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Abstract

Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by
the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the
composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture
human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To
mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily
at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and
organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography
approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the
transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa
and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate,
propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were
increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model
and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the
transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FBO06 is
selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic
profile of the human gut microbiota.
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Introduction

The increasing worldwide prevalence of obese and
overweight individuals is a major public health concern [1].
Obesity, and more specifically the accretion of excess adipose
tissue, is associated with elevated chronic systemic low-grade
inflammation and increased risk of metabolic diseases, such as
type 2 diabetes and cardiovascular disease (CVD) [2]. The
pathogenesis of these conditions is attributable to a complex
interaction between genetic, metabolic, environmental and
behavioural factors, however the specific contribution of each
of these determinants is not fully understood [3]. The
composition and metabolic activity of microbial inhabitants of
the human gut has recently been acknowledged as an
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environmental factor that may influence the development of
obesity and associated metabolic diseases [4,5].

The human gut microbiota is a diverse ecosystem
comprising of up to 100 trillion archaeal and bacterial cells. Any
of between 1,000 - 1,150 bacterial species may reside in the
gut, with most individuals harbouring at least 160 different
species. Although over 90% of gut bacteria belong to
Bacteroidetes and Firmicutes, the specific composition of the
gut microbiota, at the phylum, genus and species level, is
highly individual and affected by various factors, including
adiposity [6]. Obesity and diet-induced weight gain have been
associated with a modified microbial composition, with some
studies [7-10], but not all [11-13], providing evidence for an
altered Firmicutes-Bacteroidetes ratio. Reduced numbers of
Eubacterium rectale-Clostridium coccoides cluster,
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Bifidobacterium spp., Lactobacillus spp. and Roseburia spp.,
have been observed in mice subjected to an obesogenic diet
[14-17]. Furthermore, a recent rodent model study by Liou et
al., has provided the first empirical evidence that changes in
the gut microbiota may contribute towards reduced host weight
and adiposity [18].

The gut microbiota has a major influence on host
metabolism, with microbe-host interactions connecting with
organs, including the gut, liver, adipose tissue, muscle and
brain. Accordingly, dietary modulation of the composition and
activity of the gut microbiota, with food ingredients such as
prebiotics, has been highlighted as a potential target for obesity
and metabolic diseases [5]. Prebiotics are defined as
‘selectively fermented dietary ingredients that result in specific
changes in the composition and/or activity of the
gastrointestinal microbiota, thus conferring benefit(s) upon host
health’ [19]. Woods and Gorbach included in this definition an
increase in beneficial bacteria and/or a decrease in harmful
types, a reduction in intestinal pH, production of SCFA and
changes in bacterial enzyme concentrations [20]. The
fermentation of a food ingredient by the gut microbiota is
dependent on its physicochemical structure [4]. Thus far, most
attention has focused on the prebiotic potential of soluble
fibres, in particular non-digestible oligosaccharides such as
inulin-type  fructooligosaccharides (FOS) and trans-
galactooligosaccharides (TOS), with the daily intake of 2.75 -
20 g shown to positively alter gut microbial composition after a
short feeding period [21]. Other soluble fibres, including
resistant dextrins (wheat or starch), glucans, gums and pectins
are also increasingly recognised as having prebiotic potential.
The intake of wheat dextrin (WD) and FOS has been shown to
have satiogenic and weight management benefits, possibly
attributable to elevated synthesis of anorexigenic gut hormones
(peptide YY (PYY) and glucagon-like peptide 1 (GLP-1)) and
decreased synthesis of the orexigenic gut hormone, ghrelin
[22-24]. Furthermore, TOS has recently been found to
beneficially impact on metabolic markers of immune function,
systemic inflammation and blood glucose regulation [25]. The
mechanisms responsible for these effects remain to be
elucidated, however up regulation of short-chain fatty acids
(SCFA), acetate, propionate and butyrate, which are key
metabolic end-products of bacterial fermentation, may play
pivotal roles [26].

