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Abstract

The importance of the large number of thin-diameter and unmyelinated axons that connect different cortical areas is
unknown. The pronounced propagation delays in these axons may prevent synchronization of cortical networks and
therefore hinder efficient information integration and processing. Yet, such global information integration across cortical
areas is vital for higher cognitive function. We hypothesized that delays in communication between cortical areas can
disrupt synchronization and therefore enhance the set of activity trajectories and computations interconnected networks
can perform. To evaluate this hypothesis, we studied the effect of long-range cortical projections with propagation delays in
interconnected large-scale cortical networks that exhibited spontaneous rhythmic activity. Long-range connections with
delays caused the emergence of metastable, spatio-temporally distinct activity states between which the networks
spontaneously transitioned. Interestingly, the observed activity patterns correspond to macroscopic network dynamics such
as globally synchronized activity, propagating wave fronts, and spiral waves that have been previously observed in
neurophysiological recordings from humans and animal models. Transient perturbations with simulated transcranial
alternating current stimulation (tACS) confirmed the multistability of the interconnected networks by switching the
networks between these metastable states. Our model thus proposes that slower long-range connections enrich the
landscape of activity states and represent a parsimonious mechanism for the emergence of multistability in cortical
networks. These results further provide a mechanistic link between the known deficits in connectivity and cortical state
dynamics in neuropsychiatric illnesses such as schizophrenia and autism, as well as suggest non-invasive brain stimulation
as an effective treatment for these illnesses.
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Introduction

Cognition emerges from the organized temporal structure of

electric activity in large, interconnected cortical networks [1–3].

The network topology is a key determinant of the types of

macroscopic activity patterns a network can generate [4–11].

Understanding this structure-function relationship provides im-

portant insight not only into normal brain function but also into

the mechanistic basis of psychiatric illnesses such as schizophrenia

and autism that likely represent ‘‘connectivity disorders’’ [12–15].

These connectivity disorders are associated with both structural

and functional impairments in connectivity [16–19]. Consequent-

ly, an understanding of the relationship between network topology

and dynamics will facilitate the development of new treatment

modalities that counteract dysfunctional network connectivity in

psychiatric illnesses.

Systematic parameterization of network topology in computa-

tional models has demonstrated that connections between random

pairs of distant, excitatory neurons within a network enhance

temporal synchronization, whereas predominantly local connec-

tivity between neighboring excitatory neurons facilitates macro-

scopic activity patterns such as oscillations and planar and spiral

waves that propagate through the network [20–22]. However,

individual cortical networks seldom act in isolation because of their

interconnectivity with other networks by means of long-range

projections (LRPs). Most studies of interconnected networks have

focused on how networks synchronize via fast LRPs, with the

exception of recent theoretical work that highlights the additional

complexity and computational abilities of networks that include

physiological delays [23–25].

Mathematical studies of the effects of delays on coupled

oscillators have predicted diverse results as a consequence of

delays. Foundational papers have found that delays between

coupled systems produce stability under certain parameters [26],

including stability of synchronization in systems of coupled

neurons [27]. Delays have also been shown to generate
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bifurcations and multistability in coupled oscillator systems [28,29]

and neural loops [30], and to give rise to bifurcations and

instability in neural field models [31,32]. Recently, multistability as

a result of delays was found in a Hopfield neural network model

[33]. This presence of multistability in such abstract models of

neurons and networks of neurons suggests that propagation delays

promote multistability. In order to bridge the gap between

abstract, theoretical models and biology, we built a large-scale,

detailed model of two interconnected cortical networks. The

spiking neuron models used in our study accurately reflected the

subthreshold dynamics of real neurons and were subject to noise

injections that mimicked the stochastic nature of neuronal

signaling. With this model, we examined the functional role of

the estimated fifty percent of connecting axons with long

propagation delays as a consequence of small axonal diameter

or a lack of myelination [34–36].

We hypothesized that slower long-range projections may enrich

overall network activity by counteracting and disrupting the

intrinsic, spontaneous dynamics of individual networks. According

to our hypothesis, slower projections provide perturbations that

are ill-timed to synchronize networks and therefore enable

different activity trajectories that individual networks are unable

to generate. To test this hypothesis, we used large-scale computer

simulations to ask what role long-range projections with propa-

gation delays may play in organizing the overall dynamics of two

interconnected cortical networks with intrinsic spontaneous

dynamics similar to isolated cortical networks in vivo [37,38]. We

found that such projections greatly enlarge the repertoire of

macroscopic activity patterns in comparison to the networks

without propagation delays and that these patterns corresponded

to metastable activity states. The interconnected networks

spontaneously transitioned between these states. We then evalu-

ated non-invasive brain stimulation (transcranial Alternating

Current stimulation, tACS) [39–41] as a tool to manipulate these

dynamics and found that both in-phase and anti-phase tACS

induced and guided state transitions. These findings are of

broad translational importance since transitions between metast-

able macroscopic activity states have recently emerged as a

fundamental organizational principle of cortical activity, the

dynamics of which are impaired in neuropsychiatric disorders

[42,43]. Our results therefore suggest a novel mechanism of

multistability in cortex and a therapeutic modality with which to

manipulate cortical dynamics.

Results

Zero Time-Lag Synchronization by LRPs without
Propagation Delays

To understand the effect of long-range projections (LRPs) on the

dynamics of two interconnected cortical networks, we built a large-

scale computational model of two networks connected by LRPs

(Fig. 1A) where each network consisted of a two-dimensional sheet

of excitatory pyramidal cells (4006400 PYs) and a matched sheet of

inhibitory interneurons (2006200 INs). The synaptic connectivity

within the two excitatory-inhibitory networks was chosen to

generate slow rhythmic activity in the absence of LRPs (Fig. S1A),

a hallmark activity pattern of isolated cortex [37,38], that was

structured by alternating epochs of activity (UP states) and

quiescence (DOWN states). As expected, adding sparse instanta-

neous (zero-delay) LRPs at the same synaptic strength as the local

PY-PY excitation (G(LRP) = 0.06, P(local) = 99%) synchronized the

activity pattern of PYs across networks (Fig. 1B: Fraction of PYs

active as a function of time; left: no LRPs; right: with LRPs; see also

Fig. S1A, sample PY membrane voltage traces).

Both with and without LRPs, UP states emerged as initially

localized ‘‘regions of initiation’’ that then expanded through the

local excitatory connectivity (circular patterns in Fig. 1C, time

snap-shots of firing rates). In the presence of LRPs, the UP states

synchronized their occurrence across the two networks (Fig. 1C,

bottom; Fig. 1D: phase-plane representation, left: no LRPs; right:

with LRPs), which increased the correlation of individual neurons

with their homologous partner in the other network (Fig. 1E,

correlation coefficients for PY membrane voltages; left: no LRPs;

right: with LRPs). The region of initiation in Network 2 (arrow in

1C) corresponded to the area of low correlation (arrow in 1E) since

the local connections within that network mostly contributed to

that region’s activity when Network 1 was in a DOWN state. The

endogenous network oscillation of the two unconnected networks

was only minimally altered by LRPs (spectral peak at 3.2 and

3.3 Hz for the two unconnected networks with peak power of

3.39e7 and 3.33e7, respectively; with LRPs: 3.3 Hz for both

networks with 3.79e7 and 3.57e7 peak power, in arbitrary units,

Fig. S1B). Therefore, LRP without propagation delays enabled the

synchronization of the intrinsic network activity states without

pronounced changes to the overall dynamics of the individual

networks. Changing the LRP from a random pattern to a

homologous configuration further enhanced inter-network syn-

chronization (Fig. S2).

