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Abstract

In order to get a comprehensive repertoire of foldable domains within whole proteomes, including orphan domains, we
developed a novel procedure, called SEG-HCA. From only the information of a single amino acid sequence, SEG-HCA
automatically delineates segments possessing high densities in hydrophobic clusters, as defined by Hydrophobic Cluster
Analysis (HCA). These hydrophobic clusters mainly correspond to regular secondary structures, which together form
structured or foldable regions. Genome-wide analyses revealed that SEG-HCA is opposite of disorder predictors, both
addressing distinct structural states. Interestingly, there is however an overlap between the two predictions, including small
segments of disordered sequences, which undergo coupled folding and binding. SEG-HCA thus gives access to these
specific domains, which are generally poorly represented in domain databases. Comparison of the whole set of SEG-HCA
predictions with the Conserved Domain Database (CDD) also highlighted a wide proportion of predicted large (length .50
amino acids) segments, which are CDD orphan. These orphan sequences may either correspond to highly divergent
members of already known families or belong to new families of domains. Their comprehensive description thus opens new
avenues to investigate new functional and/or structural features, which remained so far uncovered. Altogether, the data
described here provide new insights into the protein architecture and organization throughout the three kingdoms of life.
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Introduction

Domains are the modular building blocks of proteins and

correspond to recurring, fundamental units of both protein

structure and evolution. Protein domains may exist alone, but

frequently are part of larger, multi-domain proteins [1]. The

advent of complete genomes sequences has led to the estimation

that 40% of prokaryotic proteins are multidomain, whereas this

number increases to about two thirds in eukaryotes [2]. Protein

domains are classified into families; several domain families are

common to most species, indicating that there is a limited

repertoire, which is used to create the large functional space of

proteins [3]. Some domain families, considered as ‘‘promiscuous’’,

occur in diverse protein domain architectures (which are defined

as the linear orders of the individual domains in multi-domain

proteins) and are especially involved in interaction networks [4].

The recognition of domain family membership for unchar-

acterized proteins is often a first step towards the understanding of

their biological roles. Information about protein domains is stored

in dedicated databases, in the form of profiles or hidden Markov

models (HMMs), which are constructed through sequence

similarity searches. These profiles and HMMs can be searched

for detecting the domain composition of proteins, starting from

their amino acid sequences [5]. By this way, approximately half of

the residues of proteomes can be assigned to well-classified

domains, such as those stored in the PfamA classification [2]. The

percentage of assigned residues increases when less well-

characterized domain databases, such as PfamB, are searched.

The remaining residues, representing 10–20% of the proteomes

and referred to as ‘‘orphan’’ domains, do not match any known

domains [2]. These sequences include disordered structures,

among which are found linkers between structured domains, but

also folded units, which are difficult to characterize, principally

due to their small size or their fast evolution relative to an ancestral

protein. These can thus not be easily predicted by these sequence

similarity-based methods. The prediction of domain boundaries

can also be approached through ab-initio methods, which don’t

have such restrictions as they consider solely the protein sequence.

These focus on either globular domains or disordered regions and

are based on learning models, using a series of proteins for which

information on residue properties is known and algorithms such as

artificial neural networks and support vector machines (e.g. [6–

11]). However, the accuracy of domain boundary prediction is

often too low for general, practical use. Improvement of the

quality of ab-initio predictions has been obtained by hybrid

methods, adding evolutionary information (e.g. [12,13]).

Here, in order to get insight into orphan regions corresponding

to foldable regions, without consideration of any evolutionary

information, we have developed a strategy inspired from our

experience in Hydrophobic Cluster Analysis (HCA). This two-

dimensional method is used for (i) delineating the position of

globular-like domains and (ii) comparing fold signatures at low

levels of sequence identity (Fig. 1). HCA is based on the physico-

chemical and topological principles underlying the fold of globular

domains (dichotomy between hydrophobic/non-hydrophobic

amino acids, overall compactness) [14,15]. It allows a direct
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statistical access to regular secondary structures gravity centers for

a single amino acid sequence through the hydrophobic clusters

defined in this way [16,17]. The immediate information available

from this lexical analysis of the protein sequence text is a direct,

comprehensive analysis of the protein texture, revealing in

particular structured and non-structured regions. Structured

regions contain typical hydrophobic clusters, the length of which

is similar to those of regular secondary structures, whereas non-

structured regions lack or have less and smaller hydrophobic

clusters. This property has led to the manual identification of a lot

of domain boundaries, constituting crucial starting points for

experimental and computational investigations (see examples at the

following url http://www.impmc.upmc.fr/,callebau/HCA.html).

Besides this property, the HCA hydrophobic clusters constitute

efficient signatures for comparing remote sequences, allowing to

link orphan sequences to known families of domains (e.g. [18]) or

identify new families of domains (e.g. [19–21]).

On this basis, we developed a fast and automated procedure,

called segmentation-HCA (SEG-HCA) in order to delineate the

foldable domains within proteins from the knowledge of their

sequences alone and applied it to the characterization of whole

proteomes. This approach is distinct from Scooby-Domain

[22,23], which uses the distribution of observed lengths and

hydrophobicity in domains with known 3D structures. SEG-HCA

also uses a simple binary hydrophobic scale, but enriched from the

two-dimensional information highlighting regular secondary

structures through the hydrophobic clusters defined by this way.

Moreover, SEG-HCA is not limited to the observed lengths in

domains with known 3D structures, but cover any foldable region

of any length. The information provided by SEG-HCA can then

be compared with that included into structural databases, in order

to support the structural meaning of the predictions. It can also be

compared with that provided by the NCBI’s conserved domain

database (CDD) [24] in order to highlight «orphan» domains, i.e.

predicted globular-like domains that don’t match any conserved

domain (CD). Finally, this information also merits consideration

with regard to protein disorder. Intrinsically disordered proteins

(IDPs) or Intrinsically unstructured proteins (IUPs) do not, by

themselves, assume any stable 3D structures, under physiological

conditions [25–29]. IUPs however cover different forms of

disorder, from totally unfolded chains (‘‘coil’’-like or natively

unfolded), to coupled folding and binding (i.e. disorder-to-order

transition), and to pre-molten or molten globules having well-

developed secondary structures [29]. We thus also investigated

here how eventually a distinction between these different

disordered states can be made using the SEG-HCA predictions.

