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Abstract
AIM: To investigate the effects of phosphatase and 
tensin homolog deleted on chromosome 10 (PTEN) de-
ficiency on the cytotoxicity of chemotherapeutic agents 
toward colorectal cancer cells.

METHODS: PTEN-deficient colorectal cancer (CRC) cells 
were generated by human somatic cell gene targeting 
using the adeno-associated virus system. The cytotoxic 
effects of compounds including curcumin, 5-fluorouracil 
(5-FU), dihydroartemisinin (DHA), irinotecan (CPT-11) 
and oxaliplatin (OXA) on cancer cells were determined 
using the MTT assay. Enhanced cytotoxicity of curcumin 
in PTEN-deficient CRC cells was observed, and this was 
confirmed using clonogenic assays. Apoptosis and cell 
cycle progression were analyzed by flow cytometry. 

Levels of apoptosis and cell cycle-related proteins were 
examined by Western blotting.

RESULTS: We developed an isogenic set of CRC cell 
lines that differed only in their PTEN status. Using this 
set of cell lines, we found that disruption of the PTEN 
gene had no effect on the sensitivity of CRC cells to 
5-FU, CPT-11, DHA, or OXA, whereas PTEN disruption 
increased the sensitivity of CRC cells to curcumin. Loss 
of PTEN did not alter the curcumin-induced apoptosis 
in CRC cells. However, PTEN deficiency led to an al-
tered pattern of curcumin-mediated cell cycle arrest. 
In HCT116 PTEN +/+ cells, curcumin caused a G2/M 
phase arrest, whereas it caused a G0/G1 phase arrest 
in HCT116 PTEN -/- cells. Levels of cell cycle-related pro-
teins were consistent with these respective patterns of 
cell cycle arrest.

CONCLUSION: Curcumin shows enhanced cytotoxicity 
toward PTEN-deficient cancer cells, suggesting that it 
might be a potential chemotherapeutic agent for can-
cers harboring PTEN mutations.

© 2013 Baishideng. All rights reserved.
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Core tip: Phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN) mutations lead to cancer pro-
gression and drug resistance. Chemotherapeutic agents 
with enhanced effectiveness against cancers with PTEN 
mutations are urgently required. In this study, we gener-
ated an isogenic set of human colorectal cancer cell lines 
that differed only in their PTEN status. We found that 
curcumin showed enhanced cytotoxicity in cancer cells 
deficient in PTEN. Importantly, PTEN deficiency led to an 
alteration in the pattern of curcumin-induced cell cycle 
arrest, which was associated with the PTEN/AKT/p21 
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pathway. Our findings suggest that curcumin is a poten-
tial chemotherapeutic agent for PTEN-mutant cancers.
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INTRODUCTION
Cancer is a leading cause of  death worldwide and increas-
ing attention has been focused on the strategies to reduce 
its incidence[1]. Chemotherapy is one of  the main means 
of  treating cancers; however, resistance to chemothera-
peutic drugs remains a major obstacle to effective cancer 
therapy[2,3]. Therefore, novel intervention strategies to 
enhance the effectiveness of  chemotherapeutic drugs and 
reduce their resistance are urgently required. 

Cancer is caused by a series of  genetic changes, in-
cluding mutations in oncogenes and tumor suppressor 
genes[4]. Phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN) is one of  the most frequently 
mutated tumor suppressor genes in human cancers, after 
p53[5]. PTEN is involved in many important biological 
processes, including cell proliferation, growth, migra-
tion and death[6]. Germline mutations of  PTEN result 
in several rare cancer predisposition syndromes, such 
as Cowden disease, Bannayan-Zonana syndrome, Pro-
teus syndrome and Lhermitte-Duclos disease[7]. Mice 
heterozygous for PTEN develop spontaneous tumors 
in a number of  organs[8]. Conditional deletion of  the 
murine PTEN gene leads to tissue-specific tumorigen-
esis[9]. PTEN acts as a lipid phosphatase that antagonizes 
the phosphatidylinositide 3-kinase (PI3K) signaling by 
dephosphorylating phosphatidylinositol (3,4,5)-trisphos-
phate (PIP3) back to phosphatidylinositol (4,5)-bisphos-
phate (PIP2). Mutations in PTEN lead to constitutive ac-
tivation of  AKT kinase and other downstream effectors, 
and thus promote tumorigenesis[10]. 