LRPs with Delays Enable Emergence of Multiple Network
States

To mimic realistic delays in action potential propagation along

low-diameter and unmyelinated fibers that connect different

networks, we next added physiologically plausible delays [36] to

the LRPs such that presynaptic action potentials in one network

led to delayed postsynaptic activity in the other network

(1,2,5,10,30,and 50 msec). We ran simulations for parameterized

number and strength of LRPs (P(local): 0.95, 0.97, 0.99, 0.999;

G(LRP) = 0.015, 0.03, 0.06, 0.09, 0.12; 100 simulations per

delay value) to evaluate the effect of delays on the overall

dynamics (five simulations per parameter set with different noise

values). Because the number and strength of LRPs in the human

Author Summary

The brain mediates behavior by orchestrating the activity
of billions of neurons that communicate with each other
through electric impulses. The transmission of these action
potentials is surprisingly slow for a large fraction of these
connections. Given the importance of precise timing of
neuronal activity, the function of these slow connections
has remained a puzzle. We here used computer simula-
tions to investigate how slow connection speeds alter the
overall activity patterns of two brain networks. We found
that these connections enable the interconnected net-
works to generate distinct activity patterns such as
different types of waves of electric activity. Our results
therefore suggest that the slow transmission of electric
impulses in the brain is not a ‘‘design flaw’’ but rather plays
an important role in enabling the brain to generate a richer
set of activity patterns. The ability of the brain to switch
between different activity states is crucial to normal
cognition, and abnormalities in switching behavior are
associated with cognitive symptoms in psychiatric disor-
ders such as schizophrenia and autism. It is therefore
promising that we were able to control transitions
between different activity states with non-invasive brain
stimulation in our simulations, suggesting a novel
approach to the treatment of these illnesses.

Metastable State Dynamics in Cortical Networks
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cortex is not well-characterized, we used a range of parameters to

explore the spatio-temporal activity patterns that result from

different LRP parameter sets. In our model, P(local) values of 99%

and 99.9% resulted in approximately 30% and 3.6% of neurons

having LRPs, respectively. These numbers are similar to the LRP

numbers reported for murine cortex [44].

We clustered the simulation outputs with linkage analysis using

the peak cross-correlation value, which measures the overall

synchronization of the two PY networks (dendrograms in Fig. 2A:

0 msec and Fig. 2B: 50 msec delays, respectively). In the absence of

propagation delays, simulations were tightly linked, showing

similarity of behavior across simulations. The majority of

simulations (82%) fell into a single cluster with close to maximum

synchronization index (Fig. 2A, dark blue) with only a small

fraction exhibiting different behavior (8%, cyan). Thus, without

delays in the LRPs, the overall network behavior was very

consistent and robust. For increased delays, the relative branch

lengths within each cluster became longer and fewer simulations

were grouped with the most-synchronized cluster (Fig. 2B, 55%

dark blue, 42% cyan, 2% green, 1% black). Therefore, in

agreement with our initial hypothesis, these results demonstrate

that propagation delays increase the number of different

configurations the connected networks can occupy as a function

of the LRP parameters.

We then examined how these different synchronization patterns

impacted the intrinsic dynamics within the individual networks.

Indeed, inspection of the spatio-temporal activity profiles revealed

the occurrence of three distinct patterns, which can be classified as

network states. Typically, networks were in a rapid fire (RF) state,

with most PYs in the network firing almost simultaneously and the

network as a whole demonstrating slow oscillatory behavior

(Fig. 3A, top: pronounced peaks correspond to network-wide UP

states in PY activity pattern; bottom: consecutive time snapshots of

PY firing activity; see also Movie S1). However, the addition of

delays to the LRPs also supported two alternate forms of spatio-

temporal dynamics: slow propagating (SP) state, with regional UP

states originating in one or a few areas and slowly traversing

through the local network (Fig. 3B, top: rhythmic structure is less

apparent in network-wide activity profile due to lack of zero-lag

synchrony within the network, bottom: initial onset of UP state

morphs into a propagating, expanding wave front; see also Movie

S2); and spiral wave (SW) state, with a wave originating from

single (or occasionally multiple) rotor in a spiral pattern (Fig. 3C;

see also Movie S3).

Next, we asked how the occurrence of these three different

macroscopic network states depended on LRP delays. We found

that most interconnected networks followed an RF pattern,

especially for short LRP delays (Fig. 3D, left, relative percent of

Figure 1. Long-range projections synchronize cortical areas in large-scale computational model. (A) Network model. Each network
consists of 160,000 excitatory pyramidal neurons (PYs) and 40,000 inhibitory interneurons (INs). Synaptic connectivity: PY-PY, IN-PY: AMPA synapses;
IN-PY: GABAA synapses. PYs in both networks are mutually connected by AMPAergic long-range projections (LRPs). (B) PY activity in each network.
Left: No LRPs. Right: With LRPs. (C) Time snapshots of binned PY firing rates. Without (top) and with LRPs (bottom), Network 2 fires before Network 1;
with LRPs, UP states are synchronized. Onset site remains the same (red arrow). Color represents instantaneous firing rate. (D) Phase space plots
comparing the percentage of PYs firing in Network 1 with the percentage firing in Network 2. Trajectory close to unity line indicates synchronization
of PY activity across networks in the presence of LRPs (right). (E) Correlation coefficients between homologous PYs across networks. Area of reduced
correlation coefficients corresponds to the region of initiation of UP states in Network 2 (arrow).
doi:10.1371/journal.pcbi.1003304.g001

Metastable State Dynamics in Cortical Networks
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time spent in RF: 99.3160.24% for 0 msec delay versus

76.8862.26% for 50 msec, mean6s.e.m., Table S1). For longer

delays, the percentage of time spent in RF decreased and SP

became more prominent (Fig. 3D, middle, SP for 0 msec delay:

0.6960.24%; 21.9462.15% for 50 msec delay). Also, SW, which

never occurred in the absence of delays, increased its relative

presence with larger delays (Fig. 3D, right, 1.1960.37%, note

different scales). We then further examined if the interconnected

networks stayed in one state for the entire simulation or whether

they exhibited spontaneous transitions between these states. We

found that, in general, the networks only remained in the same

state without transitioning for short LRP delays (Fig. 3E, average

transition frequencies, 0.008860.0031 Hz for 0 msec delay;

0.13560.0134 Hz for 50 msec delay, see also Table S1).

Therefore, longer (and thus more realistic) propagation delays

increased not only the presence of other, non-RF states but also

the number of transitions between states.