Results

SEG-HCA H2CD predictions applied to whole proteomes
So far, analysis of HCA plots was manual and thus limited to

small sets of protein sequences. The SEG-HCA procedure now

allows the automation of one aspect of the HCA plot analysis by

delineating, from the consideration of a single protein sequence,

the positions of segments having a high density in hydrophobic

clusters (H2CD segments, Fig. 2). The methodology is fully

described in the Material and Methods section. Briefly (Fig. 2),

SEG-HCA first defines hydrophobic clusters into a protein

sequence, using the current HCA rules, and calculates the

percentage of positions included in these hydrophobic clusters

(HCP, after Hydrophobic Cluster Positions, shaded green and blue

on Fig. 2B), within a sliding window of 17 amino acids (1-amino

acid increment). Note that this is not equivalent to a simple

calculation of mean hydrophobicity, because non-hydrophobic

amino acids within clusters (blue on Fig. 2B) are also taken into

account. Hence, the HCP percentage approximates, from the

consideration of a single sequence, the density in regular

secondary structures. Then, a HCP threshold value of 10% is

chosen to define potential hinge regions between segments having

a high density in hydrophobic clusters (H2CD), whose positions

are then refined through the consideration of a sequence based-

hydrophobic cluster distance tree (see Material and Methods for

the details).

SEG-HCA now gives access to the analysis of whole proteomes.

We collected here the H2CD segments (as predicted by SEG-

HCA) for the entire, archetypal proteomes of Homo sapiens,

Saccharomyces cerevisiae, Plasmodium falciparum, Escherichia coli and

Archeoglobus fulgidus. The number of predicted H2CD, as well as the

total number of amino acids predicted in H2CD, are given in

Table 1. The proportion of amino acids in H2CD is higher in

Bacteria and Archaea than in Eukarya. In the following text,

results will be illustrated for the human proteome, except in some

special cases where a different behavior is observed for specific

species.

SEG-HCA H2CD predictions are more than the converse
of disorder predictions and may be used for defining
categories in disorder

The prediction of structured regions might be considered as the

simple converse of disorder predictions. We thus compared the

SEG-HCA predictions to the disorder predictions performed by

IUPRED [30,31]. IUPRED is an available well-recognized

method, which considers interaction energies for predicting

stretches of amino acids that should not contribute to stable

structures. According to the D2P2 database [32], IUPRED

provides among the lowest estimation of global percentage

disorder.

We achieved this comparison according two different, but

parallel routes.

First, we compared the total number of amino acids predicted in

H2CD segments to those predicted as disordered by IUPRED

(IUPREDdis). We used for this prediction the long (L) variant of

IUPRED, which has been trained on long forms of disorder.

These IUPRED-L predictions are in agreement with those

Author Summary

Spontaneous or induced folding into a specific 3D
structure is a key property of proteins to perform their
biological functions. Folded 3D structures of proteins
perform specific functions, including interactions with
other proteins. Intrinsically disordered regions also medi-
ate interaction, gaining structure only when bound to a
target protein. In both cases, hydrophobicity generally
plays a major role in the protein segment ‘‘foldability’’.
Here, we developed an original procedure to identify
foldable segments from only the information of a single
amino acid sequence and to explore protein structures at a
proteomic scale. Our approach goes beyond the simple
consideration of mean hydrophobicity, by including the
secondary structure information through the use of a two-
dimensional transposition of the sequence. The developed
procedure, combined with disorder predictors, may facil-
itate the specific identification of small segments that
undergo coupled folding and binding. Combined with the
analysis of specific domain databases, it also highlights
orphan foldable segments, which remain yet uncharacter-
ized.

Prediction of the Protein Foldome
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reported in the D2P2 database [32]. According to the current view

[32,33], Eukarya have a higher content in disorder than the two

species chosen here for illustrating Bacteria and Archaea (Table 2).

However, Bacteria and Archaea show wide disorder distribution,

with very low level of predicted disorder for some species, such

here observed with the A. fulgidus proteome. We show (Fig. 3A and

Table 2) that to a large extent, there is a clear relationship between

the two predictions, which are opposite. However, SEG-HCA

H2CD predictions are not the simple converse of disorder

predictions, as the overlap between the two sets constitutes

13.8% of the total number of amino acids in the human proteome

(Fig. 3A). Similar overlap percentages are observed for other

eukarya (10.9% (S. cerevisiae), 13.8% (P. falciparum), Table 2). For E.

coli and especially for A. fuldigus, the overlaps are much lower (3%

and 0.9%, respectively), but represent similar ratios of the total

number of amino acids predicted as disordered by IUPRED. We

made several additional statistics, especially in order to clarify the

structural meaning of these three distinct datasets (H2CD,

IUPREDdis and H2CD > IUPREDdis).

We first evaluated the overall match of protein sequences

included in the three datasets with PDB information. Most of the

regions (96.1%) covered by PDB (14.4% of the total number of

amino acids) are included in the H2CD sets (H2CD and H2CD >
IUPREDdis), indicating that most of the 3D structures included in

PDB well cover H2CD predictions (Fig. 3B and Table 2).

However, PDB files may include some disordered regions. Then,

in order to select only regions with defined 3D structures, we

filtered the PDB assignments for disorder using MobiDB, a recent

comprehensive centralized database on different flavors of

disorder [34], including the well-known DisProt database [35].

We also considered classes A to F of the SCOP database [36],

covering globular as well as transmembrane domains. Although

these procedures are likely not sufficient to completely remove all

disordered regions, the results clearly show that amino acids from

PDB-filtered files and SCOP A to F classes are well covered by

amino acids in H2CD (97.8% and 97.5%, respectively, Fig. 3B).

This is confirmed on the different proteomes analyzed here

(Table 2). We further examined examples of PDB sequences

included into each set. Pure H2CD are found associated with 3D

structures of globular or membrane domains, whereas pure

IUPREDdis mainly correspond to small segments without regular

secondary structures (e.g. linker between two domains, pdb 3qp5(A)

(aa 312–321), or unstructured interacting peptide, pdb 1e4g(P)

(aa881–895)). In contrast, many examples were found In the

H2CD > IUPREDdis set, where the binding of a partner is

coupled to folding (e.g. the alpha helix of the p53 TAD, which folds

upon Tfb1 binding (pdb 2gs0(B) [37], Fig. 4D), the CREB KID

domain interacting with the KIX domain of CBP (pdb 1kdx(B)

[38]) and the BH3 domain from PUMA interacting with Mcl-1

(pdb 2roc(B) [39], Fig. 4F)). The two complementary interaction

domains of mouse CBP and human ACTR, which undergo

synergistic folding, were also detected in the H2CD > IUPREDdis

set (pdb: 1kbh [40]). Some rare examples were also found of small

stable globular domains, as illustrated in Fig. 4A. Worth noting is

that small sequence segments of the same ET domain structural

family [41], also falling in this H2CD > IUPREDdis category,

behave either as stable domains (BRD4 ET domain, pdb 2jns(A)

[42]) or as IDP undergoing coupled folding and binding (AF9 ET-

like domain 2lm0(A) [43]). This indicates that for small domains,

the distinction between stable and unstable 3D structures may be

tenuous. Of note is that the H2CD > IUPREDdis set principally

contains small H2CD (mean length 28 amino acids, versus 159

amino acids for H2CD not covered by IUPREDdis predictions

(70% coverage), also see below).