PTEN mutations are found in a number of  human 
cancers, including cancers of  the colon, breast, lung, 
liver, and lymphatic system[11-15]. The fact that mutated 
PTEN is present only in the cancer cells makes PTEN an 
appealing drug target for cancer treatment[16]. However, 
mutational inactivation of  PTEN leads to cancer pro-
gression and chemotherapy resistance. Loss of  PTEN 
expression is frequently observed in trastuzumab or 
tamoxifen-resistant breast cancers[17,18]. Drug resistance 
induced by PTEN deficiency is also observed in colorec-
tal cancer (CRC). Loss of  PTEN occurs in 35% of  
CRC[19], and PTEN-deficient CRC cells are more resistant 
to cetuximab than PTEN-expressing cells[20]. In addition, 
loss of  PTEN expression results in poor clinical outcome 
in CRCs treated with anti-EGFR therapy[21]. To identify 

chemotherapeutic agents that could overcome resistance 
in PTEN-mutant CRC, we developed an isogenic set of  
human CRC cell lines that differed only in their PTEN 
status. Cytotoxicity analysis of  these cell lines with several 
anti-cancer agents showed that curcumin had enhanced 
cytotoxicity towards CRC cells deficient in PTEN. 
Moreover, loss of  PTEN expression led to a change in 
curcumin-induced cell cycle arrest patterns, which might 
be associated with PTEN-regulated AKT/p21 signaling. 
Our findings suggest that curcumin might have potential 
in the treatment of  cancers with PTEN mutations.

MATERIALS AND METHODS
Cell culture
Human colon cancer HCT116 cells were obtained from 
the American Type Culture Collection (ATCC, Rockville, 
MD, United States). HCT116 p53-/- cells were kindly 
provided by Dr. Bert Vogelstein (The Johns Hopkins 
University, Baltimore, MD, United States). The cells were 
maintained in McCoy’s 5A medium supplemented with 
10% fetal bovine serum and 1% penicillin/streptomycin 
solution in a humidified incubator at 37 ℃ with 5% CO2. 
Cells harboring the targeting vector were grown in me-
dium containing 1000 µg/mL G418.

Reagents and antibodies
Curcumin, 5-fluorouracil (5-FU), dihydroartemisinin 
(DHA), irinotecan (CPT-11), and oxaliplatin (OXA) 
were purchased from Sigma-Aldrich. PTEN, AKT (pan), 
phosphorylated AKT (p-AKT), p53, caspase 3, caspase 9, 
GAPDH, and beta-actin antibodies were obtained from 
Cell Signaling Technology. Bcl2, p21, p27, Cyclin B1, 
Cdc2, Cyclin D1, PARP and peroxidase-conjugated sec-
ondary antibodies were from Santa Cruz Biotechnology. 

Gene targeting in HCT116 cells
Human somatic cell gene targeting was performed using 
adeno-associated virus vectors. A PTEN-targeting vec-
tor was constructed to delete exon 4 of  the PTEN gene 
in HCT116 cells. To create this vector, homology arms 
were amplified from a human genomic DNA template by 
polymerase chain reaction (PCR), sequentially cloned into 
the pMD18-T vector (TaKaRa) and sequenced. The con-
structed targeting vector was co-transfected with pHelper 
and pAAV-RC plasmids into HEK293 cells to obtain a 
PTEN-AAV viral stock that was used to infect HCT116 
cells. After infection with recombinant virus, HCT116 
cells were seeded in 96-well plates and selected with 1000 
µg/mL G418 for 2 wk. Individual clones were obtained, 
expanded, cryopreserved, and tested by PCR for the pres-
ence of  a heterozygous knockout. Heterozygous clones 
were transfected with the pCX-CRE plasmid, and then 
plated at a density of  200 cells/well in a 96-well plate to 
obtain single cell-derived clones. These clones were then 
screened by PCR to identify those in which the PGK-
neo cassette had been deleted. Then the PTEN+/- cells 
were re-transfected with the PTEN-AAV virus, to obtain 
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tometry using the Annexin V-FITC Apoptosis Detection 
kit according to the manufacturer’s instructions. Briefly, 5 
× 105 cells were seeded in 6-well plates and treated with 
10-µmol/L curcumin or 0.1% DMSO for 48 h prior to 
analysis. Floating and trypsinized adherent cells were 
collected, washed with PBS, and resuspended in cold 
binding buffer. After incubation for 15 min in the dark at 
4 ℃, 10 µL of  Annexin V-FITC and 5 µL of  propidium 
iodide (PI) solution were added. Samples were analyzed 
using an FACS-Calibur cytometer (Becton Dickinson).