In order to further evaluate the robustness of this result, we also

tested the effects of a distribution of delays. We ran two sets of

simulations, the first with delays uniformly distributed 620% of

Figure 2. LRP delays broaden the set of interaction dynamics between the two networks. Simulations clustered by maximum cross-
correlation value with linkage analysis. Phase space plots and cross-correlograms shown for all clusters (defined by 90% of full tree). Dark blue
represents clusters with the greatest magnitude of cross-correlation maxima, followed by cyan, green, and black. (A) LRP delay: 0 msec. (B) LRP delay:
50 msec. Insets: Phase space plots and cross-correlograms.
doi:10.1371/journal.pcbi.1003304.g002

Figure 3. Emergent network activity states for LRP delays. (A–C) Cortical activity states characterized by different spatio-temporal activity
patterns. Top: PY activity throughout simulation. Bottom: Time snapshots of PY activity. (A) Rapid fire state (RF): synchronized PY firing within a
network. (B) Slow propagating state (SP): Activity originates in one or a few places and slowly traverses through the network. (C) Spiral wave state
(SW): waves propagate from a central rotor in a spiral shape. (D) Percentage of time simulations spent in each state by delay, separated by network
state (RF, SP, SW from left to right). (E) Frequency of state transitions by delay. All error bars represent s.e.m.
doi:10.1371/journal.pcbi.1003304.g003

Metastable State Dynamics in Cortical Networks
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the mean and the second with delays uniformly distributed

6100% of the mean. Our results indicate that wider distributions

resulted in fewer state transitions (Fig. S3A, top: narrow

distribution, 0.098160.0104 Hz for 50 msec delay, bottom: wide

distribution, 0.069460.0091 Hz for 50 msec delay, see also Table

S2). Additionally, a broader distribution of delays resulted in less

time spent in SP (Fig. S3B). Consequently, a wider distribution of

LRP delays, which entails a greater number of shorter delays,

seems to stabilize network behavior yet does not abolish multi-

stability.

Transitions between Metastable Spatio-Temporal Activity
States

We then analyzed the transitions of individual simulations

through these metastable spatio-temporal activity patterns over

time (Fig. 4A: LRP delay = 50 msec, P(local) = 0.97,

G(LRP) = 0.06, example snapshots of PY activity from a single

simulation, time of occurrence indicated in color, SP at 0.61 and

2.25 sec, RF at 2.98 sec, SW at 4.62 sec, SP at 5.44 sec, RF at

7.65 sec; Fig. 4B: PY activity profile with times of example

snapshots indicated with arrows). Averaged across time, the

spectral power of the network exhibited a peak at the intrinsic

oscillation frequency at ,3 Hz (Fig. 4C, left). However, the

spectrogram demonstrated a slow yet pronounced modulation of

power at that intrinsic frequency over time (Fig. 4C, middle,

epochs with high power in red, dashed lines denote intrinsic

network frequency, Fig. 4C, right, power at 3 Hz over time).

These fluctuations corresponded to the occurrence of different

network states, with RF states being linked to higher power at the

intrinsic frequency (Fig. 4C, right). Correspondingly, power at the

intrinsic frequency was lower when the system was in SP and SW

states. Synaptic depression of the local excitatory coupling played

a key role in determining the effect of incoming synaptic activity

from the other network (Fig. S4).

Brain Stimulation Changes Network State
To further understand these different network states, we next

applied perturbations to probe the stability of each state.

Specifically, we simulated transcranial alternating current stimu-

lation (tACS), which has recently emerged as a promising

treatment for psychiatric and neurological illnesses because of its

hypothesized ability to selectively manipulate temporal structure of

cortical network activity [40,41,45,46]. TACS causes a weak

global perturbation of targeted cortical networks due to the low

amplitude and broad spatial spread of the weak electric field

generated by the scalp stimulation electrodes [47,48]. Therefore,

tACS may be an ideal approach to bias the overall temporal

activity structure of interconnected cortical networks.

We here used this stimulation modality to probe the dynamic

properties of the different activity states that emerged from LRPs

with propagation delays. We found that tACS at 3 Hz (close to the

endogenous frequency of the individual networks) not only

enhanced the synchronization between the two networks but

switched the two networks to the fully synchronized, RF state

(Fig. 5A, representative simulation, LRP delay 30 msec,

P(local) = 0.99, G(LRP) = 0.12; top: activity profiles; middle:

stimulation waveform; bottom: spectrograms; see also Movie S4).

Network 1 was in RF fire state before tACS onset (distinct peak in

the spectrogram at ,3 Hz) and Network 2 was in SW state (no

peak in the spectrogram due to the lack of synchrony within the

Figure 4. Spontaneous transitions between metastable cortical states. (A) Example simulation with state transitions. Left to right: SP, SP/SW,
RF, SW, SP, RF. (B) PY activity profile. Arrows correspond to time snapshots in (A). (C) Spectral power as a function of network state. Left: Time-
averaged spectrum exhibits strong peak at endogenous network frequency (fmax<3 Hz). Middle: Spectrogram shows pronounced changes in power
at fmax (dashed box). Right: Time-course of power at fmax. Colored arrows correspond to time snapshots in (A). RF exhibited highest power at fmax.
doi:10.1371/journal.pcbi.1003304.g004

Metastable State Dynamics in Cortical Networks
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individual PY network). Importantly, the enhanced, synchronized

rhythmic RF activity during stimulation was not limited to the

duration of the stimulation but rather outlasted the stimulation.

Therefore, the effect of tACS was not just a reflection of the shared

input to all PYs but rather represented an outlasting change in

activity structure. This ‘‘memory’’ of network activity, in this case

during stimulation, is the main feature of a multistable system. The

simulated tACS was an effective perturbation, enabling the

network to switch to another state (shorter, 1 sec stimulation had

the same effect, data not shown).

Interestingly, a small fraction of the simulations did not show

this enhancing effect of tACS. Rather, in these cases, tACS

switched the networks from RF to either SW or SP states (Fig. 5B,

plots same as in Fig. 5A, delay 10 msec, P(local) = 0.97,

G(LRP) = 0.06; see also Movie S5). In this simulation, the

networks were in synchronized RF state that was switched to SP

by tACS and then followed by SW at stimulation removal. To

further demonstrate that the state switching by tACS is indeed a

consequence of the LRPs, we evaluated models with no LRPs and

therefore no communication between the two networks. We found

Figure 5. Non-invasive brain stimulation demonstrates multistability of macroscopic activity in interconnected networks.
Transcranial alternating current stimulation (tACS) induces outlasting changes in cortical state. (A) Example 1: PY activity plots and spectrograms of
simulation receiving tACS. Red: tACS waveform. Network 1 was in RF at onset, which was enhanced by tACS with an outlasting effect on oscillation
power. Network 2 began in SW, which was disrupted by tACS, and switched to RF that persisted after removal of tACS. (B) Example 2: Both networks
began in RF but were disrupted by the onset of tACS. During tACS the networks exhibited SP with reduced power at 3 Hz compared to pre-onset
behavior. After tACS, both networks switched to SW. (C) Percentage of time in each state by delay before, during, and after tACS. During tACS, the
amount of spent in SP increased compared to before stimulation and was independent of delay. After tACS, time spent in SP was reduced compared
to before tACS (for 10, 30, and 50 msec delays). There was also an increased amount of SW for all delays. (D) Transition probabilities between the
network states without tACS (baseline), at the onset of tACS, and at the removal of tACS. Green numbers: Increase from baseline. Red numbers:
Decrease from baseline. At the onset of tACS, SW transitions to either RF or SP, while SP and RF had a greater likelihood of transitioning to the other
state. Once tACS was removed, SP is maintained less than before stimulation, with a greater chance of transitioning to both SW and RF. SW had a
decreased chance of transitioning to SP.
doi:10.1371/journal.pcbi.1003304.g005

Metastable State Dynamics in Cortical Networks
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little multistability before and during tACS confirming that LRPs

are important for inducing multistable states in cortical networks

(Fig. S5).