As shown above, known 3D structures in the H2CD >
IUPREDdis set include several segments that undergo coupled

folding and binding. We thus wondered if the overlap between

H2CD and IUPREDdis may actually correspond to regions

predominantly predicted by ANCHOR, a predictor of disordered

regions that undergo binding transitions during protein-protein

Figure 1. Delineation and comparison of globular domains using HCA. The sequence is written on a duplicated alpha helical net and the
hydrophobic amino acids (V, I, L, M, F, W, Y) are contoured [14,15]. These form hydrophobic clusters, which mainly correspond to regular secondary
structures [17]. This is illustrated here with the chromo and chromo-shadow domains of the mouse chromobox homolog 1 (CBX1_MOUSE, UniProt
P83917), for which the observed secondary and tertiary structures are shown below the HCA plot (pdb identifiers: 1AP0 and 1DZ1) [66]. Globular
domains (boxed), containing approximately one third of hydrophobic amino acids gathered into clusters, are separated by a hinge, which is clearly
less hydrophobic. The comparison of the HCA plots of the two domains indicates similar shapes of clusters (shaded green and red), suggesting a
structural relationship. This potential relationship is further strengthened by sequence identities (shaded yellow) identified relative to the conserved
positions of hydrophobic amino acids within clusters and is supported at the 3D level. The hydrophobic clusters shaded in green and red correspond
to the internal strand beta2 and to the C-terminal alpha helix, respectively. In the chromo shadow domain, the loop linking strand beta3 and the C-
terminal alpha helix includes a short alpha helix, containing two alanine residues.
doi:10.1371/journal.pcbi.1003280.g001

Prediction of the Protein Foldome
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interaction, using the same energy estimation than IUPRED

[44,45]. ANCHOR predictions fall in the three sets, but represent

the highest ratio in the H2CD-IUPREDdis set (46.1%, versus

32.6% and 6.4% in the IUPREDdis and H2CD sets, respectively,

Fig. 3C). This strongly supports that the overlap between H2CD

and disordered predictions is enriched in segments that fold on

binding and that the comparison between H2CD and IUPREDdis

may allow the definition of distinct categories within disorder.

Second, we also estimated the coverage of order predicted by

different approaches: a) H2CD prediction, b) IUPRED prediction

of order (ordIUPRED), c) converse of IUPRED prediction of

disorder (convdisIUPRED) and d) ANCHOR prediction. H2CD

predictions well cover the ordIUPRED and convdisIUPRED

predictions (95% and 95% coverage, respectively). However, the

ordIUPRED and convdisIUPRED predictions cover only partially

the H2CD predictions (59% and 63% coverage, respectively),

highlighting a larger coverage of order by SEG-HCA predictions,

consistently with results presented in Fig. 3A (H2CD-IUPREDdis

overlap). 80% of the amino acids highlighted by ANCHOR are

covered by H2CD, indicating that ANCHOR predictions include

a large proportion of segments with high density in hydrophobic

clusters. ANCHOR predictions not covered by H2CD are

generally small (mean length 13 amino acids) and have few

hydrophobic amino acids (mean 18%). We also calculated the

proportion of small H2CD (length #50 amino acids) which are

covered by ANCHOR predictions and observed that these cover

only 60% of H2CD. On average, small H2CD not covered by

ANCHOR predictions are 19 amino acids long and possess 29%

hydrophobic residues.

A propensity for folding might thus be predicted for H2CD with

a strong IUPREDdis signal, as it is the case for the four examples

of coupled folding and binding mentioned above or that shown in

Figure 2. SEG-HCA methodology. (A and B) Hydrophobic amino acids (green) are highlighted in the sequence of S. cerevisiae TAF14. At least four
consecutive non-hydrophobic amino acids or a proline constitute breakers (red). Hydrophobic amino acids not separated by breaker positions
constitute hydrophobic clusters (numbered here 1 to 21), which thus include hydrophobic (green) as well as non-hydrophobic amino acids (green-
blue). A single hydrophobic amino acid, which does not contain in its close neighborhood (7 amino acids downstream and upstream) any other
hydrophobic cluster is considered as an isolated small cluster and included in the breaker (blue star). The percentage of positions included in
hydrophobic clusters (HCP, after hydrophobic cluster position; shaded green and blue) is computed within a sliding window of 17 consecutive
residues (one amino acid increment). This interval is represented by the hexagon at the beginning of the sequence, including the second amino acid
neighborhood at the HCA 2D level. For the sequence segment included in the hexagon (IKTQQHILPEVPPVENF), the HCP percentage is 47% (8/17). A
minimum is identified when this percentage is below 10%. Here, two segments are identified, as a minimum is reached at amino acid 150 (labeled 1).
A distance tree is then calculated between hydrophobic clusters. This allows the definition of the limits of regions having high density in hydrophobic
clusters (H2CD, after high hydrophobic cluster density), by comparing the different nodes with the segments defined before. Here, the best
correspondence is observed between segment 1 and the node including clusters 1 to 16 (labeled 3 brown) and segment 2 and the node including
clusters 17 to 21 (labeled 3 green). (C) The predicted H2CD are then compared to the domains assigned by RPS-BLAST from the Conserved Domain
Database (CDD). In this example, only the first domain is assigned from CDD (YEATS domain), while the second one remains unassigned by CDD (CD-
orphan).
doi:10.1371/journal.pcbi.1003280.g002
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Fig. 4E. Using this rule, small stable 3D structures, such as the

UBA domain of Rad23 (Fig. 4A) may also be picked out. In

contrast, regions without any H2CD signal might be then classified

as ‘‘non foldable’’ segments. This represents on average 23% of

the protein residues in the human proteome, in agreement with

previous estimations (21.6% in Ward 2004). Similar trends were

observed for S. cerevisiae and P. falciparum, whereas in E. coli and A.

fulgidus, this percentage is lower (10% and 6%, respectively)

(Table 1).

Comparison with domains assigned from the Conserved
Domain Database gives access to orphan sequences

We collected for each protein the CDD assignments (as found

using RPS-BLAST [24]) and discarded multi-domains, as these

are already counted with domains. 69348, 7251, 5161, 5497 and

2679 CD were identified in the proteomes of H. sapiens, S. cerevisiae,

P. falciparum E. coli and A. fulgidus, respectively (Table 1).

The number of predicted H2CD is approximately twice higher

than the number of CD: 137665 and 18555 for H. sapiens and S.

cerevisiae, respectively, whereas it is nearly similar (6745 and 3075)

for E. coli and A. fulgidus, respectively (Table 1). Interestingly, the

number of H2CD (22939) is more than 4 four times higher than

the number of CD (5161) for the P. falciparum proteome. Most

(97%) of the CD amino acids (40% of the total number of amino

acids) are included in the H2CD set (human proteome H2CD and

H2CD > IUPREDdis, Fig. 3D and Table 2). As regards to the

highlighted relationship between H2CD and foldable regions (see

above), this indicates that CD mainly include foldable domains.

