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Abstract
Objectives—During cardiopulmonary resuscitation (CPR), adequate coronary perfusion pressure
(CPP) is essential for establishing return of spontaneous circulation. Current American Heart
Association (AHA) guidelines recommend standardized interval administration of epinephrine for
patients in cardiac arrest. The objective of this study was to compare short-term survival using a
hemodynamic directed resuscitation strategy versus chest compression depth directed CPR in a
porcine model of cardiac arrest.

Design—Randomized interventional study

Setting—Preclinical animal laboratory

Subjects—Twenty four female 3-month old swine

Interventions / Measurements—After 7 minutes of ventricular fibrillation, pigs were
randomized to receive one of three resuscitation strategies: 1) Hemodynamic Directed Care
(CPP-20): chest compressions (CCs) with depth titrated to a target systolic blood pressure of 100
mmHg and titration of vasopressors to maintain CPP > 20 mmHg; 2) Depth 33mm(D33): target
CC depth of 33mm with standard AHA epinephrine dosing; or 3) Depth 51mm(D51): target CC
depth of 51mm with standard AHA epinephrine dosing. All animals received manual CPR guided
by audiovisual feedback for 10 minutes before first shock.
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Main Results—45-minute survival was higher in the CPP-20 group (8/8) compared to D33 (1/8)
or D51 (3/8) groups; p=0.002. Coronary perfusion pressures were higher in the CPP-20 group
compared to D33 (p=0.004) and D51 (p=0.006), and in survivors compared to non-survivors
(p<0.01). Total epinephrine dosing and defibrillation attempts were not different.

Conclusions—Hemodynamic directed resuscitation targeting CPPs > 20 mmHg during 10
minutes of CPR for VF cardiac arrest improves short-term survival, when compared to
resuscitation with depth of compressions guided to 33mm or 51mm and standard AHA
vasopressor dosing.

Keywords
cardiac arrest; cardiopulmonary resuscitation; coronary perfusion pressure; ventricular fibrillation;
swine

Introduction
Successful cardiopulmonary resuscitation (CPR) is dependent on adequate myocardial blood
flow [1-4]. Currently, guidelines for the treatment of cardiac arrest assume that all patients
can be treated with a uniform chest compression (CC) depth despite a paucity of data
indicating that a specific depth consistently provides adequate myocardial blood flow [5, 6].
A therapeutic strategy to titrate compression depth and vasopressor dosing to optimize
physiological conditions for improved myocardial blood flow would presumably improve
outcomes following cardiac arrest.

During CPR, coronary perfusion pressure (CPP), the aortic pressure minus the right atrial
pressure during the relaxation (“diastolic”) phase of CPR, is the primary determinant of
myocardial blood flow [1, 7, 8]. Both human and animal investigations have demonstrated a
strong association between CPP and resuscitation outcomes [2, 3, 9-11]. Failure to generate
a CPP of at least 15 – 20 mmHg during CPR is rarely associated with a successful
resuscitation [1, 3, 10]. Importantly, many patients with in-hospital cardiac arrests are in
intensive care units and have invasive hemodynamic monitoring [12, 13], so a hemodynamic
directed CPR strategy targeted to attain an adequate CPP is feasible.

This randomized laboratory investigation compared short-term survival with a
hemodynamic directed resuscitation strategy intended to attain CPPs > 20 mmHg (CPP-20)
versus absolute depth-guided CPR in a porcine model of ventricular fibrillation (VF) cardiac
arrest. We further subdivided the depth-guided CPR into two groups: one with CC depth
targeted to previously documented “usual care” of 33 mm (D33) and one with CCs targeted
to the American Heart Association AHA 2010 guideline recommended depth of 51 mm
(D51). We hypothesized that the CPP-20 resuscitation strategy would improve short-term
survival compared to either D33 or D51.