Given these distinct effects of the same stimulation protocol in

different simulations, we determined the relative occurrence of the

different states and the state transition probabilities for all

simulations (including all propagation delays, fraction of LRPs,

and strength of LRPs) as a function of tACS. In the control

condition before onset of stimulation (Fig. 5C, top row, Table S3),

the majority of simulations exhibited RF behavior with a small

fraction demonstrating SP and SW. With increasing propagation

delays, the percentage of simulations with SP behavior markedly

increased (from 0.2% for 0 msec delay to 24.2% for 50 msec

delay). Interestingly, during stimulation (Fig. 5C, middle row), we

found the highest fraction of non-RF, and in particular SP, activity

patterns in simulations with low LRP propagation delays. As a

result, tACS increased the occurrence of the SP state for short

propagation delays and decreased the occurrence of SP for longer

propagation delays. In further support that such stimulation has a

complex effect pattern, we found an increased presence of SW for

all delay values after tACS (Fig. 5C, bottom row).

Overall, the state-dependent transition probabilities in the

absence of tACS, at tACS onset, and at tACS removal (Fig. 5D)

demonstrated that tACS effectively switched activity state, with the

most prominent effects being elimination of SP (86.89% transition

probability from SP to RF at onset compared to 43.22% in the

absence of stimulation) and yet the same stimulation induced a

switch from RF to SP in a subset of simulations (17.53% transition

probability from RF to SP, compared to 1.8% in the absence of

tACS). In turn, if the stimulation succeeded in inducing a

transition to RF, the removal of stimulation failed to introduce a

state transition back. Specifically, the transition probabilities out of

the RF state closely matched the overall transition probabilities in

the absence of stimulation (0.09% for RF to SW and 1.74% for RF

to SP at stimulation removal in comparison to 0.05% for RF to

SW and 1.85% for RF to SP).

We then compared how networks behaved together and found

that in the absence of stimulation, both networks were in the RF

state for the majority of simulations (Fig. S6, left, 99.6660.33% for

0 msec delay, 78.6863.70% for 50 msec delay). With stimulation,

there was a small decrease in the percent of time where both PY

networks were in RF (81.5663.27% for 0 msec delay) with the

exception of the 50 msec delay simulations (88.8162.16%, see also

Table S4), where the stimulation increased the likelihood of both

networks being in RF. In contrast, both SP states were often only

found in one of the two networks at a time for delays up to 10 msec

(Fig. S6, middle, 0.0060.00% for 0 msec delay, see also Table S4).

For longer delays, simultaneous SP in both networks became

much more prominent (17.9463.50% and 42.7464.59% for 30

and 50 msec delays, respectively). Similarly, SW never occurred in

both PY networks simultaneously before stimulation

(0.00%60.00% for all delay values). Interestingly, during and

after stimulation, a subset of simulations exhibited simultaneous

SW in both networks, a pattern that never occurred without

stimulation (Fig. S6, right). We further examined two simulations

that represented peculiarities in our dataset due to their sustained

anti-phase locking. Both simulations responded to tACS by

switching to (near) zero-lag synchronization that was maintained

after stimulation removal (Fig. S7).

Persistent Oscillation Enhancement by tACS through
State Switching

Having established that tACS affects the spatio-temporal

activity of two interconnected networks, we next quantified the

effect of tACS on the power of the network activity at the

stimulation frequency (3 Hz). First, we looked at the effectiveness

of tACS to entrain two networks during stimulation by comparing

the power during stimulation to the power before stimulation. We

found that tACS enhanced the power at 3 Hz of both PY networks

during stimulation for most simulations, indicating its ability to

entrain networks (Fig. 6A, logarithmic enhancement ratio, 88.1%

of all simulations in top right quadrant). The correlation between

the enhancement in each of the two networks varied with LRP

delay, but with no monotonic relationship between delays (Fig. 6D,

left). Next, we analyzed the outlasting effect of tACS after

stimulation had stopped. After tACS, the outlasting enhancement

was significantly correlated between the two networks, and again

with no monotonic relationship between correlation and propa-

gation delay (Fig. 6B, 58.6% of all simulation in top right quadrant

and 6D, middle).Thus, tACS can enhance the power of networks

at their intrinsic frequencies, an effect that lasts beyond the

duration of stimulation. In addition, this enhancement lacks a

direct relationship with the values of the propagation delays

between the two networks.

To investigate how this outlasting effect of tACS related to the

entrainment during stimulation, we compared the enhancement of

power at 3 Hz during stimulation to the enhancement of power

after stimulation (Fig. 6C, 66.9% of all simulations exhibited

enhancement both during and after stimulation). We found that

the instantaneous and outlasting effects were tightly correlated,

showing that tACS directly increased 3 Hz power (Fig. 6D, right).

The cross-correlation peak amplitude and offset, which indicate

similarity of behavior and simultaneity of behavior respectively,

confirmed these outlasting effects (Fig. 6E, before: 2 sec window

before stimulation onset; during: 4 sec of stimulation; after: 2 sec

window after stimulation, normalized cross-correlation). With

stimulation, the cross-correlation peak was increased (bright

yellow), showing that the two networks demonstrate similar

behavior during tACS. The phase offset between the two networks

was reduced by tACS, an effect that persisted after tACS ended.

These effects, together with the outlasting increase in power, show

that the two networks were able to sustain a modified network

state after tACS. Thus, tACS has an enduring effect on connected

networks by entraining the two networks together and increasing

their power at the stimulation frequency.

tACS Disruption and Network Dynamics
Although tACS typically entrained networks to a 3 Hz RF state,

occasionally it had an opposite effect by disrupting RF during

tACS and causing it to enter SW after tACS. We examined these

network dynamics to determine which factors influenced such

disruption. Networks that ended in SW after tACS were most

often in SP or SW during tACS and only very rarely in RF

(Fig. 7A). Consequently, we considered networks in SW and SP

during tACS to both be indicators of stimulation-induced state

disruption.