The similarity in hydrophobic cluster composition between the

CD and H2CD databases, as well as with the SCOP database

(classes A to F) further supports their relationship (Fig. S1).

We wondered whether CD, as assigned from CDD, are well

detected and covered by H2CD, as predicted by SEG-HCA

(Table 1, Fig. 5). First, we calculated the percentages of CD

positions, which are predicted as H2CD (Fig. 5A and Table 1).

75% of the CD have up to 95% of their length covered by H2CD

in all the proteomes, except for P. falciparum and A. fulgidus, for

which the coverage is even higher (82 and 86%, respectively).

Table 1. H2CD and CD segments within proteomes.

H. sapiens S. cerevisiae P. falciparum E. coli A. fulgidus

Sequences 34521 5907 5337 4128 2420

Residues 18395802 2828010 3979079 1251206 655015

Mean length (aa) 533 479 746 303 271

H2CD

Number of H2CD 137655 18555 22939 6745 3075

Number of large H2CD (.50 aa) 72851 10732 15348 5439 2747

Number of residues in H2CD 15879870 2550812 3558433 1223971 650868

Percentage of residues in H2CD 86.3 90.2 89.4 97.8 99.4

Mean H2CD length (aa) 115 137 155 181 212

Mean percentage of residues in H2CD
per sequence

77% (5.2) 80% (5) 86% (2.8) 90% (3.5) 94% (2.6)

CD

Number of CD 69348 7251 5161 5497 2679

Number of residues in CD 7359656 1170126 740778 894558 415889

Pecentage of residues in CD 40 41 19 71 63

Mean CD length (aa) 106 161 144 163 155

Mean percentage of residues in CD per
sequence

44% (9.3) 45% (11.2) 29% (10.4) 74% (8.6) 62% (13.2)

Coverage

CD coverage by H2CD (up to 95%) 74,8% 75,5% 82,1% 75,2% 86,5%

CD not covered by large H2CD 3078 253 82 132 33

CD not covered by any H2CD 435 7 9 4 0

Number of CD orphans (.50 aa) 27316 4126 12459 525 500

Percentage of CD orphans (.50 aa) 19.8 22.2 54.3 7.8 16.2

Number of CD orphans in NR70 (.50 aa) 16562 3929 12205 499 492

CD/H2CD architecture of proteins

CD orphan proteins 5848 (17%) 1188 (20%) 2035(38%) 271(7%) 438(18%)

H2CD orphan proteins (.50 aa) 916 (3%) 185 (3%) 49 (1%) 118 (3%) 55 (2%)

Mono CD proteins 14859 (43%) 3125 (53%) 2230 (42%) 2722 (66%) 1509 (62%)

Mono H2CD proteins (50 aa) 15588 (45%) 2981 (41%) 2270 (43%) 2920 (71%) 2040 (84%)

Multiple CD proteins 13814 (40%) 1594 (27%) 1072 (20%) 1135 (27%) 473 (20%)

Multiple H2CD proteins (50 aa) 18017 (52%) 2741 (46%) 3011 (56%) 1090 (26%) 325 (14%)

doi:10.1371/journal.pcbi.1003280.t001
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These high percentages thus demonstrated that the vast majority

of CD are well identified by SEG-HCA, as already observed in

Fig. 3D. Only a few number of CD (435 (1,2%) in the H. sapiens

proteome (star in Fig. 5A and Fig. 3D), and between 0 and 9 in

other ones (Table 1)) are not covered by H2CD. These are

logically less hydrophobic, with in average 28% of hydrophobic

amino acids. Metal ions or disulfide bridges often stabilize some of

these domains. Hence, 194 of the H. sapiens CD that are not

covered by H2CD (45%) correspond to zinc fingers, as deduced

from the CDD annotations. We looked more precisely at positions

of CD that are not covered by H2CD, either in upstream,

downstream or in the middle of CD (Fig. 5B), and observed high

peaks for a value of 0, meaning that the limits of CD are well

covered by H2CD. The extent of non-coverage appears more

pronounced for internal segments of limited length, probably

highlighting large loops and/or poorly hydrophobic segments

within domains, which are not predicted by SEG-HCA. CD,

which don’t match any H2CD or match multiple H2CD, can also

be highlighted on Fig. 5E and Fig. S2 (white bars).

We also looked at the converse information, i.e. the extent to

which H2CD are covered by CD. We calculated the percentages

of H2CD positions, which are assigned as CD (Fig. 5C). Only

22.4% of the H2CD have up to 95% of their length covered by

CD, indicating that CD only partially cover H2CD, as already

observed in Fig. 3D. A large number of H2CD have no CD

assignment, meaning that they are orphans. They constitute 34%

of the H2CD in the human proteome, and up to 72.8% in the P.

falciparum proteome (72.8%, Table 2). These percentages slightly

decreased when considering only large H2CD (.50 amino acids,

19.8% of the total number of H2CD, white circle in Fig. 5C and

Fig. 5E (black bar at 0) ; Table 1). These large H2CD have 31%

hydrophobic amino acids and an average length of 139 amino

acids. These features are very close to those of CD domains (31%

hydrophobic amino acids and 111 amino acids long). Only a

Table 2. Comparison of SEG-HCA and IUPRED predictions.

H. sapiens S. cerevisiae P. falciparum E. coli A. fulgidus

Residues in H2CD 86.3% 90.2% 89.4% 97.8% 99.4%

Disordered residues (IUPRED-L) 27.5% 20.7% 24.4% 5.3% 1.5%

Residues in the H2CD > IUPRED set (overlap) 13.8% 10.9% 13.8% 3.2% 0.9%

PDB (relative to the total PDB residues)

H2CD only 89.7% 91.2% 96.3% 94.6% 98.8%

H2CD > IUPRED 6.4% 4.9% 2.2% 3.5% 0.7%

IUPRED only 3.9% 3.9% 1.5% 1.9% 0.5%

PDB-MOBI (relative to the total PDB-MOBI residues)

H2CD only 92.4% 94.1% 99.8% 95.3% 99.1%

H2CD > IUPRED 5.4% 3.9% 0.2% 3.3% 0.6%

IUPRED only 2.4% 2% 0.1% 1.4% 0.3%

SCOP (relative to the total SCOP residues)

H2CD only 92.1% 94.3% 97.5% 95.2% 98.6%

H2CD > IUPRED 5.4% 3.8% 1.7% 3.3% 0.9%

IUPRED only 2.4% 1.9% 0.8% 1.5% 0.5%

ANCHOR (relative to the total residues in the set)