Materials and Methods
Animal Preparation

The experimental protocol was approved by The University of Pennsylvania Institutional
Animal Care and Use Committee. Twenty-four healthy 3-month old female domestic swine
were anesthetized and mechanically ventilated using a Datex Ohmeda anesthesia machine
(Modulus SE) on a mixture of room air and titrated isoflurane (~1.0% to 2.5%) with a tidal
volume of 12mL / kg, PEEP 6 cm H2O, rate of 12 breaths / minute, and titration of rate to
maintain endtidal carbon dioxide (ETCO2) at 38 – 42 mmHg (NICO, Novametrix Medical
Systems Inc.).
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High fidelity, solid-state, micromanometer-tipped catheters (MPC-500, Millar Instruments)
were advanced through the right femoral artery and external jugular vein into thoracic
locations to measure continuous aortic and right atrial pressures respectively. A Swan-Ganz
Thermodilution catheter (Edwards Lifesciences) was advanced into the pulmonary artery,
and a bipolar pacing catheter (Edwards Lifesciences) was advanced into the right ventricle.
All catheter placements were confirmed with fluoroscopy. Unfractionated heparin 200 U/kg
was provided to prevent catheter clotting. Prior to obtaining any baseline measurements, all
animals received 20 mL / kg of 0.9% normal saline intravenously to replace overnight
fasting fluid deficits.

Measurements
Thermodilution cardiac outputs (ICU monitor: model HP66, Hewlett Packard) were
obtained at baseline. Arterial blood gas specimens were obtained from the thoracic aorta at
baseline (before VF), at 2 minutes, 4 minutes, and 6 1/2 minutes of VF, and then 2 1/2
minutes and 6 minutes after the initiation of CPR. Coronary perfusion pressure (CPP) was
calculated by subtracting the mid-diastolic right atrial pressure from the mid-diastolic aortic
pressure.

To guide and record manual CPR quality, the Philips Heart Start MRx defibrillator with
QCPR option was deployed during the experimental protocol. Using force transducer /
accelerometer technology, the defibrillator records CPR quality and provides audiovisual
feedback to the chest compression (CC) provider for rate (CC/min), depth (mm), and
incomplete chest wall recoil (residual leaning force (grams)) [14-17].

Experimental Protocol
Overview (Figure 1)—The protocol utilized in this experiment was designed to address
CPR goals for VF cardiac arrest. VF was induced by electrical pacing. No changes in
mechanical ventilation or oxygenation were made during the initial seven minutes of VF.
Following seven minutes of untreated VF, animals were randomized to one of three different
CPR and advanced life support strategies for a ten minute duration before attempts at
defibrillation. A 10 minute interval of CPR was chosen before defibrillation as a practical
approach, because this duration of CPR is necessary to adequately compare CPR techniques.
Of note, most in-hospital CPR is at least 10 minutes in duration for both survivors and non-
survivors [12]. The 7-minute untreated VF period was included so that the insult would be
severe enough to allow discrimination of outcomes with the three protocols.

In all treatment arms, metronome-guided CCs were provided with a target rate of 100 CC/
min and ventilations at 6 breaths per minute with 100% oxygen. Brief interruptions in CPR
every two minutes mimicked pulse checks / rhythm analysis. Animals randomly received
one of three resuscitation strategies: 1) Hemodynamic Directed Care (CPP-20): CCs with
depth titrated to a target systolic blood pressure of 100 mmHg and titration of vasopressors
to maintain CPP > 20 mmHg; 2) Depth 33mm (D33): target CC depth of 33mm [14-19] with
standard AHA epinephrine dosing interval; or 3) Depth 51mm (D51): target CC depth of
51mm with standard AHA epinephrine dosing interval. Animals in the D33 and D51 groups
received intravenous vasopressor (0.02 mg/kg epinephrine) every 4 minutes starting at
minute 9 of the protocol (2 minutes after CPR was started). Animals in the CPP-20 group
only received intravenous vasopressor if the CPP was < 20 mmHg, starting at minute 8 of
the protocol. The order of drug administration in CPP-20 was Epinephrine (0.02 mg/kg) –
Epinephrine (0.02 mg/kg) – Vasopressin (0.4 U/kg). The dosing interval was 1 minute
between doses, and if vasopressin was given, 2 minutes elapsed before the cycle was
restarted with another epinephrine dose. After 10 minutes of CPR (minute 17 of the
protocol), the initial 200J biphasic waveform defibrillation attempt was provided.
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Resuscitation according to treatment strategy continued until sustained return of
spontaneous circulation (ROSC) was attained or at minute 27 of the protocol (after an
additional ten minutes of resuscitation post-initial defibrillation attempt). If ROSC was
attained, the animals were supported for 45 minutes in a simulated intensive care setting.
After ROSC, mechanical ventilation was provided with 100% oxygen and adjusted to obtain
an ETCO2 of 38 to 42 mmHg. Isoflurane was administered as necessary. At 45 minutes, the
animals were euthanized with pentobarbital and potassium chloride. All animals received a
post-mortem examination for detection of visceral injuries.