When looking at PY activity before tACS, networks in RF

during tACS had no specific pattern of activity while networks in

SP or SW had a clear temporal structure in their PY activity prior

to the onset of tACS (Fig. 7B, left), indicating that the excitatory

state of the network was a factor in the response to tACS. The

mean PY activity at tACS onset (t = 2.0) showed that networks in

SP and SW during tACS had activity levels at onset compared to

networks that entered or remained in RF (Fig. 7B, right). This

trend suggests that networks in an excited state are more likely to

break from RF upon external stimulation. To verify this

conjecture, we measured the depression coefficient of each

network upon tACS onset (D; lower values indicate greater

Metastable State Dynamics in Cortical Networks
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synaptic depression). The depression coefficient was indeed lower

for networks that entered SW during tACS, and the normalized

variance of D was greater for networks in SP or SW during tACS

(Fig. S8). Thus, increased synaptic depression, along with a wider

variance of depression across the network, predisposed networks

towards non-RF behavior, indicating a difficulty in responding to

incoming excitation from the other network during a currently- or

recently-excited state.

Along with the above described network excitation, however,

other factors also facilitated switching to a non-RF state during

tACS. Higher LRP connectivity (i.e. lower P(local)) and lower LRP

conductance (G(LRP)) both made networks more likely to enter a

non-RF state, and these effects were increased with lower delays

(Fig. 7C). After tACS, however, networks were more likely to enter

SW with lower LRP connectivity and lower conductance, with no

clear effect of delay (Fig. 7D). Consequently, lower levels of LRP

conductance were more likely to disrupt the RF state while higher

levels of LRP conductance generally promoted entrainment and

the presence of the RF state. The paradoxical effect of connectivity

parameter P(local) indicates that the effect of network topology was

altered by stimulation.

The relative prominence of SW after removal of tACS led us to

measure the stability of the SW state. We first examined stability of

SW in the absence of tACS and found that SW was a metastable

state (Fig. S9A). Then we examined longer runs of simulations

where at least one network switched to SW after tACS (Fig. S9B).

As networks remained in SW for longer periods of time after

removal of tACS, the likelihood of them switching from SW

decreased, with 28.95% of networks remaining in SW for the

entire extended simulation time. Simulations with lower LRP

connectivity had longer SW persistence, while LRP conductance

and delay had no effect on persistence (Fig. S9C). This effect of

connectivity corresponds to that found in Fig. 7D, where less-

connected networks are more likely to demonstrate SW behavior.

These findings further confirm that SW is a metastable state whose

stability is affected by network structure.

Antiphase tACS Interferes with Synchronization
To further probe the mechanisms behind state disruption by

tACS, we next simulated antiphase tACS using the same

parameters but with the stimulation signal for the two networks

phase-shifted by 180 degrees (Fig. 8A). Such stimulation has

recently been used in a human tACS study to disrupt phase

synchronization yet without direct experimental demonstration of

a network effect of out-of-phase tACS [46]. During stimulation,

correlation between the activity of the two networks was disrupted,

an effect that persisted after removal of tACS (Fig. 8B, top).

However, while the networks were out of phase during stimula-

tion, they returned to their original, reduced phase offset after

tACS removal (Fig. 8B, bottom). Consequently, antiphase tACS

disrupted the dynamics of two interconnected networks but the

temporal lag induced by tACS did not persist after tACS removal.

When examining the spatio-temporal activity patterns, we found

that networks demonstrated three behaviors during antiphase

Figure 6. Stimulation enhances endogenous oscillations. (A) Increase in oscillation power by tACS across the two networks. (B) Outlasting
effect of stimulation across the two networks. (C) Change in power during tACS versus change in power after tACS for each network over all
simulations. Change in power after tACS is correlated to the change in power during tACS, demonstrating an outlasting effect of stimulation. (D)
Correlation coefficients by delay for each plot in A–C (significant for all delays, p,0.05). (E) Heat map of the mean maximum cross-correlation value
and the offset of that value demonstrating the phase shift before, during, and after tACS. The maximum cross-correlation values show that tACS
synchronized the two connected networks. The phase offset values show that the network were more phase-synchronized during tACS, an effect that
persisted after the removal of tACS. Yellow indicates tighter coupling. Gray dotted lines represent the unity line; error bars represent 95% confidence
intervals.
doi:10.1371/journal.pcbi.1003304.g006
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tACS, which were grouped by k-means clustering of their cross-

correlograms. ‘‘Strong antiphase’’ behavior occurred when the

two networks were individually entrained by their respective

stimulation (Fig. 8C; Delay = 10 msec, P(local) = 0.99;

G(LRP) = 0.06). ‘‘Interspersed weak firing’’ was a result of

networks firing in response to both their stimulation as well as

the excitation from the other network, resulting in a series of

strong and weak UP states (Fig. 8D; Delay = 10 msec; P(lo-

cal) = 0.99; G(LRP) = 0.09). The third behavior, ‘‘breaking from

RF’’, occurred also with in-phase tACS in the form of SP and SW

states (Fig. 8E; Delay = 1 msec, P(local) = 0.99, G(LRP) = 0.09; see

Fig. 5B). In this case, one or both of the networks is no longer in

RF in response to stimulation.

By examining the effects of parameters on behavior during

antiphase tACS, the causes of RF disruption can be more

thoroughly uncovered. Higher LRP connectivity (i.e. low P(local))

and higher LRP conductance made interspersed weak firing more

likely (Fig. 8F; see Table S5 for all values). This pattern is most likely

mediated by the synaptic input from the other network during its

UP state. Delays had a minimal effect on behavior during antiphase

tACS. Low LRP connectivity most strongly predisposed the

networks to break from RF, the converse of what we found during

in-phase tACS. Interestingly, the lower LRP connectivity also

promoted the persistence of SW after in-phase tACS.

Finally, an interesting behavior arose during antiphase stimu-

lation where the two networks entered a high-frequency (.8 Hz)

antiphase state (Fig. S10). This state occurred for all simulations

with parameters of Delay = 50 msec, P(local) = 0.95,

G(LRP) = 0.12 and for 40% of simulations with Delay = 50 msec,

P(local) = 0.95, G(LRP) = 0.09, but no others, and persisted

beyond the removal of tACS. This unique behavior further

demonstrates the multistability of interconnected cortical networks

and the ability of tACS to change network state with outlasting

effects.