H2CD only 6.4% 4.4% 7.5% 1.3% 0.3%

H2CD > IUPRED 46.1% 44.7% 39.8% 11.1% 9%

IUPRED only 32.6% 24.4% 15.5% 10% 1.8%

ANCHOR (relative to the total ANCHOR residues)

H2CD only 29.9% 32.7% 44.1% 68.9% 77.2%

H2CD > IUPRED 41.2% 45.1% 43.1% 18.9% 20%

IUPRED only 28.9% 22.2% 12.8% 12.3% 2.8%

CD (relative to the total residues in the set)

H2CD only 50.6% 49.1% 23.4% 72.6% 63.8%

H2CD > IUPRED 15.4% 14.1% 3.8% 60.5% 49.2%

IUPRED only 8.7% 9.4% 3.5% 40.4% 34.5%

CD (relative to the total CD residues)

H2CD only 91.7% 94.1% 95.2% 96.1% 99%

H2CD > IUPRED 5.3% 3.7% 2.8% 2.7% 0.7%

IUPRED only 3.0% 2.2% 2% 1.2% 0.7%

Percentages of amino acids covered by SEG-HCA and IUPRED-L predictions in the proteomes of H. sapiens (18395802 residues), S. cerevisiae (2828010 residues), P.
falciparum (3979079 residues), E. coli (1251206 residues) and A. fulgidus (655015 residues). Each class (SEG-HCA, IUPRED and SEG-HCA>IUPRED) has been searched for
coverage by 3D structures (PDB, SCOP classes A to F and PDB filtered with MOBI-DB), ANCHOR predictions and CDD assignments.
doi:10.1371/journal.pcbi.1003280.t002
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weak decrease is observed when considering multi-domains, for

the definition of CD domains from CDD. The percentage of CD-

orphan H2CD range between 8% (E. coli) and 22% (S. cerevisiae),

with the outstanding exception of P. falciparum, for which this

percentage rises to 54% (Table 1). For this proteome, we further

investigated whether amino acid compositions are different

within and outside H2CD. As shown in Fig. S3, no clear

difference can be highlighted between the P. falciparum and S.

cerevisiae sequences, indicating that the codon usage bias and

associated biased amino acid composition affect foldable

segments in a similar way than the rest of the protein sequences.

Consequently, this biased amino acid composition may explain

the resistance of Plasmodium H2CD sequences to the detection by

CD profiles.

As before, we determined the positions of H2CD, which do not

correspond to CD assignments (Fig. 5D), and also observed main

peaks for a value of 0, meaning that the limits of H2CD are well

covered by CD. Moreover, a higher peak is observed for no

mismatch in intermediate positions, likely indicating the prefer-

ence of 1 CD for 1 H2CD, as also observed in Fig. 5E and Fig. S2

(black bars). However, mismatch occurrences decrease more

slowly with the length of the mismatch, likely revealing the

importance of partial CD orphans in H2CD.

From Fig. 5E and Fig. S2, it is obvious that most of CD are

covered by a single H2CD and vice versa. A small proportion of

CD are covered by two distinct H2CD and vice-versa. This can be

explained by the fact that SEG-HCA considers either two distinct

segments, when large loops or regular secondary structures with

Figure 3. Comparison of SEG-HCA and IUPREDdis predictions. (A) Percentages of amino acids covered by SEG-HCA and IUPRED-L predictions
in the human proteome (18395802 residues). Each class (SEG-HCA, IUPREDdis and SEG-HCA>IUPREDdis) has been searched for coverage by PDB
assignments, Mobi-DB-filtered PDB assignments and SCOP assignments (B), as well as ANCHOR predictions (C) and CDD assignments (D).
doi:10.1371/journal.pcbi.1003280.g003
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few strong hydrophobic amino acids are present within CD

(Fig. S4A), or a unique domain when too short or too hydrophobic

segments separate two distinct CD (Fig. S4B). Examination of

particular cases of non-detected linkers suggests that some

improvement of the SEG-HCA prediction tool might be yet

expected, by considering for the definition of hydrophobic clusters

within potential linkers, alanine residues, which have the highest

preference for alpha-helices.

Lengths of H2CD segments: Emphasis on small, likely
foldable segments, which are not described in CDD

We calculated the distributions of CD and H2CD lengths (Fig. 6

and Fig. S5). Above 50 amino acids, the distributions are quite

similar. However, SEG-HCA predicts a lot of small H2CD (length

#50 amino acids), which are not observed in the CD distribution.

Indeed, 64804 (47%), 7823 (42%) and 7591 (33%) of the H2CD

from the H. sapiens, S. cerevisiae and P. falciparum proteomes,

respectively, have less than 50 amino acids. By comparison, only

27%, 9% and 31% of CD are small-sized. Our results thus also

showed that, in three distinct eukaryotic proteomes, it exists a

considerable number of short segments, rich in hydrophobic

clusters. An in-depth examination of PDB entries matching these

segments revealed that they constitute small stable domains (e.g.

UBA and Zinc-finger domains (Fig. 4A and 4B)), linear interaction

motif likely embedded in a small stable domain (Fig. 4C), segments

that fold upon contact with partners (Fig. 4D to 4F) or that they

are included in larger domains, surrounded by large loops (Fig. 4F),

in C-terminal tails (Fig. 4G) and in structured linkers (Fig. 4H). A

distinction of segments that may undergo coupled folding and

binding could be made by considering overlaps with disorder

predictions (see before). The large proportion of small H2CD

seems to be specific for eukaryotic genomes. Indeed, in the E. coli

genome these small H2CD represent 19% of all H2CD and this

number decreases to 11% in the A. fulgidus genome (Table 1 and

Fig. S5). Interestingly, SEG-HCA thus provides a way to access to

this information, which is generally missed by standard methods of

profile construction (due to their limited size and/or high sequence

divergence), as those contributing to CDD.

Figure 4. Structural features of small H2CD. Small H2CD represent a large part of the total number of the predicted H2CD (64814 (47%) in the
human proteome). In order to understand their structural behavior, we searched for small H2CD (length ,50 amino acids), which are covered by CD
and show significant sequence similarities with experimental 3D structures. Several cases are illustrated here, from panel A to I. Panels A, D, E, F, H are
included in the SEG-HCA>IUPREDdis set, whereas panels B, C, G and I are found in the ‘‘SEG-HCA only’’ set.
doi:10.1371/journal.pcbi.1003280.g004
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CD and H2CD architecture of proteins
The percentages of amino acids included in H2CD or CD

segments are clearly different (Table 1, Fig. 7A and Fig. S6). On

average, 44% of the amino acids of a human protein are included

in CD segments, against 77% in H2CD segments. These amino

acid coverage values are similar to those found by Ekman and

colleagues [2], when considering only the Pfam-A/SCOP

assignments or the whole set of predicted domains. The CD

amino acid coverage values vary from 29% (Plasmodium) to 74%

(E.coli), whereas elevated H2CD amino acid coverage values are

observed in any cases (86% (Plasmodium) and 90% (E.coli)).