Data Analysis / Outcomes
The primary outcome of the study was 45-minute ICU survival. Secondary outcomes
included: 1) return of spontaneous circulation; 2) hemodynamic measures (specifically
CPP); and 3) CPR quality variables. Statistical analysis was completed using the Stata-IC
statistical package (Version 12.0, StataCorp, College Station, TX). Normality of continuous
variables was assessed using the Skewness-Kurtosis test. Normally distributed continuous
variables were described as mean ± SEM and compared by ANOVA. Continuous variables
that were not normally distributed were described as median (25%, 75%) and evaluated by
the Kruskal-Wallis test. Comparisons of dichotomous variables, such as 45-minute ICU
survival and rate of return of spontaneous circulation were evaluated by Fisher’s exact test.
Differences in CPPs over time and between treatment groups and between survivors / non-
survivors were assessed using generalized estimating equations [20].

Results
The primary outcome variable of 45-minute ICU survival and the secondary outcome
variable of any ROSC were both significantly different across treatments (Table 1) with
superior survival rates in the CPP-20 group. In a model using generalized estimating
equations (GEE), coronary perfusion pressure (Figure 2) was significantly higher in the
CPP-20 group compared to both D33 (p=0.01) and D51 (p=0.01), and higher in survivors
compared to non-survivors irrespective of treatment group (p<0.01).

Resuscitation Variables
Chest compression depth was significantly different among groups: D33 = 34 ± 0.8mm; D51
= 47 ± 0.5mm; CPP-20 = 44 ± 0.8mm (p<0.01). Other CPR quality variables were not
different (rate = 100 ± 0.1 CC/min; no flow fraction = 3.0 ± 0.2%; no delivered
compressions had leaning exceeding 2.5kg). Total number of vasopressors doses
administered was not different (D33 = 5 (2, 5); D51 =5 (2, 5); CPP-20 = 3 (2.5, 6), p=0.57).
Similarly, total number of epinephrine doses was not different (D33 = 5 (2, 5); D51 =5 (2,
5); CPP-20 = 2 (2, 4.5), p=0.16). By protocol design, CPP-20 received first vasopressor dose
as early as 1 minute after initiation of CPR, compared to 2 minutes in the D33 and D55
groups. Overall number of defibrillation attempts was not different among groups (D33 = 4
(2, 5); D51 = 3 (1, 5); CPP-20 = 1 (1, 2), p=0.08). One surviving animal in the CPP-20
group required cardioversion for unstable narrow complex tachycardia during the intensive
care unit period after ROSC.

Hemodynamics and Arterial Blood Gases
Hemodynamic variables were not different at pre-arrest baseline or at the end of untreated
VF period (Table 2). During the last minute of the resuscitation period (minute 16 – 17),
there were significant differences across treatment groups for aortic systolic and diastolic
pressure and CPP but not right atrial diastolic pressure (Table 2). Higher CPP in the CPP-20
group compared to D33 and D55 was the result of higher aortic diastolic pressures in the
CPP-20 group. There was a trend towards higher end tidal CO2 in the D51 and CPP-20
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groups compared to D33 that did not reach statistical significance. There were no
differences in arterial blood gases obtained at baseline, at the end of the untreated VF period,
or after 6 minutes of CPR (Table 3).