Discussion

We used simulations of two large, interconnected cortical

networks to study how LRPs that connect the two networks affect

the overall macroscopic dynamics. We found that introducing

physiologically plausible delays to the LRPs greatly enhanced the

repertoire of emergent dynamics, measured not only by synchro-

nization between the two networks but also by the intrinsic spatio-

temporal dynamics. Our results therefore suggest small-diameter

and unmyelinated projection axons with propagation delays play

an important role in enriching the landscape of cortical activity

states. This finding contrasts with the traditionally assumed role of

long-range connections to enable zero-lag synchrony between

different cortical areas [49] and—to our knowledge—for the first

Figure 7. Mechanisms of SW behavior after tACS. (A) Distribution of behavior during tACS for simulations that ended in SW. Most SW
simulations were in SP during tACS. (B) Left: Mean PY activity for the first 2.5 seconds of all simulations, grouped by behavior during tACS.
Simulations that entered SP or SW during tACS had similar behavior before tACS. Right: Mean PY activity at onset of tACS (t = 2.0). Simulations that
entered SP and SW had greater activity at onset than simulations in RF. Error bars indicate s.e.m. (C) Influence of parameters on behavior during tACS.
Left: LRP conductance and connectivity. Middle: LRP conductance and delay. Right: LRP connectivity and delay. Weak conductance and high LRP
connectivity (low P(local)) predisposed a network against RF during tACS. This effect was enhanced with shorter delays. (D) Influence of parameters
on behavior after tACS. Heat maps same as above. Weak LRP conductance and weak connectivity made a network more likely to enter SW after tACS,
with no pronounced effect of delay.
doi:10.1371/journal.pcbi.1003304.g007
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Figure 8. Antiphase tACS induced new behaviors during stimulation. (A) Schematic of antiphase stimulation. (B) Top: Maximum cross-
correlation value, indicating similarity of network behavior. Antiphase tACS disrupts network behavior. Bottom: Offset of maximum cross-correlation
value indicating phase difference between two networks. Phase difference increased greatly during antiphase tACS but returned to near-baseline
levels after removal. (C) Example of strong antiphase tACS behavior. Left: cross-correlogram. Right: PY activity. Both networks fire at 3 Hz during tACS
but in antiphase. (D) Example of interspersed weak firing tACS behavior. Networks have strong out-of-phase peaks, but weaker peaks are in phase
with the other network. (E) Example of breaking from RF behavior. Network 2 was disrupted by tACS and entered SW after tACS. (F) Effects of
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time defines a functional role for the large number of slower long-

range axons in cortex. In addition, we found that simulated non-

invasive brain stimulation can switch the network between these

activity states, pointing to its potential applicability for treatment

of network-based illnesses.

Our study exclusively utilized computer simulations and

therefore has the same caveats as any modeling study. First, the

level of abstraction for the model requires consideration. We used

computationally efficient, yet biologically plausible model neurons

since we were interested in studying the effect of connectivity

without confounding the results with the effects of conductance-

based, Hodgkin-Huxley-style neuron models, which could model

more sophisticated intrinsic cellular dynamics. A reduced model

investigating the bifurcations involved in state transitions would

provide further insight into network dynamics, although for this

study it would reduce the applicability of our findings to the

development of novel brain stimulation paradigms. Second, any

biologically plausible finding in a computer simulation needs to

withstand tests for reasonable robustness to parameter variations.

The entire data set presented in this study was based on multiple

runs of every simulation with different instantiations of the

randomized variables (such as intrinsic excitability and target

neurons for global random connections). Third, we believe that

the value of most modeling studies can be readily assessed by the

type of predictions they make that can then guide subsequent

research, whether it be further computational work, wet lab bench

studies, or even human preclinical trials. We therefore use the

remainder of the discussion section to outline and discuss what we

think are the implications and predictions of our results for the

study of brain stimulation and network deficits in diseases with

altered CNS connectivity such as schizophrenia, autism, and

multiple sclerosis.

Brain Stimulation
Brain stimulation, whether through implanted electrodes such

as in deep brain stimulation [50] or through non-invasive

application of electric [51] or magnetic fields [52], has established

itself as a promising approach for the treatment of a large and

growing number of neurological and psychiatric disorders for

which only limited pharmacological treatments exist. However,

the underlying mechanisms of most of the stimulation paradigms

remain hotly debated and little clarity exists with regard to the

interaction dynamics between stimulation-induced perturbations

and intrinsic network dynamics. We here used simulated

transcranial Alternating Current stimulation (tACS) to test if a

shared common input to both networks in the form of a weak

global perturbation of the PY membrane voltages can synchronize

the networks. Based on previous modeling and in vitro work

[48,53,54], we used stimulation waveforms that were matched in

frequency to the intrinsic oscillation frequency of the unconnected

networks. Interestingly, not only did such 3 Hz sine-wave

transcranial current stimulation (tACS) switch the network to a

synchronized, rapid fire state, but also—and perhaps more

importantly—the network remained in that state at the removal

of stimulation in a majority of the simulations. These results

suggest that tACS can affect cortical networks by inducing a switch

to a qualitatively different, more synchronized network state,

which is stable and therefore outlasts the application of the brain

stimulation. The amount of time this synchronized state persists

after stimulation was not comprehensively mapped. Future work

should address which parameters contribute to the persistence of

synchronization between two networks; such work can then help

to improve the design of non-invasive brain stimulation as a

clinical treatment for disorders with impaired synchronization.

Our study suggests that rather than reorganizing synaptic

strength, tACS can induce a switch between different macroscopic

activity states that are part of a repertoire of cortical states

mediated by LRPs with propagation delays. Interestingly, we also

found that the same stimulation paradigm had the opposite effect

in a (small) subset of simulations where the stimulation reduced the

synchronization; these results demonstrate that (1) the ongoing

network dynamics (i.e. network state) and the underlying network

topology determine the response to brain stimulation and (2) a

global stimulus does not necessarily enhance synchronization.

Antiphase tACS, a stimulus designed to disrupt synchronization,

caused a set of new behaviors during stimulation, but in most cases

failed to create antiphase structure between the networks as an

outlasting effect. Consequently, the outlasting effects of stimulation

are dependent on the phase of stimulation as well as the intrinsic

network structure.

As part of a computational model, conclusions drawn from our

simulations of tACS are limited by the size of our networks and the

fact that each PY receives the same magnitude of stimulation;

however, simulated variance of tACS current amplitude has

previously been found to have no effect on network response [55].

While it may be necessary to vary the strength of tACS current

and electrode size to produce the same effects with patients, our

simulations reveal that tACS has the ability to affect network

dynamics by introducing periodic excitability into a system. The

dependence of the overall effect on current network state at

stimulation onset further demonstrates the potential of adaptive,

feedback brain stimulation [56,57] where the stimulation wave-

form is dynamically adjusted to the ongoing brain activity.

CNS Diseases with Altered Connectivity
Pathological changes in connectivity in the central nervous

system (CNS) are a hallmark of many neurological and psychiatric

illnesses. For example, schizophrenia is often called a connectivity

disorder due to the findings of aberrations in white matter and lack

of functional connectivity in both functional MRI and electroen-

cephalogram (EEG) studies [13,15,43,58–69]. We here tested a

range of physiologically plausible propagation delays and coupling

strengths and found that the occurrence of macroscopic dynamics

which lacked synchrony depended on the LRP propagation delays

in the presence of slow endogenous rhythmic activity in the

individual networks. Therefore, our results predict that disease

state and progression can be assayed by determining the structure

of global state transitions during awake resting or sleeping, two

behavioral states where slow rhythmic activity dominates the

spontaneous activity patterns [70,71]. Furthermore, CNS disor-

ders such as multiple sclerosis [72], where the integrity of the white

matter tracts are affected, and epilepsy, which is associated with

abnormal cortical oscillations [73–75], may lead to similar changes

to the landscape of cortical activity states. A spatio-temporal

pattern similar to our SP state was recently found to occur in

human seizures [76], suggesting that the states in our simulations

have biological correlates with the potential to be pathological.