NUTRIOSE® (NUTRIOSE® FB06, Roquette, France) is a
non-viscous WD with a total fibre content of ~ 85% and a
mono- and disaccharide content of < 0.5% [27]. NUTRIOSE®
has a structure of linear and branched glucosidic linkages that
make it resistant to hydrolysis in the small intestine and
consequently available for bacterial fermentation in the human
large gut [28]. NUTRIOSE® induces a low glycaemic response
and is well tolerated by the human digestive system, even at
high doses [29,30]. Emerging evidence indicates that
NUTRIOSE® has prebiotic potential, however most of the
studies have been done in animal models, which have a
different microbiota from that of humans, or have investigated a
limited number of bacterial groups in humans. Nevertheless
these studies have demonstrated that the intake of
NUTRIOSE® may modulate gut microbial ecology, with
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evidence for increased faecal counts of Bacteroides and
Lactobacillus spp., reduced Clostridium perfingens, increased
total SCFA production, elevated a- and B- glucosidase activity
and decreased faecal pH [29-32]. Furthermore, NUTRIOSE®
has been shown to have promising effects on energy
metabolism, appetite regulation and weight management
[33-36]. In a recent human intervention study by Guerin-
Deremaux et al., the daily intake of either 14 g, 18 g, or 24 g of
NUTRIOSE®, over a period of nine weeks, was found to
increase perceived feelings of satiety and subsequently lead to
a reduction in energy intake, bodyweight and percentage body
fat in a group of overweight males [34]. Preliminary evidence
also suggests that NUTRIOSE® may improve indices of lipid
and glucose homeostasis, however additional work is
warranted to verify these findings [37].

The aim of the present study was to examine more fully the
impact of WD fermentation on gut microbial ecology and
metabolic end products of microbial fermentation in distinct
anatomical regions of the human colon using an in vitro three-
stage continuous culture human colonic model (gut model)
system. This system has been used extensively at our
institution and provides a controlled and steady-state
environment in which to study the composition and metabolic
activities of the gut microbiota in relation to external
perturbations, such as with the administration of food
ingredients [38]. The intake of 14 g/day NUTRIOSE® was the
lowest dose to significantly increase satiety, reduce energy
intake and improve body composition in previous investigations
by Guerin-Deremaux and colleagues [34,36]. Accordingly, this
dosage was chosen for the present study and was
administered in two equal doses each day to mimic human
ingestion. The impact of WD fermentation on the proliferation of
a selection of the main bacterial groups of the gut microbiota,
including groups with purported benefits or detriments to
health, was assessed using 16S rRNA-based fluorescence in
situ hybridisation (FISH) and organic acid production analysed
by gas chromatography (GC).

Materials and Methods

Three-stage continuous culture colonic model (gut
model) system

Three gut models, each comprising of a cascade of three
glass fermenters connected in series that simulate the different
physical and nutritional characteristics of the proximal (V1),
transverse (V2) and distal colon (V3), were implemented under
conditions previously detailed by Macfarlane et al. [38]. Gut
models were inoculated with faecal samples from healthy
human donors, all of whom had no previous history of
gastrointestinal disorders and had not received antibiotics or
pre/probiotics for at least three months prior to the study. All
faecal donors had the experimental procedure explained to
them and were given the opportunity to ask questions. All
donors then provided verbal informed consent for the use of
their faeces in the study. The University of Reading research
ethics committee exempted this study from review because no
donors were involved in any intervention and waived the need
for written consent due to the fact the samples received were
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Table 1. Probes used for bacterial enumeration by FISH.

