillarum M93Sm, the intergenic region is only 325
nt. It would be interesting to examine the H-NS and HlyU binding

sites in the rtx intergenic region of V. vulnificus YJ016, which is
only 362 nt.

Although mutation of hns resulted in increased expression and
activities of the three hemolysins (RtxA, Vah1, and Plp), the over-
all virulence of the hns mutant was slightly attenuated in rainbow
trout. Similar results were observed in uropathogenic Escherichia
coli. Mice injected intravenously with 108 CFU of the hns mutant
had a higher survival rate than those injected with the wild type,
although the mutant showed a higher level of alpha-hemolysin
expression and activity (38). Our data suggest that there is no
correlation between virulence in fish and fitness in LB20, but it
should be noted that growth in LB20 is very different from growth
in fish. It is likely that removal of H-NS-mediated repression/gene
silencing results in an unfavorable alteration of virulence gene
expression and a reduction in fitness in the host environment.
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