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Abstract
AIM: To establish a simple method to quantify lipid 
classes in liver diseases and to decipher the lipid profile 
in p62/IMP2-2/IGF2BP2-2  transgenic mice.

METHODS: Liver-specific overexpression of the 
insulin-like growth factor 2 mRNA binding protein p62/
IMP2-2/IGF2BP2-2 was used as a model for steatosis. 
Steatohepatitis was induced by feeding a methionine-
choline deficient diet. Steatosis was assessed histologi-
cally. For thin layer chromatographic analysis, lipids 
were extracted from freeze-dried tissues by hexane/2-
propanol, dried, redissolved, and chromatographically 
separated by a two-solvent system. Dilution series of 
lipid standards were chromatographed, detected, and 

quantified. The detection was performed by either 
2’,7’-dichlorofluoresceine or a sulfuric acid/ethanol mix-
ture.

RESULTS: Histological analyses confirmed steato-
sis and steatohepatitis development. The extraction, 
chromatographic, and detection method showed high 
inter-assay reproducibility and allowed quantification 
of the different lipid classes. The analyses confirmed 
an increase of triglycerides and phosphatidylethanol-
amine and a decrease in phosphatidylcholine in the 
methionine-choline deficient diet. The method was 
used for the first time to asses the lipid classes induced 
in the p62-overexpressing mouse model and showed a 
significant increase in all detected lipid species with a 
prominent increase of triglycerides by 2-fold. Interest-
ingly, the ratio of phosphatidylcholine to phosphatidyl-
ethanolamine was decreased, as previously suggested 
as a marker in the progression from steatosis to steato-
hepatitis.

CONCLUSION: The thin layer chromatography analy-
sis allows a reliable quantification of lipid classes and 
provides detailed insight into the lipogenic effect of 
p62.

© 2013 Baishideng. All rights reserved.
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Core tip: We describe a new method to quantify lipid 
classes in steatosis/steatohepatitis having advantages 
over both histology and classical analytical methods. 
Since lipid classes exert differential pathophysiologi-
cal actions our method should be of interest for all 
researchers dealing with mechanisms of steatosis and 
steatohepatitis. We employ our method to investigate 
the lipid profile in the steatotic p62  transgenic mouse 
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model. p62 was originally identified as an autoantigen 
overexpressed in hepatocellular carcinoma patients, 
its expression correlates with poor prognosis, and it 
induces steatosis. The interesting lipid profile in p62  
transgenic animals suggests that it might advance the 
step from steatosis towards steatohepatitis.
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INTRODUCTION
The incidence of  non alcoholic fatty liver disease 
(NAFLD) and non alcoholic steatohepatitis (NASH) has 
dramatically increased in Western countries during the 
last decades[1-3]. Still, the diagnosis of  NAFLD displays 
a problem since there is a known heterogeneity in the 
histological staging of  lipid accumulation in the liver[4,5]. 
This problem is equally relevant for research laboratories 
studying mechanistic and therapeutic aspects of  NAFLD 
and NASH.

A commonly used model for the investigation of  
NASH is the methionine choline deficient mouse model, 
which is histologically similar to human NASH regard-
ing steatohepatitis and fibrosis[6]. The methionine cho-
line deficient diet (MCD) model is well characterized 
regarding its effect on the expression of  lipid regulators, 
such as lipogenic transcription factors and lipogenic 
enzymes[7,8]. The development of  steatosis in the MCD 
model is attributable in part to impaired very low den-
sity lipoprotein (VLDL) secretion due to the deficiency 
of  methionine and choline, which are the precursors 
for phosphatidylcholine, the main phospholipid coating 
VLDL particles[9]. 

An interesting but as yet less characterized steatosis 
model is the insulin-like growth factor 2 (Igf2) mRNA 
binding protein p62/IMP2-2/IGF2BP2-2 transgenic 
mouse model[10]. p62 was originally identified as an 
autoantigen in an HCC patient[11] and its expression 
correlates with poor prognosis in hepatocellular carci-
noma (HCC)[12]. Hepatic p62 overexpression induces a 
microvesicular fatty liver[10], which is characterized by an 
absence of  inflammatory processes and liver damage[10]. 
Still p62 overexpression amplifies murine NASH and 
fibrosis[13].