In Vitro Colonic Fermentation of NUTRIOSE® FB06

Hybridization- Washing

Probe nameSequence (5’ to 3’°) Target species Temperature (°C) Reference
Atopobium, Colinsella, Olsenella and Eggerthella spp.; Cryptobacterium
Ato291 GGTCGGTCTCTCAACCC L . 50 - 50 [54]
curtum; Mycoplasma equigenitalium and Mycoplasma elephantis
Most Bacteroides sensu stricto and Prevotella spp.; all Parabacteroides;
Bac303 CCAATGTGGGGGACCTT i i i . . 46 - 48 [55]
Barnesiella viscericola and Odoribacter splanchnicus
Bif164 CATCCGGCATTACCACCC Most Bifidobacterium spp. and Parascardovia denticolens 50 -50 [56]
Most members of Clostridium cluster I; all members of Clostridium cluster II;
Clostridium tyrobutyricum; Adhaeribacter aquaticus and Flexibacter
Chis150  TTATGCGGTATTAATCTYCCTTT . i i i . . . 50 - 50 [57]
canadensis (family Flexibacteriaceae); [Eubacterium] combesii (family
Propionibacteriaceae)
Most members of Clostridium cluster XIVa; Syntrophococcus sucromutans,
Erec482 GCTTCTTAGTCARGTACCG [Bacteroides] galacturonicus and [Bacteroides] xylanolyticus, Lachnospira 50 -50 [57]
pectinschiza and Clostridium saccharolyticum
Most Lactobacillus, Leuconostoc and Weissella spp.; Lactococcus lactis; all
Lab158 GGTATTAGCAYCTGTTTCCA Vagococcus, Enterococcus, Melisococcus, Tetragenococcus, Catellicoccus, 50 - 50 [58]
Pediococcus and Paralactobacillus spp.
Rrec584 TCAGACTTGCCGYACCGC Roseburia - Eubacterium rectale (a component of cluster XIVa) 50 - 50 [59]
Eco1531 CACCGTAGTGCCTCGTCATC Escherichia coli 37-37 [59]
EUB338 GCTGCCTCCCGTAGGAGT Total bacteria 46 - 48 [60]
EUB338ll GCAGCCACCCGTAGGTGT Total bacteria 46 - 48 [60]
EUB338ll GCTGCCACCCGTAGGTGT Total bacteria 46 - 48 [60]

doi: 10.1371/journal.pone.0077128.t001

not collected by means of intervention. Equilibrium of the
system, steady state 1 (SS1), was reached after eight full
turnovers at 15, 16 and 17 days. Thereafter, the test product,
NUTRIOSE®, was administered into V1 in 7 g doses at 10.00
and 15.00 each day until the second steady state (SS2) had
been reached at 33, 34, and 35 days. Samples (1 mL) were
collected from all vessels of the colonic system and centrifuged
at 13,000 x g for 10 min to remove all particulate matter. A
shortened GC method was used to determine the stabilisation
of SCFA concentrations over three consecutive days and
confirm steady state (SS1 and SS2) [39]. Further samples were
stored at -18 °C for future analysis.

In vitro enumeration of bacterial populations by FISH

Enumeration of bacterial populations was performed by FISH
using synthetic oligonucleotide probes designed to target
specific diagnostic regions of 16S rRNA and labelled with the
fluorescent Cy3 dye (Sigma Aldrich Ltd., Poole, Dorset, UK), as
previously described [40]. As detailed in Table 1, probes were
used for the determination of total bacteria, bifidobacteria,
lactobacilli/enterococci, Bacteroides, Clostridium perfringens/
histolyticum subgroup, Clostridium cluster XlIVa, Clostridium
cluster | and |Il, Roseburia genus and Atopobium -
Coriobacterium.

Organic acid determination by GC

Samples were extracted and derivatised as previously
described by Richardson et al. [41]. Briefly, aliquots of 1 mL of
supernatant were transferred into glass tubes, followed by the
addition of 50 pL of internal standard (100 mM; 2-ethylbutyric
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acid), 500 pL of concentrated hydrochloric acid (HCI) and 2 mL
of diethyl ether (Sigma Aldrich Ltd., Poole, Dorset, UK).
Samples were then vortexed for 1 min before centrifugation at
3,000 x g for 10 min. The top ether layer was transferred from
each tube into clean glass tubes. A second extraction step was
then completed using a further 1mL of diethyl ether. The diethyl
layer was again collected and pooled with the layer from the
first extraction. Aliquots of 400uL of this pooled extract were
transferred into glass vials, alongside 50 pyL of N-methyl-N-t-
butyldimethylsilyltrifluoroacetamide (Cheshire Sciences,
Chester, UK). The samples were then incubated at 80°C in a
water bath for 20min and left at room temperature for 48 h to
allow for the complete derivatisation of lactic acid.

