A Al

Journals.ASM.org

Arginine Cools the Inflamed Gut
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aintenance of immunophysiological homeostasis and regu-

lation of gut barrier function are essential for the defense of
the host. Severe alterations, including infections and chronic in-
flammation, have been associated with increased intestinal per-
meability, leading to deregulation of gut function and homeosta-
sis. To establish and reinforce this crucial balance, the intestinal
metabolism plays a key role and has to be tightly regulated since in
the human intestinal mucosa, the protein fractional synthesis rate
is approximately 50% per day. This value is higher than that of
other major metabolically active tissues, such as liver and muscle,
and depends on the accessibility of the metabolic precursor pool
(1). The amino acid L-arginine (L-Arg) is a central intestinal me-
tabolite, both as a constituent of protein synthesis and as a regu-
latory molecule limiting intestinal alterations and maintaining
immunophysiological functions (1, 2). Infection-associated L-Arg
deficiency has been shown to contribute to immunopathology,
and clinical trials involving L-Arg administration have shown sub-
stantial decreases in inflammation and infectious complications
(3). In this issue, Chau and colleagues demonstrate that malaria-
associated hypoargininemia impairs intestinal barrier function
and predisposes the host to coinfection with Salmonella. Increas-
ing bioavailability of L-Arg through oral supplementation amelio-
rates intestinal inflammation and pathology, demonstrating that
pharmacological intervention at the metabolic-precursor level
can be utilized to regulate mucosal immunohomeostasis (4).

METABOLISM AND CATABOLISM OF L-ARGININE

L-Arg is derived from the diet, turnover of proteins, and endoge-
nous production through synthesis from L-citrulline (1-Cit) and
successive actions of argininosuccinate synthetase (AS) and
argininosuccinate lyase (AL), the third and fourth enzymes of the
urea cycle. The major site of L-Arg metabolism is the liver, where
L-Arg generated in the urea cycle is rapidly converted to urea and
ornithine by arginases, however, with no net synthesis of L-Arg.
Although synthesis of L-Arg from L-Cit can occur in many cell
types, a major part of endogenous synthesis occurs via “the intes-
tinal-renal axis,” a postnatally established collaboration between
epithelial cells of the small intestine and proximal tubule cells of
the kidney. In adult animals, L-Cit is produced primarily by intes-
tinal epithelial cells from NH;, CO,, and ornithine by carbamyl-
phosphate synthetase I and ornithine transcarbamylase, the first
two enzymes of the urea cycle, and is supplied to the kidney and
probably to other tissues for synthesis of L-Arg (2, 5, 6).

L-Arg is a crucial amino acid that serves to modulate immune
responses through conversion by several intracellular classes of
enzymes, with isoforms of arginase and nitric oxide synthase
(NOS) being the two major enzyme families exerting key immu-
nological functions (7). However, catabolism of extracellular L-
Arg requires active and regulated uptake via specific cationic
amino acid transporters (CAT) or heteromeric amino acid trans-
porters (HAT) that act as H -coupled symporters or antiporters
(8). There are two isoforms of arginase, cytosolic arginase I (Argl)
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and mitochondrial arginase II. Argl is abundant in liver as part of
the urea cycle, and only low levels are found in extrahepatic tissue.
In contrast, Arg2 is abundant mostly in extrahepatic tissues and
cells such as kidney, brain, gut, and hematopoietic cells, with a
main role in the production of L-ornithine (L-Orn), L-proline (L-
Pro), and L-glutamate (L-Glu). In addition, three isozymes of NOS
catalyze the production of NO and -Cit from L-Arg. While neu-
ronal NOS (nNOS or NOS1) and endothelial NOS (eNOS or
NOS3) are mostly constitutively expressed, inducible NOS (iNOS
or NOS2) expression is positively regulated by proinflammatory
cytokines and microbial constituents activating pattern recogni-
tion molecules (7).

While, in healthy adults, the level of endogenous L-Arg synthe-
sis is sufficiently great that L-Arg is not an essential amino acid,
catabolic stress as well as dysfunction of the kidneys or small in-
testine can lead to hypoargininemia, a condition where levels of
endogenous L-Arg may not suffice to meet metabolic demands. As
such, L-Arg homeostasis is maintained primarily by modulation of
L-Arg catabolism rather than L-Arg synthesis. Accordingly, L-Arg
is classified as a semiessential or conditionally essential amino acid
(9). Although it is known that regulation of L-Arg catabolism is
influenced by (i) the expression levels of L-Arg transporters and
L-Arg-converting enzymes, (ii) their cofactor availability, and (iii)
substrate competition between the enzymatic systems (10), the
molecular mechanisms and consequences of hypoargininemia on
the host’s immune response are poorly understood.