NAFLD, even in the absence of  cirrhosis, can prog-
ress to HCC[14]. Increasing knowledge suggests that not 
only the increase in lipid accumulation itself  but rather 
the hepatic lipid composition plays a dominant role in 
the development of  both simple steatosis and steato-
hepatitis[15]. Lipid composition has in fact been shown 
to have a pathophysiological relevance in different meta-
bolic diseases[15-18] as well as in cancer[19]. Accordingly, the 
pharmacologically reduced production of  cholesterol 

by inhibition of  hydroxy-methyl-glutaryl-coenzyme A 
reductase is discussed as a strategy for the chemopreven-
tion and a slower progression of  HCC[20]. The compari-
son of  the lipidome of  a murine NASH and HCC model 
with the human NASH and HCC lipidome found signifi-
cant changes within several fatty acid signatures between 
the normal, NASH, and HCC lipidome[21]. Therefore, a 
more comprehensive characterization and understanding 
of  pathophysiological lipidomic changes in liver diseases 
and common disease models seems mandatory.

For the investigation of  lipid composition liquid 
chromatography-mass spectrometry (LC-MS) is state-
of-the-art. However, due to high costs for the equip-
ment and maintenance, the method is not suitable for 
routine analyses in clinical and research laboratories. 
Furthermore, the results obtained by LC-MS contain in-
formation in a level of  detail too complex for most of  
the studies, in which rather general alterations in lipid 
classes are of  interest. Thin layer chromatography (TLC) 
offers some advantages over LC-MS. For example, the 
possibility to apply many different samples on a single 
TLC plate is in practice often faster than LC[22]. 3D 
TLC was developed in the 1960s as a reliable method 
for lipid separation. However, a major limitation of  the 
technique is the fact that it is possible to test only one 
sample per plate[23]. Since 3D TLC has a very low inter-
plate reproducibility it is only suitable for qualitative 
measurements. 

We herein present a rapid and low-cost quantitative 
1D TLC, which can detect major lipid classes and can 
be used to quantitatively compare up to 12 samples per 
plate. Furthermore, we provide insight into changes of  
lipid composition in the p62 transgenic mouse model for 
the first time[13]. 

MATERIALS AND METHODS
Materials 
Standard substances 1,3-diolein (D3627),  L-α-
lysophosphatidylcholine from egg yolk (L4129), cho-
lesterol (C8667), glyceryl trioleate (T7140), 3-sn- phos-
phatidylethanolamine from bovine brain (P7693), L-α-
phosphatidylcholine (P3556), 1,2-diacyl-sn-glycero-
3-phospho-L-serine (P7769), non-hydroxy fatty acid 
ceramide from bovine brain (C2137), and stearic acid 
(85679) were purchased from Sigma-Aldrich (Taufkirchen, 
Germany). The standard substances were dissolved in 
chloroform/methanol [1:1 (v/v)] at a concentration of  
1 mg/ml, aliquoted, and stored at -80 ℃. TLC silica gel 
60 F254 glass plates were purchased from Merck (105715, 
Merck, Darmstadt, Germany). All solvents were distilled 
prior to utilization. 

Animal models
All animal procedures were performed in accordance 
with the local animal welfare committee. Mice were kept 

under stable conditions regarding temperature, humidity, 
food delivery, and 12 h day/night rhythm. 
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Steatosis model
p62 transgenic mice were established as described previ-
ously[10]. Mice carrying a liver enriched activator protein 
promoter under tetracycline transactivator control[24] 
were crossed with p62 transgenic mice, in which the 
human p62 is under the control of  the transrepressive 
responsive element cytomegaly virus (TRE-CMVmin). 
The double positive offspring expresses p62 liver-
specifically. The mice were sacrificed at an age between 
2.5 and 5 wk.

Steatohepatitis model
Wild-type mice were fed either a methionine choline de-
ficient (MCD, 960439, MP Biomedicals, Illkirch Cedex, 
France) or a methionine choline supplemented con-
trol diet (co, 960441, MP Biomedicals, Illkirch Cedex, 
France) for 3 wk. 

Histology
For hematoxylin eosin (HE) staining 5 µm paraffin slides 
were rehydrated in a xylol/alcohol series, incubated for 
10 min in hematoxylin, washed for 5 min under running 
water, and incubated for 2 min in eosin. 