The derivatized samples were run on a 5890 SERIES Il Gas
Chromatograph (Hewlett Packard, UK) with flame ionization
detector, using an Ritx-1 10mx0.18mm column coated with a
0.20pym coating (Crossbond 100% dimethyl polysiloxane;
Restek, Buckinghamshire, UK). Injector and detector
temperature were set at 275°C and the column temperature
was programmed from 63°C for 3 min to 190°C at 10°C/min'
and held at 190 °C for 3 min. Helium was used as the carrier
gas (flow rate 1.2 mL/min; head pressure 90 MPa). External
standards contained (mM): sodium formate, 10; acetic acid, 30;
propionic acid, 20; iso-butyric acid, 5; n-butyric acid, 20; iso-
valeric acid, 5; n-valeric acid, 5; sodium lactate, 10; sodium
succinate, 20. Chemstation B.03.01 (Agilent Technologies,
Cheshire, UK) was used for calibration and calculation of the
internal response factor for quantification of peak areas within
samples.
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Figure 1. Bacterial populations. Bacterial populations in the three different vessels (V1, V2 and V3) of the gut models before
(SS1) and after (SS2) WD treatment. Data presented as means of the three gut models + standard deviations. SS1 and SS2 are
calculated as mean values over three consecutive days. ** P < 0.01, *** P < 0.001, **** P < 0.0001, significantly different from SS1.

doi: 10.1371/journal.pone.0077128.g001

Statistical analysis

All statistical tests were performed on GraphPad Prism 6.0
(GraphPad Software, La Jolla, CA, USA). One-way AVOVA
tests were used to compare SS1 and SS2 data for bacterial
counts and organic acid concentrations. Where significant
differences were identified, post hoc analysis was performed
using Tukey multiple comparison tests. Statistical significance
was accepted at P < 0.05 for all analyses.

Results

The impact of WD on the human gut microbiota

Average bacterial counts, as enumerated by FISH, are
displayed in Figure 1 and expressed as log CFU/ml + standard
deviations. Following administration of WD, total bacterial
populations significantly increased by 0.37 log,, in V2
simulating the transverse colon (P < 0.0001) and 0.30 log,, in
V3 simulating the distal colon (P < 0.001). No significant
differences for total bacteria were found in V1, simulating the
proximal colon. Concentrations of Clostridium coccoides —
Eubacterium rectale significantly increased by 0.71 log,, in V1
(P < 0.0001), 0.67 log,, in V2 (P < 0.0001) and 0.37 log,, in V3
(P < 0.01). Furthermore, concentrations of Roseburia - E.
rectale significantly increased by 1.07 log,, in V1 (P < 0.0001),
1.14 log,, in V2 (P < 0.0001) and 1.33 log,, in V3 (P < 0.0001).
No significant differences were found for the other bacterial
groups analysed, including Bifidobacterium spp., Lactobacillus
- Enterococcus., Bacteroides - Prevotella, Atopobium -
Coriobacterium and Escherichia coli. There were trends for
increases in Bifidobacterium spp. and Escherichia coli in all
vessels, however these did not reach significance. Counts for
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the Clostridium histolyticum group were below the detection
level (data not shown).