Accordingly, these cortical activity states represent a promising

target for rational design of (non-)invasive brain stimulation as

evaluated in this study.

parameters on antiphase tACS behavior. Higher connectivity and conductances made interspersed weak firing more likely, while lower LRP
connectivity and conductances increased the amount of strong antiphase and breaking from RF behavior. Delays only had a minor effect.
doi:10.1371/journal.pcbi.1003304.g008
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Conclusion and Outlook
We used computer simulations of large-scale, interconnected

cortical networks in this study and found that long-range

projections with physiological delays can play an unanticipated

role in generating multistable network dynamics in cortex.

Therefore, the so far neglected slow connecting fibers between

cortical areas may not be a ‘‘flawed design’’ that prevents large-

scale synchronization of cortical areas but rather enables the

emergence of additional, qualitatively different network states that

likely serve different neural computations. The ability of non-

invasive brain stimulation to change these network states points to

a promising treatment option for neuropsychiatric disorders

involving abnormal connectivity and network dynamics.

Methods

Model Neurons
We used the Izhikevich model [6,77,78] of pyramidal cells (PYs)

and inhibitory interneurons (INs) for the computational simula-

tions in this study. The Izhikevich model provides a very good

compromise between biological plausibility and computational

efficiency. Each model neuron consists of only two coupled

differential equations with four parameters a, b, c, and d that

determine the intrinsic dynamics. We used an Euler solver with a

step width of Dt = 0.1 msec such that the update rule at every time-

step of the stimulation to compute the new value of the membrane

potential V9 is:

V 0~VzDt(0:04V2z5Vz140{uzItACSzINoise{

GEX (V{EAMPA){GIN (V{EGABA))

u’~uza(bV{u)

if V§30, then
V~c

u~uzd

�

GEX ~
X

gEX and GIN~
X

gIN

where V is the membrane voltage at the previous time-step,

EAMPA = 0 mV is the excitatory reversal potential (AMPA),

EGABA = 280 mV is the inhibitory reversal potential (GABAA),

GEX and GIN represent the sums of all afferent excitatory (gPY) and

inhibitory (gIN) conductances, ItACS and INoise are current

injections to model transcranial alternating current stimulation

(tACS) and to cause spontaneous background noise, and u is the

slow recovery variable.

For PYs, parameters a (recovery time-scale) and b (recovery

sensitivity) were set to 0.02 and 0.2, respectively. We modeled

regular spiking, intrinsically bursting, and chattering PY cells by

setting the reset potential parameter, c, to values from 265 to

250 mV, and the recovery after an action potential, d, to values

from 6 to 8. All values were drawn from generalized Pareto

distributions (m = 250, s = 230, j = 22, median = 261.26 mV

for parameter c; m = 6, s = 4, j = 22, median = 7.50 for parameter

d). These distributions helped to bias the parameter values such

that regular spiking cells were the most frequent PY cell type. For

the INs, the parameters c and d were set to 265 mV and 2,

respectively. To model both fast and low-threshold spiking

neurons, parameters a and b were drawn from uniform

distributions (0.02 to 0.1 and 0.2 to 0.25, respectively).

Model of Synaptic Dynamics
Synapses were model by conductances that were updated with a

step in case of a presynaptic action potential and that were subject

to exponential decay otherwise. All synapses of a given type were

lumped together into a single synapse to increase computational

efficiency of the simulations [79]. The respective update rules for

the conductances were:

G’PY ~GPY
:e

{
Dtpsp
tPY , G’IN~GIN

:e
{
Dtpsp
tIN

where GEX and GIN were the corresponding total conductances at

the occurrence of the last presynaptic action potential, tEX = 2

msec and tIN = 3 msec were the synaptic decay time-constants,

and Dtpsp was the time elapsed since the last presynaptic action

potential. PY-PY connections exhibited short-term synaptic

depression [80] with a single depression variable D (D = 1: no

depression, D = 0: complete depression) that exhibited an expo-

nential recovery time-course (tD = 300 msec). PY-PY synaptic gPY-

PY strength was calculated as:

gPY{PY ~DGPY{PY

where GPY-PY denoted the synaptic strength and D was updated for

each presynaptic action potential for all PY-PY synapses:

if V§30, then D’~Dr

where r = 0.6 represented the fraction of synaptic resources

available immediately after vesicle release caused by an action

potential.

Network Topology
All simulations in this study consisted of two connected

networks. Each network consisted of two layers, a PY network

(4006400 model neurons arranged on a two-dimensional grid)

and an IN network (2006200 model neurons arranged on a grid).

The large number of neurons was motivated by the fact that tACS

is likely to act as a global weak perturbation similar to the

endogenous electric field [81]. Each PY network exhibited sparse

local connectivity where each PY cell connected to a random

30%-subset of 120 cells in its surrounding 11611 grid of PY cells

(GPY-PY = 0.06, no autapses). Synaptic inhibition had global

random connectivity both for PY-IN excitation (GPY-IN = 0.0001,

25 PY-IN connections per PY) and feedback IN-PY inhibition

(GPY-IN = 0.0002, 49 IN-PY per IN). The global connectivity

scheme for synaptic inhibition was chosen such that inhibition

provided an overall activity-dependent reduction of PY firing rate

without any extra spatial structure. The synaptic connectivity was

chosen such that a 3 Hz endogenous oscillation occurred in the

absence of long-range projections (LRPs). LRPs were configured

by replacing a defined (small) fraction of local PY-PY connections

with excitatory projections to random PYs in the other network

(0.1, 1, 3, or 5% of local PY-PY connections). We evaluated the

effect of a range of propagation delays for these LRPs (0, 1, 2, 5,

10, 30, and 50 msec).

Non-synaptic Input Currents
All cells received a current injection INoise that was the sum of (1)

a constant current injection ranging from 0 to 1.5 (generalized

Pareto distribution with ı̀ = 1, ó = 23, ı̂ = 23, median = 0.1895) to

create spontaneously firing PYs and (2) a variable current with a

random value drawn at every time-step (uniform distribution from
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0 to 2 and 0 to 1.5 for PYs and INs, respectively). Non-invasive

brain stimulation with transcranial Alternating Current stimula-

tion (tACS) was modeled with a small current injection (ItACS,

amplitude 1.0 corresponding to 10 pA, resulting in average in a

membrane voltage depolarization of about 100 mV) into PY cells

that are susceptible to applied electric fields because of their

elongated somato-dendritic axes [82–84].

Model of Transcranial Alternating Current Stimulation
(tACS)

The effect of the electric field resulting from tACS was modeled

by injecting a small current into all PYs [81]. The amplitude

(10 pA) was chosen such that the corresponding change of the

membrane voltage was about 100 mV. INs were not stimulated

since they hardly respond to weak electric fields due to their

morphology [82]. Stimulation frequency was 3 Hz to match

endogenous oscillation frequency of networks.

Data Analysis
Network activity profiles were determined by the fraction of PY

neurons that were firing over time. Both normalized cross-

correlations and spectrograms were based on these activity profiles

by network. Spectrograms were computed by Wavelet transfor-

mation with Morlet wavelets (0.5 to 10 Hz in 0.5 Hz step-width).

Macroscopic spatio-temporal activity states were distinguished by

the median PY activity peaks (percent PYs firing) in 1 sec bins.