Extraction of bovine and murine liver lipids
Bovine liver was bought from a local butchery and di-
rectly freeze dried and stored at -80 ℃. Lipids from 
snap-frozen murine or bovine liver samples were ex-
tracted by a modified version of  a published method[25]. 
Briefly, 60 mg liver samples were lyophilized, 15 mg of  
the freeze-dried tissue was dispersed with 18 volumes of  
a mixture of  hexane/2-propanol [3:2 (v/v)] for 10 min, 
and centrifuged at 4 ℃ and 10000 g for 10 min. The su-
pernatant was transferred to a new vial and dried under a 
nitrogen stream, redissolved in an appropriate volume of  
chloroform/methanol [1:1 (v/v)], and applied in equal 
amounts onto the TLC plates.

1D TLC with two solvent system
The TLC plates were prewashed with a mixture of  chlo-
roform/methanol [2:1 (v/v)] to remove any contami-
nants and afterwards activated at 110 ℃ for 1 h. The 
samples and standard substances were applied onto the 
TLC plates and chromatographically separated with the 
first solvent system containing chloroform/methanol/
acetic acid/water [50:30:8:3 (v/v/v/v)][26] to half  of  the 
plate. The TLC was dried and subjected to chromatog-
raphy in a second solvent system consisting of  heptane/
diethyl ether/acetic acid [70:30:2 (v/v/v)][27] to the top 
of  the plate[28].

Detection and quantification
The TLC plates were dried for 30 min under a nitrogen 
stream and first sprayed with 0.1% 2’,7’-dichlorofluo-
rescein (DCF, 109676, Merck, Darmstadt, Germany) in 
methanol and afterwards with sulfuric acid/ethanol [1:1 
(v/v)] followed by heating at 160 ℃[23]. After drying the 
plates one UV image at 312 nm for DCF and one white 

top light image for sulfuric acid/ethanol was captured 
using the Biostep (Jahnsdorf, Germany) dark hood 
dh-4050 with transilluminator Biostep bioview (excitation 
312 nm, UST-20M-8E) and an stationary fixed olympus 
digital camera (Hamburg, Germany) in combination 
with the Biostep argus X1 software (version 4.1.10). The 
unprocessed images in tiff  format were quantified using 
the ImageJ 1.47i software[29].

Statistical analysis
Results are expressed as means ± SE. The statistical sig-
nificance was determined by independent two-sample 
t-test and was considered as statistically significant when 
P values were less than 0.05. The Microsoft® Office 
Excel 2003 software (Microsoft Coperation, Redmond, 
United States) was used for statistical analyses. 

RESULTS
Quantification of lipids on the TLC plate
In order to check the linearity of  the method used, lipid 
standards for triglyceride (TG), free fatty acid (FFA), 
cholesterol (CH), ceramide (CE), phosphatidylethanol-
amine (PE), phosphatidylcholine (PC), phosphatidylser-
ine (PS), lysophosphatidylcholine (LPC), and diglyceride 
(DG) (2.5, 5, 7.5, 10, 12.5, 15, 20 µg, each) were chro-
matographed, stained, and quantified according to our 
newly developed method described in the methods sec-
tion. The DCF spray reagent was susceptible to all sub-
jected lipids, the sulfuric acid/ethanol spray reagent was 
susceptible to almost all substances except for the FFA 
stearic acid and LPC (Figure 1A). As expected the band 
intensities increased with higher amount of  the standard 
substances (Figure 1A). The quantification revealed a 
strong correlation with R2 values close to one for all sub-
stances (Figure 1B).  

Validation of the lipid extraction procedure
For validation of  the reproducibility of  the extraction 
procedure, freeze-dried tissue from bovine liver was ex-
tracted in seven independent extraction procedures and 
subjected to chromatography. The extraction procedure 
revealed a high reproducibility in all lipid classes investi-
gated (Figure 2). PC, PE, TG and CH were most promi-
nent in bovine liver (Figure 2). 

Lipid quantification in different mouse models
Steatohepatitis/MCD mouse model: In order to test 
whether altered lipid composition can be determined 
reliably we used a well established murine steatohepatitis 
model, for which altered lipid classes are known[30]. Liv-
ers from control and MCD fed mice were processed, 
extracted, and lipids were chromatographed and detect-
ed as mentioned above. Two independent TLC plates 
revealed a strong increase in TG with DCF and sulfuric 
acid/ethanol (Figure 3B, C). As the MCD model is char-
acterized by choline deficiency, the levels of  PC were 
significantly decreased, whereas the levels of  PE were 
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significantly increased (Figure 3B, C). We consequently 
observed a reduced PC/PE ratio by approximately one 
third (P = 0.003) with both detection methods. The 
other lipid classes investigated were not significantly 
changed (data not shown). Due to the high amount of  
TG in this model, the routinely subjected amount of  
lipid extract had to be reduced by five folds compared to 

normal tissues. Routinely used amounts led to overload-
ing of  the plates (data not shown).