Discussion
In the present study, short-term survival from VF cardiac arrest was improved with
hemodynamic directed CPR to maintain coronary perfusion pressure > 20 mmHg (CPP-20)
compared to resuscitation with depth of compressions guided to 33mm or 51mm and
standard AHA vasopressor dosing. Irrespective of treatment group, coronary perfusion
pressures were higher in survivors compared to non-survivors consistent with previous
investigations [1, 3, 10].

This animal model was intended to address CPR of 10 minutes duration for a VF associated
cardiac arrest because this duration of CPR provided an opportunity to adequately compare
CPR techniques. Of note, most in-hospital cardiac arrests have at least 10 minutes of CPR.
Increasingly, in-hospital cardiac arrests are occurring in the intensive care setting,
presumably in part due to the emergence of medical emergency teams [12, 13, 21-23].
Invasive hemodynamic monitoring is readily available for many of these patients, yet AHA
recommendations for CPR focus on depth and rate of compressions and fixed interval
vasopressor dosing rather than titrating compression depth and vasopressor dosing to
invasive hemodynamics.

The relationship between CPP and myocardial blood flow, and in turn, resuscitation
outcome is well established [1-4, 9-11]. However, to our knowledge, this is the first
investigation to evaluate a treatment algorithm with manually provided CCs titrated to a
hemodynamic goal (systolic blood pressure) and vasopressor administration targeted to
CPPs in a VF large animal model. This new therapeutic strategy focuses on individualizing
resuscitation to the appropriate hemodynamic goal rather than a standard “one-size-fits-all”
strategy and could be applied during actual resuscitation attempts in the intensive care unit.

High quality quantitatively evaluated manual CPR (CC rate 100/min, full chest wall recoil,
and a ventilation rate of 6/min) was provided to all three treatment groups. As planned, there
were differences in CC depth across treatment groups. Previous investigations have shown
that deeper compressions are associated with superior outcomes [18, 24, 25]. However, in
our investigation, deeper compressions in the D51 group did not translate into improved
survival despite excellent systolic blood pressures. Compared with the D51 group, the
CPP-20 animals had similar systolic blood pressure and right atrial diastolic pressure but
higher CPPs and were therefore more likely to survive. Thus, the primary difference was
higher aortic diastolic pressure. The elevated aortic diastolic pressures and improved
survival in in the CPP-20 animals compared to the D51 group is most likely attributable to
the timing and titration of vasopressors in the CPP-20 group. As in previous studies,
surviving animals, irrespective of treatment group, had substantially higher CPPs than non-
surviving animals [2, 3, 10].

Quantitative noninvasive end-tidal carbon dioxide has been shown to correlate well with
cardiac output and resuscitation outcomes [26-34]. Achieving ETCO2 levels > 10 – 15
mmHg during CPR has been associated with survival, and similarly, low ETCO2 (< 10
mmHg) is a strong predictor of unsuccessful CPR (death) [28, 33]. However, experimental
data have established that ETCO2 correlates best with pulmonary blood flow and cardiac
output rather than myocardial perfusion. In contrast, CPP correlates best with myocardial
perfusion [8, 32, 34]. Current AHA guidelines recommend continuous ETCO2 monitoring
during cardiac arrest resuscitation when available [5, 6]. In this laboratory investigation,
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ETCO2 levels in the last minute of CPR were as high or higher in the D51 group compared
with the less deep compressions of the CPP-20 and D33 groups (Table 2) but did not result
in an improved rate of ROSC or short-term survival. Across all treatment groups, CPP
measurements were better predictors of 45 minute survival than the ETCO2 measurements,
supporting the concept that invasive hemodynamic monitoring during CPR is superior to
ETCO2 monitoring.