HYPOARGININEMIA CAUSES ALTERED INTESTINAL
IMMUNOHOMEOSTASIS

L-Arg availability in the alimentary tract has previously been
shown to play a key role in intestinal immunohomeostasis upon
catabolic stress induced by inflammation and infection (7). L-Arg
supplementation attenuated the degree of tissue damage in intes-
tinal ischemia and promoted healing of intestinal mucosa (11, 12).
Similarly, in a murine model of dextran sulfate sodium (DSS)-
induced colitis, oral L-Arg treatment improved clinical parameters
by dampening proinflammatory responses and inflammatory cell
infiltration, leading to improved mucosal integrity and enhanced
epithelial cell migration in an iNOS-dependent manner (13). In
addition, infection by the intestinal pathogen Citrobacter roden-
tium was shown to cause a significant decrease in the serum L-Arg
concentration, with associated infection-induced immunopa-
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thology being partially reversed after L-Arg supplementation (14).
In this issue, Chau and colleagues demonstrate now that L-Arg
availability is also critical for maintaining intestinal barrier func-
tion during malaria parasite infection, as malaria-associated hy-
poargininemia impairs intestinal barrier function and predisposes
to coinfection with Salmonella (4).

It is known that during malaria parasite infection, L-Arg bio-
availability drops due to enhanced destruction by host- and par-
asite-encoded arginases, utilization by host nitric oxide synthase
(NOS), and increased scavenging of NO by cell-free hemoglobin
from lysed red blood cells (RBCs) (15-17). Importantly, impaired
bioavailability of L-Arg and NO has been shown to alter endothe-
lial dysfunction in infected adults and has been suggested to be a
major contributing factor to pathogenesis during infection (18).
In a rodent model of experimental malaria, exogenous NO provi-
sion restored NO-mediated signaling in the brain, decreased sys-
temic inflammation, reduced vascular leakage and hemorrhage in
the brain, and provided marked protection (19). In addition, L-
Arg infusion into adults infected with falciparum malaria para-
sites reversed infection-induced endothelial dysfunction (20),
highlighting the importance of L-Arg bioavailability for the host’s
homeostasis during infection.

Immunopathology during malaria infection is also observed in
the gastrointestinal (GI) tract. During severe Plasmodium falcipa-
rum infection, sequestration of parasitized RBCs and capillary
blockage are prominent in intestinal villi and are associated with
ischemia, malabsorption, and increased GI permeability (21-23).
In addition, 50% of individuals with uncomplicated malaria have
GI disturbances (24). Several features of malaria pathology sug-
gest that the increased risk of developing bacteremia during ma-
laria parasite and nontyphoidal Salmonella serotype (NTS) coin-
fection results from malaria-induced damage to the intestinal
epithelium (25-27). Chau and colleagues demonstrate that malar-
ia-associated hypoargininemia causes increased circulating and
tissue histamine levels, mast cell activation, and ileal mastocytosis,
which collectively alter intestinal epithelial integrity, predisposing
the host to secondary bacterial infections (4).

REGULATION OF INTESTINAL BARRIER FUNCTION AND
INFLAMMATION BY L-ARGININE

Malaria-induced hypoargininemia enhances parasite sequestra-
tion and basophil transmigration, as well as mast cell activation,
which collectively result in an immunopathology that resembles
allergic inflammation, leading to increased intestinal permeability
(28). Although, their distinct contribution remains to be explored,
itis likely that altered activities of L-Arg-catabolizing enzyme fam-
ilies, arginase(s), and NOS contribute to the observed immuno-
pathology. It can be postulated that the activity of arginase
through conversion of L-Arg into L-Orn enhances epithelial bar-
rier function (29), while NOS activity confers an anti-inflamma-
tory state through regulation of energy metabolism (30).

L-Orn produced by arginase is used by ornithine decarboxylase
(ODC) to produce the polyamine putrescine, which is then con-
verted into the polyamines spermidine and spermine by constitu-
tively expressed spermidine and spermine synthases, respectively.
Notably, polyamines are associated with mucosal protection in
the GI tract and with intestinal epithelial cell migration. L-Orn can
also be acted upon by ornithine aminotransferase (OAT) to pro-
duce L-proline (L-Pro), an important precursor in collagen syn-
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thesis, and is involved in wound healing and cell migration in
fibroblasts and epithelial cells (10).

NOS activity has recently been shown to dampen inflamma-
tion through regulation of myeloid and lymphoid cell activation.
Nitric oxide produced by iNOS in inflammatory monocytes and
dendritic cells regulates inflammatory cytokine production, cell
differentiation, and survival (31-33). In addition, the regulated
release of NO by nonhematopoietic stromal cells controls the ex-
pansion of activated T cells (34-36), and T cell-intrinsic iNOS
activity regulates polarization of antigen-specific CD4" T helper
cells (37-39). Moreover, expression of iNOS by intestinal B cells is
critical for immunoglobulin A class switch recombination and
intestinal immunohomeostasis at steady state and upon intestinal
infection (40). Future studies will have to detail the tissue-, cell-,
and context-dependent role of iNOS and the molecular mecha-
nisms that regulate nonhematopoietic, myeloid, and lymphoid
immune cell function at steady state and during inflammation and
infection. Modulating arginase- and NOS-mediated pathways
through regulation of the bioavailability of L-Arg or its precursor
L-Cit by oral supplementation provides an efficient and practical
strategy to dampen intestinal inflammation and pathology, dem-
onstrating that pharmacological intervention at the metabolic-
precursor level can be utilized to regulate mucosal immuno-
homeostasis.
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