Peaks (UP states) were extracted with the Matlab findpeaks

function (threshold: 1% of maximum, dead time 50 msec,

Mathworks, Natwick, MA). Rapid fire (RF) was assigned to peak

values .60% of total number of PYs in the network, slow

propagating (SP) was assigned to values 15–60%, and spiral wave

(SW) was assigned to values ,15%. Relative time spent in

different states was determined over all simulations with the two

networks considered together. State-dependent transition proba-

bilities were determined for a 1 sec window before stimulation

onset, 1 sec after stimulation onset, and last 1 sec window of

simulation after stimulation.

Statistical Analysis
Data are reported as mean6s.e.m. Significance of correlations

was determined by corrcoef function in Matlab with 0.05 as

significance cut-off.

Supporting Information

Figure S1 Long-range projections synchronized two cortical

networks. (A) Traces of two PYs with LRP conductance of 0 and

0.06. With non-zero LRPs, UP states in PYs synchronize. (B)

Power spectrum of PY network activity (red: G(LRP) = 0; blue:

G(LRP) = 0.06). LRPs had little effect on overall structure of

spectrum but modestly increased peak power.

(PNG)

Figure S2 Comparison of homologous and non-homologous

LRPs (zero delay). (A) Activity snapshots. (B) Phase-plane

representation. (C) Correlations between the two PY networks.

(D–F) Same representation for non-homologous LRPs.

(PNG)

Figure S3 Wider variance of delays stabilized networks. Top:

Narrow distribution (mean 620%). Bottom: Wide distribution

(mean 6100%). (A) Frequency of state transitions. (B) State

distribution of networks. Wider delays result in fewer transitions

and a reduced occurrence of non-RF behavior.

(PNG)

Figure S4 Mechanisms of state transitions. (A) IN activity

plots; dashed lines represent example UP states in Network 1.

(B) Top and middle: Time snapshots of PY activity in

Network 1 and Network 2 for the UP states indicated in (A).

Bottom: Synaptic depression variable D (D = 1: synapses not

depressed, D = 0 synapses fully depressed). When Network 2

went through a transition towards decreased activity (a, c, e),

UP states of Network 1 occurred during a period of strong

synaptic depression in Network 2. When Network 2

transitioned towards increased activity (b, d, f, g), the effect

of the input of Network 1 was increased due to the reduced

synaptic depression allowing more neurons in Network 2 to

fire.

(PNG)

Figure S5 Behavior during tACS in unconnected networks.

Distribution of behavior for two networks during tACS with

no LRPs (P(local) = 1). Left: Before tACS. Middle: During

tACS. Right: After tACS. Spiral waves can still be initiated

by tACS even without LRPs, but they are not seen before

tACS.

(PNG)

Figure S6 Percentage of time both networks were in the same

state before, during, and after tACS. Left: tACS equalized the time

spent in RF across delays. Middle: tACS also increased the

likelihood that both networks were in a SP state. Right: tACS

biased networks towards simultaneously being in SW (only seen

during and after tACS). Values are normalized by the percentage

of time spent in each state overall.

(PNG)

Figure S7 tACS abolished antiphase synchronization. (A)

Example of slow antiphase coupling. Upper left: Cross-correlo-

grams between networks before, during, and after tACS. Lower

left: Network 2 displayed a state transition before entraining with

Network 1 during stimulation. Right: Increased power at 3 Hz in

both networks due to tACS. (B) Example of fast antiphase coupling

suppressed by tACS. Same plots as in (A).

(PNG)

Figure S8 Synaptic depression influenced tACS behavior. Left:

Depression coefficient at onset of tACS, grouped by behavior

during tACS. Lower values indicate more synaptic depression;

higher values indicate less synaptic depression. Networks

entering SW during tACS had more strongly depressed networks

than networks entering RF or SP. Right: Standard deviation of

the depression coefficient normalized by the mean. Lower

variance of depression correlates with stronger entrainment to

tACS.

(PNG)

Figure S9 Persistence of spiral waves. (A) The three simulations

that had constant SW behavior during original simulations,

extended for another 7 seconds. One simulation (top) remained

in SW except for a brief switch to SP, while the other two

simulations (middle and bottom) stayed in SW for the entire time.

(B) Persistence of SW in networks that ended with SW after tACS.

Simulations ran for another 7 seconds. X-axis indicates the

number of seconds SW persisted in the extended period. Many

networks leave SW, but 22 networks (28.95%) remain in SW for

the entire extended period. (C) Effects of parameters on SW

persistence. Lower connectivity (left) correlates with longer

persistence of SW. Conductance (middle) and delays (right) have

no effect.

(PNG)
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Figure S10 Antiphase induction of high-frequency behavior

post-tACS. (A) PY activity during antiphase tACS. During

stimulation, the network switches from in-phase ,3 Hz firing to

antiphase firing at 8.6 Hz, persisting upon removal of tACS. (B)

Spectrogram shows change from 3 Hz firing to rapid high-

frequency firing in both networks.

(PNG)

Movie S1 Example of rapid fire state. PY activity for two

networks is shown in color, indicating the instantaneous firing rate.

Most of each network became excited rapidly. Parameters:

Delay = 0 msec, P(local) = 0.99, G(LRP) = 0.06.

(AVI)

Movie S2 Example of slow propagating state. PY activity for two

networks in SP for entire simulation. PY activity spread through

the network by moving to proximal areas. Parameters: Delay = 50

msec, P(local) = 0.95, G(LRP) = 0.03.

(AVI)

Movie S3 Example of spiral wave state. Network 1 was in SW

for entire simulation while Network 2 was in RF for whole

simulation. Spiral wave began with central rotor from which PY

activity propagated, forming spiral pattern. Parameters: De-

lay = 10 msec, P(local) = 0.99, G(LRP) = 0.015.

(AVI)

Movie S4 tACS entrained networks. Simulation presented in

Fig. 5A. Network 1 began in RF while Network 2 demonstrated

SW. Upon tACS (bottom, red) the two networks entrained to

tACS and Network 2 switched to RF. Both networks remained in

RF after removal of tACS. Parameters: Delay = 30 msec,

P(local) = 0.99, G(LRP) = 0.12.

(AVI)

Movie S5 tACS disrupted networks. Simulation presented in

Fig. 5B. Both networks began in RF state. Upon tACS (bottom,

red) RF was disrupted, creating a mixed SP/SW state. The

networks settled in SW upon removal of tACS. Parameters:

Delay = 10 msec, P(local) = 0.97, G(LRP) = 0.06.

(AVI)

Table S1 Multistability as a function of propagation delays

(Figure 3D and 3E).

(XLSX)

Table S2 Distributed delays reduced state transitions (Figure

S3).

(XLSX)

Table S3 Correlation (R2) of dynamics between the two

interconnected networks (Figure 6D).

(XLSX)

Table S4 Modulation of state dynamics by simulated tACS as a

function of propagation delays (Figure S6C).

(XLSX)

Table S5 Effects of simulation parameters on tACS behavior.

(XLSX)

Text S1 Synaptic depression contributes to state dynamics. An

analysis of the effect of synaptic depression within a network on its

response to input from the network connected to it.

(DOCX)
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