Organic acid production

Relative concentrations of organic acids, as determined by
GC, are reported in Table 2 and expressed as mM + standard
deviations. Fermentation of WD mediated a significant 19.45
mM increase in butyrate in V1 (P < 0.0001), 30.38 mM increase
in V2 (P < 0.001) and 27.01 mM increase in V3 (P < 0.01) of
the gut models. In V1, simulating the proximal colon, WD
administration resulted in a significant 9.82 mM reduction in
acetate (P < 0.01) and 14.71 mM reduction in propionate (P <
0.05) concentrations. In V2, simulating the transverse colon,
acetate concentrations significantly increased by 16.11 mM (P
< 0.01), whereas propionate concentrations did not change. In
V3, simulating the distal colon, acetate concentrations
significantly increased by 29.16 mM (P < 0.001) and propionate
concentrations significantly increased by 14.64 mM (P < 0.01).
Concentrations of formate, iso-valeric, valeric and lactate were
below the detection limit.

Discussion

The aim of the present study was to extend knowledge of the
impact of WD on the microbial ecology of the human gut. A
validated gut model system was used to establish the effects of
in vitro fermentation of WD on the proliferation of a range of
known bacterial groups. These included the purported health-
promoting Bifidobacterium and Lactobacillus genera, but also
other bacteria increasingly recognised for having important
roles in the human colon, including Bacteroides and Roseburia
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Table 2. SCFA concentrations.

Acetate Propionate Butyrate

SS1 SS2 SS1 SS2 SS1 SS2
Vessel 3192+ 2210t 33.82 ¢ 19.12 30.75+ 50.20 £
1 6.12 4.28 ** 7.65 8.01* 3.10 247 ¥+
Vessel 4577+ 61.88+ 41.02 + 40.87 3478+ 65.16 ¢
2 3.56 7.65** 5.53 6.70 6.11 8.72 ***
Vessel  50.82 + 7997 43.15+ 57.80 £ 36.98+  63.99
3 8.37 1042 6.81 8.24 ** 6.01 9.43 **

ek

Mean SCFA concentrations reported as mM + standard deviations for the three
vessels of the gut models before (SS1) and after (SS2) WD treatment. SS1 and
SS2 are calculated as mean values over three consecutive days. * P < 0.05, ** P <
0.01, *** P < 0.001, **** P < 0.0001, significantly different from SS1.

doi: 10.1371/journal.pone.0077128.t002

genus. In addition, metabolic end products of microbial
fermentation, including SCFAs, acetate, propionate and
butyrate, were analysed to elucidate potential mediators by
which this novel food ingredient may exert metabolic and
health benefits to the human host through modulation of the gut
microbiota.

The provision of WD, at a dose of 14 g/day, resulted in
marked increases in total bacterial populations in vessels
simulating the transverse and distal colon. This increased
proliferation of total bacteria is concurrent with findings from
previous studies in rodents and humans [29-32]. To our
knowledge, we have demonstrated for the first time that WD
significantly increases the proliferation of Gram-positive
Clostridium Cluster XlVa bacteria and Roseburia genus, as
categorised by increased counts for Clostridium coccoides —
Eubacterium rectale and Roseburia - E. rectale groups,
respectively. These bacterial groups are major components of
the human gut microbiota and have important roles in the
fermentation and putrefaction of food-derived substances,
resulting in the production of SCFAs and intestinal gases [42].
Furthermore, Clostridium Cluster XIVa and Roseburia genus
are key butyrate producers, with ~ 80% of the butyrate-
producing isolates originating in human faeces belonging to
these groups [43]. Experimental work in rodents suggests that
obesity is inversely correlated to numbers of Clostridium
Cluster XIVa and Roseburia genus. Interestingly, these studies
found that the provision of dietary fibres, chitin—glucan and
wheat arabinoxylan, to mice subjected to an obesogenic diet
ameliorated the reduction in these two bacterial groups [14,17].
Owing to the findings of the present study, it is feasible that the
intake of WD may also have restorative effects on gut microbial
populations of Clostridium Cluster XIVa and Roseburia genus
in obese and overweight individuals.