There are several limitations to our experimental design which must be considered when
translating our results to the care of the cardiac arrest patient. First, our observation period
after return of spontaneous circulation was only 45 minutes. The effect of targeting
hemodynamic goals during resuscitation on long-term survival and neurological outcome
has not been established. Nevertheless, the inability to achieve short-term survival in the
depth-guided groups precludes the potential for long-term survival and good neurological
outcomes. Importantly, we have now weaned two animals with this CPR protocol and
CPP-20 goals from ventilator support after 45 minute survival, and both were survived for
24-hours with excellent Cerebral Performance Category scores of 1 after 24-hours [35, 36].
Second, the length of untreated VF (7 minutes) and the duration of CPR before first shock
(10 minutes) may not realistically simulate resuscitation of the invasively monitored
hospitalized patient. However, these intervals were necessary to achieve an insult severe
enough to discriminate outcomes between the different resuscitation strategies, and to allow
a clinically relevant 10 minute period of chest compressions without ROSC. Third, there
were some differences in vasopressor administration between the groups. Vasopressors were
often administered earlier in the CPP-20 group as per the CPP titration protocol. However,
there were survivors in the CPP-20 group who received no more vasopressors than the
median number of doses in the other two groups, and the total vasopressor doses did not
differ among the groups. CPP-20 animals also received vasopressin when two doses of
epinephrine could not maintain CPP >20 mmHg. Rather than continuing to administer a
therapy (epinephrine) that was not achieving treatment goals (CPP > 20 mmHg), we chose
to alter our vasopressor choice so as to evaluate a dynamic treatment algorithm that was
targeted to subject hemodynamics. Improved outcomes from cardiac arrest with vasopressin
administration in the clinical setting have not been observed [37-40]. However in these
studies, vasopressin was not actively titrated to CPP, which may explain the superior
survival outcomes in the CPP-20 group. Fourth, our study was not blinded. Those
participating in the resuscitation attempts needed to be aware of the resuscitation strategy
(depth guided vs. hemodynamically guided chest compressions). However, besides the
statistical differences in chest compression depths, all other CPR quality variables were
similar among the groups, minimizing the concern for bias. Finally, we evaluated only one
model of in-hospital cardiac arrest, future studies should investigate whether a coronary
perfusion pressure directed resuscitation strategy would also improve outcomes when other
common etiologies of in-hospital arrests (e.g., respiratory failure/sepsis /shock) are
evaluated.

Conclusions
In this model of ventricular fibrillation cardiac arrest, a resuscitation strategy titrated to a
coronary perfusion pressure > 20 mmHg improved short-term survival when compared to
resuscitation with depth of compressions guided to 33mm or 51mm and standard AHA
vasopressor dosing. This resuscitation protocol individualizes therapy to the subject’s
hemodynamic status in contrast to the usual “one-size-fits-all” strategy. As more in-hospital
cardiac arrests are occurring in the intensive care setting, these findings may offer a
promising new resuscitation strategy that could be applied in invasively monitored cardiac
arrest patients.
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Figure 1.
Protocol design. During protocol resuscitation period, animals were randomized to receive
one of three resuscitation strategies. SBP indicates systolic blood pressure. D33 and D51
refer to depth-directed CPR at 33mm and 51 mm, respectively. CPP-20 refers to CPR
directed to attain coronary perfusion pressure >20 mmHg.

Friess et al. Page 10

Crit Care Med. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Mean coronary perfusion pressure during each minute of CPR across treatment groups (left)
and between survivors and non-survivors (right). Error bars represent SEM. D33 and D51
refer to depth-directed CPR at 33mm and 51 mm, respectively. CPP-20 refers to CPR
directed to attain coronary perfusion pressure >20 mmHg.
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Table 1

Rates of survival across treatment groups. Depth 33 and Depth 51 refer to depth-guided CPR at 33mm and 51
mm, respectively. CPP-20 refers to CPR directed to attain coronary perfusion pressure >20 mmHg. Rate of
survival in CPP-20 higher compared to both Depth 33 (p=0.001) and Depth 51 (p=0.026).