The distributions of CD and H2CD segments within proteins

(protein coverage) are also different. Indeed, whereas 17% of the

human proteins do not have any CD, only are found 2.6% with no

H2CD longer than 50 amino acids (Table 1 and Fig. 7A). This

indicates that the number of wholly disordered proteins is very low

and that 14% of human proteins contain large foldable domains,

which remain uncharacterized (CD-orphan domains). The num-

ber of orphan proteins is lower than that reported by Ekman and

colleagues, which described that 93% of the eukaryotic proteins

could be assigned with a (known or unknown) domain. More

generally, the very low percentage of H2CD orphan proteins

contrast with previous estimations of fully disordered proteins [46],

which are much higher, but these ones include all types of

disorder, including regions that are predicted as foldable, and not

only natively unfolded segments.

One can also consider the coverage of proteins by only one

domain or multiple domains, being advised that one H2CD may

cover multiple domains, as discussed from Fig. 5E. Hence, we

estimated that the human proteome has 45% and 52% single- and

multi-H2CD domain proteins, respectively, whereas bacteria/

archaea proteomes have 71%/84% and 26%/14% single- and

Figure 5. Characterization of segments with high hydrophobic cluster density (H2CD) in the human proteome, relative to CD
extracted from CDD. (A) Distribution of the coverage rate of CD by H2CD (N/lCD). (C) Distribution of the coverage rate of H2CD by CD (N/lH2CD). N is
the number of common positions and lCD and lH2CD the total length (in amino acids) of the CD and H2CD, respectively. The star and circle point out
CD and H2CD with no or low coverage by H2CD and by CD, respectively. Over-coverage of H2CD by CD and of CD by H2CD are reported in panels (B)
and (D), respectively. (E) Number of large H2CD (.50 amino acids) matching a CD (white), number of CD matching a large H2CD (.50 amino acids)
(black).
doi:10.1371/journal.pcbi.1003280.g005
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multi-H2CD domain proteins, respectively (Table 1, Fig. 7A and

Fig. S6). This is consistent with the study of Ekman and colleagues

[2], which however tipped the balance in favor of multi-domains

proteins (65% versus 35% of mono-domain proteins in the human

proteome). This last study however fixed the cut-off at 100

residues, and thus did not consider small domains, which are well

documented here.

The proportions of proteins with multiple, unique or no H2CD

are similar in Plasmodium falciparum (56%, 42% and 1%), although

the percentages of proteins with multiple and no CD are different

(20% and 38% versus 40% and 17% in human proteins) (Table 1

and Fig. S6). This suggests that the higher number of CD orphan

sequences in Plasmodium sequences may be distantly related to

domains existing in other species.

Discussion

The study presented here provides access to a whole repertoire

of foldable H2CD segments in proteomes from the three kingdoms

(the eukaryotic genomes of H. sapiens, S. cerevisiae, and P. falciparum,

as well as those of the eubacteria E. coli and of the archaea A.

fulgidus). By a mirror effect, this also gives new insight into

disordered regions located outside foldable segments, which are

devoid of fold-promoting hydrophobic clusters. Consistently with

numerous reports [47,48], the content in disorder, or precisely

non-foldable segments if we consider the converse of SEG-HCA

predictions, increases with evolutionary complexity. The major

point that our study now highlights is that in eukaryotes, there are

many small H2CD segments, whose limited length makes them

generally difficult to characterize. This information is in particular

absent from or poorly represented in domain databases. Some of

these small H2CD segments correspond to isolated stable domains

(as exemplified in Fig. 4A and 4B). However, as observed from

several case studies (Fig. 4D to 4F), small H2CD segments may

also be intrinsically disordered and undergo coupled folding and

binding. These segments are generally predicted as IUPs or IDPs

by current disorder predictors, and the overlap between disorder

and H2CD predictions may thus provide a new interesting way to

highlight disorder-to-order transitions, which play key roles for

molecular recognition. These segments, which are characterized

by structural plasticity and make weak and transient binding, play

important roles in regulatory and signaling process [29]. Tools,

Figure 6. Comparison of H2CD and CD lengths in the human proteome. The frequencies of H2CD and CD extracted from the human
proteome are reported as a function of their lengths.
doi:10.1371/journal.pcbi.1003280.g006

Figure 7. Distribution of H2CD and CD segments among proteins from the human proteome. (A) Number of CD (white) and H2CD (black)
assignments per protein. Only H2CD of more than 50 amino acids are considered. (B) Distribution of the number of amino acids (in percentage of the
total number of amino acids within a protein) included in CD (white) and H2CD (black) segments.
doi:10.1371/journal.pcbi.1003280.g007
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such as ANCHOR [45] and MorFPred [49], have been developed

for detecting such segments, but are based on different principles.

MoRFPred is based on a machine learning classifier, based on a

comprehensive datasets of MoRFs (Molecular Recognition Fea-

tures, [49]), whereas ANCHOR relies on pairwise energy

estimation, which is also the basis of the disorder predictor

IUPred [45]. ANCHOR segments are likely to gain stabilizing

energy by interacting with a globular partner. As shown here,

ANCHOR predictions are especially found in the overlap between

IUPRED (a current disorder predictor) and SEG-HCA predic-

tions. SEG-HCA appears thus well adapted to detect such foldable

segments, which have been also named protean segments (ProS,

[50]), as it highlights specific features of their interface, enriched in

hydrophobic amino acids [45,51–53]. The binding of some

foldable segments, such as a beta-strand of MCAF1 (Fig. 4E)

and an alpha-helix of BH3 (Fig. 4F), is similar to the folding

process and the interface between protein and ligand, richer in

hydrophobic residues than the surrounding surface, is similar to

the hydrophobic core. In both cases, hydrophobic amino acids

participate in the binding interfaces and the hydrophobic cluster

has a shape typical of the formed secondary structures. In other

situations, such as those presented in Fig. 4C and 4D, the foldable

segments are included in small globular-like regions. Hydrophobic

amino acids are here likely to participate in both the binding

interface and the hydrophobic core of the small globular-like

domain in which the peptide is embedded, and the shape of the

corresponding hydrophobic clusters deviates from the observed

secondary structures [54]. A ‘‘folding propensity’’ may thus be

deduced from the consideration of small H2CD, especially

included in the H2CD > IUPRED set, provided that these can

be distinguished from artifacts (partial domains, as illustrated in

Fig. 4G). However, such cases could be solved using evolutionary

information.