Steatosis/p62 transgenic mouse model: Since our 
method confirmed changes in lipid classes in the MCD 
steatohepatitis mouse model, we used it to characterize 
changes in lipid classes in the p62 steatosis model. The 
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model shows distinct histologically proven microvesic-
ular lipid incorporation in up to 58% of  the animals[10] 
when specific lipid staining is performed. Accordingly, 
HE staining revealed a milder extent of  steatosis com-
pared to the MCD diet (Figure 3A, D). Two indepen-
dent TLC plates revealed that all detected lipid classes 
were significantly increased in the livers of  p62 trans-
genic animals (Figure 3E, F). FFA, DG and LPC were 
not detectable (Figure 3E). The strongest effect was 
observed for TG, which were increased approximately 
two folds in p62 trangenic animals compared to wild-
type controls (Figure 3F). Interestingly, although the 
levels of  both PC and PE were significantly increased, 
the PC/PE ratio was significantly decreased by about 
10% (P = 0.05) with both detection methods. The same 
was true for the ratio of  CH/PC, which was increased 
by approximately 23%, as validated by the DCF detec-
tion (P = 0.05).

DISCUSSION
Within this work we developed a rapid analytical meth-
od, which allows to quantify changes in hepatic lipid 
classes. The newly established method confirmed pub-
lished findings for the lipid changes in a mouse NASH 
model and for the first time reports the lipid composi-
tion in the p62 transgenic steatosis model.

TLC method
The one-dimensional TLC with a two-step solvent sys-

tem and the detection with DCF or sulfuric acid/ethanol 
was able to separate and to detect the major lipid classes 
of  TG, FFA, CH, CER, PE, PC, PS, LPC, and DG 
within a time period of  2.5 h (Figure 4). Standard curves 
revealed a high linearity of  the standard substances from 
2.5 to 20 µg. The chosen standard substances corre-
sponded with the major lipid classes typically changed 
in NAFLD/NASH[31]. A lack of  reactivity of  saturated 
fatty acids towards a sulfuric acid/ethanol/hexane re-
agent was reported previously[32] and is in line with our 
finding that our FFA (the saturated fatty acid stearic 
acid) and LPC standard (which contains mostly pal-
mitic acid and stearic acid) showed no staining with 
sulfuric acid/ethanol.

Most publications only investigate an assortment of  
the most important lipids in liver diseases[18,26,27,31,33]. It is 
almost impossible to detect all abundant lipid species in 
tissues within one method, because the physicochemi-
cal properties of  the broad spectrum of  lipid classes are 
too variable[22]. The lipid class spectrum of  the bovine 
liver extract was quite similar to published studies which 
showed that PC and PE are the main components of  the 
bovine liver phospholipids[34,35]. 

The extraction procedure has the advantage to be 
quick and that it requires relatively low amounts of  
tissue (approximately 70 mg wet weight tissue) com-
pared to other methods[33]. Additional advantages are 
a low contamination with non-lipids due to the high 
apolarity of  the solvent mixture, a low toxicity, a low 
phospholipid degradation, and the possibility to use 
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plastic materials[22,36]. Freeze-drying of  the liver tis-
sue samples reduces the enzymatic activity of  poten-
tial lipid degrading enzymes[37]. Taken together, this 
method is an easy, cheap, and rapid screening method 
for up to 12 samples in parallel. In addition, it needs 
only little technical equipment. The TLC method al-
lows detection from the applied crude lipid extracts 
without the need of  additional purification steps. 