Depth 33
(n=8)

Depth 51
(n=8)

CPP-20
(n=8) p

Survival [n (%)]

 Any ROSC 1 (13) 3 (38) 8 (100) 0.002

 45 Minute ICU Survival 1 (13) 3 (38) 8 (100) 0.002
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Table 2

Depth 33
(n=7)

Depth 51
(n=7)

CPP-20
(n=7) p

Baseline

Weight (kg) 32.3 (0.4) 32.3 (0.5) 31.3 (0.5) 0.27

CO (L/min) 3.3 (0.3) 3.0 (0.3) 3.0 (0.3) 0.78

AoS 110 (5) 105 (6) 104 (6) 0.79

AoD 77 (6) 78 (6) 79 (6) 0.98

RAD 14 (1) 12 (1) 13 (1) 0.53

CPP 63 (6) 68 (5) 68 (7) 0.78

End of Untreated VF Period*

AoS 26 (1) 25 (1) 25 (2) 0.99

AoD 20 (1) 19 (1) 21 (2) 0.75

RAD 20 (1) 19 (1) 18 (1) 0.24

CPP 2 (1) 2 (1) 3 (1) 0.55

End of Resuscitation Period†

AoS 62 (9) 102 (15) 109 (6) 0.011‡,§

AoD 24 (3) 26 (3) 47 (6) 0.0089‖,¶

RAD 17 (1) 12 (3) 13 (6) 0.67

CPP 8 (2) 10 (2) 36 (9) 0.0012**,††

ETCO2 21 (2) 28 (3) 27 (1) 0.10

*
Last epoch during untreated VF period (minute 6 – 7);

†
Last epoch during protocol resuscitation period CPR (minute 16 – 17). Pressures in mmHg. AoS indicates aortic systolic pressure; AoD, aortic

diastolic pressure; RAD, right atrial diastolic pressure; CPP, coronary perfusion pressure; ETCO2, end tidal carbon dioxide. Depth 33 (D33) and

Depth 51 (D51) refer to depth-guided CPR at 33mm and 51 mm, respectively. CPP-20 refers to CPR directed to attain coronary perfusion pressure
>20 mmHg. Data presented as mean (SEM).

‡
CPP-20 vs. D33: p=0.018;

‖
p=0.006;

**
p=0.004.

§
D51 vs. D33: p=0.046.

¶
CPP-20 vs. D51: p=0.012;

††
p=0.006.
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Table 3

Depth 33 and Depth 51 refer to depth-guided CPR at 33mm and 51 mm, respectively. CPP-20 refers to CPR
directed to attain coronary perfusion pressure >20 mmHg.

Depth 33
(n=7)

Depth 51
(n=8)

CPP-20
(n=8) p

Baseline

pH 7.52 (0.01) 7.51 (0.01) 7.51 (0.01) 0.49

PCO2 (mmHg) 43 (2) 42 (2) 44 (1) 0.74

PO2 (mmHg) 134 (4) 138 (11) 144 (12) 0.92

End of Untreated VF*

pH 7.77 (0.01) 7.78 (0.04) 7.69 (0.05) 0.25

PCO2 (mmHg) 16 (2) 16 (3) 23 (6) 0.41

PO2 (mmHg) 92 (10) 107 (9) 100 (15) 0.68

After 6 Minutes of CPR†

pH 7.46 (0.04) 7.41 (0.02) 7.36 (0.03) 0.07

PCO2 (mmHg) 35 (4) 40 (3) 52 (7) 0.14

PO2 (mmHg) 367 (57) 323 (55) 193 (60) 0.11

*
Sample drawn at 6min 30s during VF period and

†
at 6 minutes during protocol resuscitation period.
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