The residues undergoing coupled folding and binding and

participating in the interaction with the partner can usually be

mapped in a single continuous segment, and hence, have been

connected through common examples to linear motifs [55]. These

are collected in the ELM database [56], which captures sequence

features shared by common interacting partners. An example is

shown here with a peptide of the Apollo (SNM1B) protein

(Fig. 4C), a member of the beta-CASP family [57], which form

small alpha helices upon binding to the telomere repeat binding

factor TRF2 [58,59]. This peptide is included in a small, 32 amino

acid long H2CD. The simplicity of linear motifs offers a good tool

for identifying possible partners but generally results in a large

amount of false positives. The complementary nature of the two

concepts has been recently explored through the comparison of

the generic ELM ligand binding motifs (LIG) and ANCHOR

predictions [60], indicating that ANCHOR can be used as a

structural filter to improve the predictive power of linear motifs. A

similar effect or an alternative analysis can be expected from the

consideration of the SEG-HCA predictions, which also give

information about the structural context of linear motifs. A first

calculation made on the ELM LIG motifs showed a mean

coverage by H2CD predictions of 67% (with more than a half

being predicted as disordered by IUPRED, data not shown). SEG-

HCA is however limited to linear motifs including hydrophobic

amino acids and thus does not address hydrophilic linear motifs.

Another major observation of our work is that in eukaryotic

proteomes, the number of H2CD is approximately higher than the

number of domains assigned from the conserved domain database,

revealing a lot of CD-orphan domains, which are otherwise not

considered by other predictive methods based on homology

searches. Orphans domains have either evolved too far from the

nearest neighbors to be assigned to a domain or they have been

created by some de novo mechanisms. Studies have however

indicated that most of the solved structures of orphan proteins

show structural similarity to already known proteins domains,

suggesting that the fraction of orphan domains that have distant

homologs is high [61]. A preliminary study on a small set of

human CD-orphan H2CD segments reveals that approximately

one fifth of them can be assigned by direct inference (from the PSI-

BLAST significant results) to already known families of domains

(Faure and Callebaut, unpublished data). This study has been

performed using the TREMOLO-HCA tool, which combines

sequence similarity searches with information on domain archi-

tecture and amino acids likely participating in the hydrophobic

core [41]. This first emphasizes the sequence divergence of some

domain families and the necessity to improve the specificity of

associated CD profiles. This also highlights the large amount of

putative domains without any known characterized function.

These orphan domains are particularly abundant in proteomes

from genomes with extreme compositional bias, such as that of the

apicomplexan P. falciparum (12459 CD-orphan H2CD (81%),

Table 1). Previous analyses have already shown the interest of

HCA for revealing functional features of such segments [62],

which can be now analyzed in a systematic and comprehensive

manner.

A recent study [63,64] has also addressed the problem of

regions with no structural domain (SD) assignment (named cryptic

domains), through an approach, called DICHOT, for determining

structured domains and intrinsically disordered (ID) regions in

proteomes. This approach uses sequence conservation in order to

distinguish between cryptic structured domains, with no known

3D structures, and disorder. This is fundamentally different from

the SEG-HCA approach, which does not use at all sequence

conservation for the definition of H2CD segments. Consideration

of sequence conservation does not take into account that i) CD

domains can have diverged so far that the sequence similarity

between family members can be difficult to detect, ii) the sequence

of some IDs may share significant similarities with other sequences

(this is particularly true for ID sequences undergoing coupled

folding and binding). As a consequence, the two approaches are

difficult to compare and led to different results, especially for the

estimation of the frequency of disordered amino acids, which is

much higher in the DICHOT approach (35%, for the human

genome).

The comprehensive repertoire described here thus opens new

perspectives for the genome-wise characterization of structured

domains or potentially foldable regions, as well as for the

identification of new domains or motifs, which may play critical

functional roles.

Materials and Methods

SEG-HCA
SEG-HCA (after SEGmentation through HCA) first identifies

the strong hydrophobic amino acids of the sequence, considering

for their definition the HCA alphabet (V, I, L, M, F, Y, W) and

including cysteine (C) (green in Fig. 2A and B). This alphabet has

proven to be optimal, providing the best correspondence between

hydrophobic clusters and regular secondary structures [17]. Then,

the definition of HCA hydrophobic clusters relies on the

consideration of a minimal distance between two hydrophobic

amino acids, which is necessary to assign them to separate clusters.

This minimal distance, called connectivity distance, is 4 sequential

amino acids when the alpha-helix is used as a 2D support for the

2D HCA transposition of the sequence and allows to delineate

Prediction of the Protein Foldome

PLOS Computational Biology | www.ploscompbiol.org 11 October 2013 | Volume 9 | Issue 10 | e1003280



cluster breakers. These breakers are thus composed of at least four

consecutive non-hydrophobic amino acids or a proline (red in

Fig. 2A and B). The groups of amino acids between the breakers

define hydrophobic clusters, which contain hydrophobic residues

(green in Fig. 2A and B), but also may include non-hydrophobic

residues (blue-green in Fig. 2A and B), provided the connectivity

distance between hydrophobic residues is not reached. As small

hydrophobic clusters, containing only one or two hydrophobic

amino acids, are not frequently associated with regular secondary

structures, these were not considered in our counting if there is no

other hydrophobic cluster within their first close neighborhood (7

amino acids) (star in Fig. 2A and 2B). An artificial, simplified

binary sequence is then built, where the amino acids composing

hydrophobic clusters are represented by 1 and those composing

the breakers (which essentially contain non-hydrophobic amino

acids) are represented by 0.

From the binary sequence, the percentage of positions included

in hydrophobic clusters (HCP, after Hydrophobic Cluster

Positions) is computed using an overlapping window of length

17 and assigned to the central position of this window (hexagon in

Fig. 2B). This window size was chosen as it corresponds to the

segment length encompassing the close neighbors of a central

residue on the 2D HCA plot (two rings encircling one central

amino acid). This value is similar to the window of 15 amino acids

currently used by secondary structure predictors [65]. For the N-

and C-terminal eight residues, values were set to those assigned to

the ninth and n-8th positions of the sequence, respectively (n being

the total length of the considered sequence). The HCP percentages

can be plotted, giving a view of the hydrophobic cluster profile of

the protein sequence (Fig. 2B). High and low values are associated

with high and low densities of hydrophobic clusters, respectively.

SEG-HCA next identifies areas of high hydrophobic cluster

density (H2CD), typical of structured or folded regions (Fig. 2B).

To that aim, HCP minimal values are identified for a threshold

level of 10%, defining thereby potential hinge regions separating

these areas of high hydrophobic cluster density (first rough limits,

labeled 1 in Fig. 2B). This level is considered as the minimal value,

for which and below which a linker is predicted to separate two

distinct H2CD. This value was first fixed according to numerous

case studies. Optimization of this threshold was considered using a

non-redundant (40% sequence identity) SCOP database, down-

loaded from ASTRAL (http://scop.berkeley.edu/). SEG-HCA

was used at different HCP threshold and for each 3D structure, we

looked at the values that yield only one H2CD. The distribution of

the HCP threshold values was then analyzed, showing an

optimum at 22%, thus slightly above 10%. On average, 1.1

H2CD are observed, with 78% coverage. However, it should be

noted that the optimization is made on well-stable, already large

globular domains. The used threshold is intended to detect such

canonical domains, but also small segments, which may be

structured and are not (or poorly) represented in the SCOP

structural database. Therefore, as supported by several case

studies, using the lower threshold of 10% allows the detection of

these small segments, in addition to larger ones. At this level, 1.04

H2CD are observed, with 86% coverage (thus values close to those

observed for the optimized threshold). Increasing this threshold

value may allow the split of multi-domains into domains, but lead

to loose small segments, as these last ones generally have low HCP

values.