Confirmation of known changes in lipid classes in the 
MCD NASH model
After establishing a reliable technique we sought to 
confirm known alterations in lipid classes in the MCD 
NASH model. The MCD-induced NASH has the advan-
tage of  a histological appearance highly similar to human 
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NASH concerning steatosis, i.e., mixed inflammatory cell 
infiltrates, hepatocellular necrosis, and eventual pericellu-
lar fibrosis mimics[38]. We found strongly increased levels 
of  TG, increased levels of  PE, and decreased levels of  
PC, which led to a significantly decreased PC/PE ratio. 
Yao et al[39] reported decreased PC levels in choline defi-
cient rat hepatocytes. Since PC biosynthesis is partly due 
to the methylation of  PE by S-adenosyl methionine[40], 
it is not surprising that the lack of  methionine in this 
model resulted in the accumulation of  PE. An increase in 
TG[30] and a decreased mitochondrial PC/PE ratio[41] in 
the MCD diet was described previously. Therefore, our 
one-dimensional TLC method could well confirm known 
alterations in lipid classes in this dietary model of  NASH.

Lipid composition in p62-induced steatosis
This is the first study, which clarifies the lipid composi-
tion in p62-induced steatosis. The increase in all detected 
lipid classes might be due to a p62-mediated activation 
of  lipogenic genes induced by the lipogenic growth fac-
tor Igf2[42], which is highly overexpressed in p62 trans-
genic animals[10]. The p62-induced microvesicular steato-
sis is difficult to evaluate with simple histological H/E 
staining (Figure 3D). Still, our TLC method revealed 
strongly affected lipid accumulation also in histologically 
normal tissue and allows more reliable and quantitative 
statements. 

Accumulation of  TG in hepatocytes is a hallmark of  
NAFLD[43]. As expected, TG were the lipid class elevat-
ed to the highest degree in p62-induced fatty liver. Inter-
estingly, Yetukuri et al[44] described a positive correlation 

between TG and CER in an ob/ob steatosis model. The 
precursor for TG[45], namely DG, were not detectable in 
our murine models, despite the fact that DG standard 
series revealed strong signals. A similar observation 
could be seen for FFA and LPC. Since the age of  our 
investigated transgenic and control animals were 2.5 to 
5 wk, the lack of  abundance of  some lipid species might 
be explained by the relatively young age. In this context 
Rappley et al[46] reported age-dependent changes in phos-
pholipid levels in mouse brain. 

An unaltered content of  FFA in human NAFLD was 
described previously[18]. Since we saw weak signals for 
FFA, which were not elevated in the p62 transgenics, no 
elevation by p62 can be assumed. 

One of  the most complex investigations of  the hu-
man NAFLD/NASH lipidome found in the literature 
reports elevated CH levels, and an increased ratio of  
CH to PC[18]. Accordingly, these results are in line with 
the findings in our p62 steatotic animals. On the other 
hand, the literature report also found decreased levels 
of  PC and PE, whereas PS remained unaltered[18]. Since 
increased CH levels are often associated with enhanced 
PC synthesis[47], increased PC levels in our p62 transgenic 
animals might be explainable. Most notably, a decreased 
PC/PE ratio was observable in p62 transgenic animals 
although PC and PE levels were both increased. The 
distinct manipulation of  the PC/PE ratio performed 
by Li et al[48] showed that an elevation of  the ratio can in 
fact reverse steatohepatitis, but not steatosis. This obser-
vation strongly suggests that a decreased PC/PE ratio 
plays a role in the progression from steatosis to steato-
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hepatitis. In fact, NASH patients were found to have de-
creased PC/PE ratios in the same study[48]. The respon-
sible mechanisms are as yet only speculative and might 
involve the inhibition of  the PE N-methyltransferase[48], 
which converts PE to PC. Among the lipids, which were 
elevated in the p62 transgenics, cholesterol[49] and cerami-
des[50] are highly cytotoxic. Although p62 overexpression 
induces a benign steatosis in the absence of  inflamma-
tory events, we speculate that the increased levels of  CH 
and CER and the decreased PC/PE ratio might finally 
promote an inflammatory environment in the livers of  
p62 transgenic animals. In fact, p62 overexpression can 
promote the development of  NASH and fibrosis[13]. 

In a conclusion, taken together, we have established 
a rapid technique to quantify altered lipid classes in ex-
perimental models of  steatosis and steatohepatitis. The 
method confirmed known changes in the well-estab-
lished MCD NASH model and for the first time revealed 
a distinctly altered lipid composition in the p62 steatosis 
model. The knowledge of  changes in lipid composition 
might be helpful for the understanding of  pathophysi-
ological mechanisms in NAFLD and NASH.
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