Whilst there was a trend for an increase in Bifidobacterium
spp. across the gut model, neither populations of this genus
nor Lactobacillus - Enterococcus., significantly increased in
response to the provision of WD. This, in combination with
previous findings, suggests that the physicochemical structure
of WD may not confer selectivity to bifidobacteria, which has
been shown to prefer oligosaccharide structures, including
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TOS and various forms of galacto-oligosaccharides [44].
Pasman et al. observed increases in lactobacilli in response to
WD, however this was following the intake of a higher dose of
45 g/day [31], with a recent study by Lefranc-Millot et al. [30]
failing to observe such an effect with lower dosages. Lefranc-
Millot et al. did however find that the intake of 10 g/day WD
increased numbers of Bacteroides, a genus of bacteria that
may benefit the human host by preventing potential pathogens
from colonising the gut. Furthermore, the administration of 8
g/day and 15 g/day reduced numbers of Clostridium
perfringens, an opportunistic human pathogen [30]. In the
current study Clostridium perfringens levels were below the
detection threshold in all three human donors and
subsequently we were unable to determine the impact of WD
on this bacterial group. Whilst there was a trend for an increase
in Bacteroides in the transverse and distal regions of the gut
model, this did not reach significance.

The observed increases in butyrate production across the
three vessels of the gut model, together with increases in
Clostridium cluster XIVa and Roseburia genus provide
evidence for a butyrogenic effect of WD on gut microbial
ecology. Moreover, the increasing magnitude of butyrate
production through the gut model from V1-V3 strengthens
support for a butyrogenic effect of WD in all regions of the
human colon and eliminates the possibility that increased
concentrations in the latter regions of the gut model were solely
due to butyrate transiting through from a previous vessel in the
system. Our findings support previous evidence from a rodent
model that found that 14 days of WD supplementation
increased faecal concentrations of butyrate, acetate and
propionate [32]. Increased production of SCFA butyrate in the
human large gut may have numerous health benefits. Firstly,
butyrate is the preferred energy-providing substrate for
colonocytes [45]. Secondly, butyrate has been shown to have a
beneficial trophic effect on the gut epithelium [46]. Lastly,
butyrate has been demonstrated to modulate colonic cell
proliferation / apoptosis and may have protective properties
against colon cancer and ulcerative colitis [47]. As the
incidence of colon cancer and other colonic conditions, such as
ulcerative colitis, is highest in the distal regions of the colon
[48], the elevated production of butyrate and SCFAs,
propionate and acetate, in V3 of the gut model is of
considerable interest as regional differences in SCFA
concentrations has implications for disease risk [49].
Furthermore, increased production of SCFAs indicates a
preferential increase in carbohydrate fermentation rather than
protein fermentation, which mainly occurs in the distal regions
of the human colon due to reduced nutrient availability [50].
Rather than producing beneficial SCFAs and other organic
acids, the breakdown of protein by proteolytic bacteria results
in the formation of ammonia, phenols, indoles, thiols, amines
and sulphides, which are potentially detrimental to health [51].

There is mounting evidence that prebiotics impact on
appetite regulation and gut hormone release however the
underlying mechanisms are not yet clear. Evidence from
animal studies has recently highlighted the potential
mechanistic importance of SCFA production by the gut
microbiota. Findings from rodent models have demonstrated
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that butyrate and propionate, but not acetate, stimulate the
secretion of anorexigenic hormones, GLP-1, PYY and gastric
inhibitory polypeptide (GIP). These effects may be expressed
through the activation of G-protein coupled receptors free-fatty
acid receptor 2 and free-fatty acid receptor 3 by butyrate and
propionate, however mechanisms independent of these
receptors may also be involved [52]. Gut hormones are
fundamental in the regulation of appetite but also in the control
of glucose metabolism, with GIP involved in insulin dependent
glucose uptake into muscle tissue and GLP-1 involved in
insulin secretion from the pancreas [53]. In the present study,
the WD mediated increases in butyrate and propionate
production has identified possible metabolic mediators for any
effects of WD fermentation on appetite regulation and energy
metabolism.

In conclusion, WD had a beneficial impact on gut microbial
ecology, not only in V1 where administered, but persisting
through all vessels of gut model system. Whilst not exerting a
classical prebiotic effect, such as increased Bifidobacterium
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