Then, SEG-HCA builds a tree, starting from the observed

distances between hydrophobic clusters (leafs). The closest

hydrophobic clusters are grouped, constituting nodes, the root

(labeled 2 in Fig. 2B), gathering the whole set of hydrophobic

clusters contained within the analyzed sequence. SEG-HCA then

compares each of the regions identified as the first rough limits

(labeled 1 in Fig. 2B) to those defined by the different nodes of the

tree. The best overlap between the two is chosen to define the

refined limits of the H2CD segment (labeled 3 in Fig. 2B).

SEG-HCA is fully implemented in python v2.7. Scripts are

available in Supporting Information (Software S1).

Datasets
Proteome sequences were downloaded from the National Center

for Biological Information (NCBI) (ftp://ftp.ncbi.nlm.nih.gov/

genomes/): Hsapiens, Scerevisiae_uid128, Ecoli_042_uid161985,

Archeoglobus_fulgidus_DSM_4304_uid57717 and Pfalciparum.

Comparison with assignments from the Protein Data
Bank (PDB), Mobi-DB and SCOP, from the Conserved
Domain Database (CDD) and with other predictive tools
(IUPRED, ANCHOR)

Each sequence from each proteome was searched for similarities

either with the Protein Data Bank (PDB), using the BLASTPGP

program version 2.26. Only one iteration was done from each

entire protein sequence. Hits sharing more than 95% of sequence

identity were selected. The disorder was then filtered by using

Mobi-DB ([34], http://mobidb.bio.unipd.it/), which extends the

experimental disorder observations found Disprot database to the

whole PDB, or by only considering the classes a, b, c, d, e, f from

the SCOP structural databases ([36], http://scop.mrc-lmb.cam.

ac.uk/scop/). These classes correspond to all alpha protein, all

beta protein, all alpha and beta protein (mainly parallel beta

sheet), all alpha and beta protein (mainly anti-parallel beta sheet),

multi-domain proteins, membrane and cell surface proteins and

peptides, respectively.

We obtained information on Conserved Domain(s) (CD) for

each protein sequence through the NCBI server (http://www.

ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), which has pre-com-

puted domain architectures. These pre-computed architectures

were fixed using the RPBLASTprogram (blast tools version 2.26)

with the Conserved Domain Database (version 3.1) [24].

IUPRED was used as a disorder predictor ([30,31], http://

iupred.enzim.hu/). We used the ‘‘long’’ mode (IUPRED-L) to

predict disordered segments. A probability to be disordered up to

0.5 was used to consider a position to be disordered. The ‘‘glob’’

mode (IUPRED-G) was used to predict globular domain

boundaries from the disordered positions. The ‘‘short’’ mode

was not used as it focuses on small disordered regions such as both

loops and termini tails.

We used ANCHOR to predict disorder to order transitions

([44,45] http://anchor.enzim.hu/). ANCHOR is developed from

the IUPRED program, and was used with default parameters.

Supporting Information

Figure S1 Characterization of segments with high hy-
drophobic cluster density (H2CD). Distribution of hydropho-

bic clusters relative to their length and to the number of

hydrophobic amino acids for segments assigned by CDD (A) and

predicted by SEG-HCA (H2CD) (B). Hydrophobic clusters whose

lengths are greater than 20 amino acids (right part of the figure) are

characterized by their percentages in hydrophobic amino acids,

rather than by the total number of these amino acids. The two

distributions are clearly similar and are typical of that of globular

and membrane domains, found the SCOP first classes A to F (C).

The longer and more hydrophobic clusters are also present in the

three distributions are typical of membrane-spanning domains.

(TIF)
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Figure S2 Characterization of segments with high
hydrophobic cluster density (H2CD) in the S. cerevisiae,
P. falciparum, E. coli and A. fulgidus proteomes, relative
to CD extracted from CDD. Number of large H2CD (.50

amino acids) matching a CD (white), number of CD matching a

large H2CD (.50 amino acids) (black).

(TIF)

Figure S3 Comparative analysis of the amino acid
composition in the P. falciparum and S. cerevisiae
proteomes. The relative frequencies of amino acids of P.

falciparum versus S. cerevisiae proteomes are reported in black. 1 was

substracted to each reported value, for improving readability.

Positive and negative values are associated with over- and under-

representation of the considered amino acid in the P. falciparum

proteome, respectively. The four colors are used to highlight the

frequencies observed over the whole proteins (black), in regions

not included in H2CD (red), within hydrophobic clusters in H2CD

(green) and outside hydrophobic clusters in H2CD (blue).

(TIF)

Figure S4 Correspondence between H2CD and CD.
Examples (A) of two predicted H2CD for one CD (large loops

(relative to the canonical HCA definition) are present within CD

domains) and (B) of one predicted H2CD for two distinct CD. In

the first case (A), a secondary structure lacking strong hydrophobic

amino acids (but including alanine residues instead), is considered

by SEG-HCA as a potential hinge between two distinct globular-

like regions. The same wrong prediction can be observed for very

large loops linking two regular secondary structures. In the second

situation (B), the prediction of a single H2CD is due to a too short

or too hydrophobic linker.

(TIF)

Figure S5 Comparison of H2CD and CD lengths in the
proteomes of S. cerevisiae, P. falciparum, E. coli and A.
fulgidus. The frequencies of H2CD and CD extracted from the

S. cerevisiae, E. coli and A. fulgidus proteomes are reported as a

function of their lengths.

(TIF)

Figure S6 Distribution of H2CD and CD segments
among proteins from the S. cerevisiae, P. falciparum,
E. coli and A. fulgidus proteomes. (Top) Number of CD

(white) and H2CD (black) assignments per protein. Only H2CD of

more than 50 amino acids are considered. (Bottom) Distribution of

the number of amino acids (in percentage of the total number of

amino acids within a protein) included in CD (white) and H2CD

(black) segments.

(TIF)

Software S1 SEG-HCA identifies segments with high
hydrophobic cluster density (H2CD) as deduced from
HCA approach.
(GZ)

Acknowledgments

We thank Jean-Paul Mornon for insightful developments associated with

Hydrophobic Cluster Analysis, his enthusiastic suggestions and comments.

We also thank Raphaël Guerois and Stéphane Marcand for critical reading
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