Cell cycle analysis
A total of  5 × 105 cells were seeded in 6-well plates and 
treated with 10-µmol/L curcumin or 0.1% DMSO for 
48 h. Then, the cells were harvested by centrifugation at 
1000 rpm for 5 min. Cell pellets were washed twice with 
PBS, fixed with ice-cold 70% ethanol and stored at -20 ℃ 
overnight. Then, the pellets were washed with cold PBS, 
suspended in 500 mL PBS containing 50 mg/mL PI, 0.1 
mg/mL RNase A and 0.05% Triton X-100, and incubat-
ed at 37 ℃ for 40 min in the dark. The cell cycle distribu-
tion was determined by flow cytometry (FACSCalibur; 
Becton Dickinson). The experiment was repeated thrice 
under the same conditions.

Western blotting analysis
Cells were grown to 90% confluence in a 6-well plate. Af-
ter washing twice with PBS, cells were resuspended and 
lysed in cold lysis buffer (50 mol/L Tris/HCl, pH 7.4, 5 
mol/L EDTA, 0.5% NP-40, 150 mol/L NaCl) supple-
mented with the Protease/Phosphatase Inhibitor Cock-
tail (Cell Signaling Technology). After incubation on ice 
for 20 min, the lysate was centrifuged at 12000 rpm for 
20 min at 4 ℃, and the supernatant was collected. Protein 
concentration was determined using the Bradford assay 
(Bio-Rad, Hercules, CA, United States). Equal amounts 
of  total protein were separated by SDS-PAGE and trans-

clones in which both PTEN alleles had been targeted. 

MTT assays
Cell viability was determined using the MTT assay, as 
described previously[22]. Briefly, PTEN+/+ and PTEN-/- 
cells were seeded in 96-well plates in triplicate. At the 
indicated time points, 10 µL 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma) stock 
solution (5 mg/mL) was added to each well. Plates were 
incubated at 37 ℃ for another 4 h. The medium was 
carefully removed and the formazan produced was dis-
solved in dimethyl sulfoxide (DMSO). The absorbance 
was measured at a wavelength of  570 nm on a microplate 
reader (BioRad Model 550). To test the compounds for 
cytotoxic effects, cells were seeded at a density of  1 × 104 

cells/well in 96-well plates and cultured for 24 h. One-
hundred microliters of  medium supplemented with twice 
the desired concentration of  compounds was then added 
to each well. After incubation for 72 h, MTT solution 
was added. Four hours later, formazan production was 
measured as described earlier. The viability was calculated 
as % viability = (OD of  treated cells/OD of  control 
cells) × 100.

Clonogenic assays
A total of  1000 cells were plated in 6-well plates, in tripli-
cate, and incubated for 24 h to allow cells to adhere. After 
treatment with 10-µmol/L curcumin or 0.1% DMSO for 
48 h, cells were carefully washed and drug-free medium 
was added. The plates were incubated at 37 ℃ for 10-12 
d and stained with 0.5% (w/v) crystal violet. Colonies 
containing more than 50 cells were scored as positive. 
The experiment was performed at least three times using 
triplicate cultures. 

Apoptosis analysis
Curcumin-induced apoptosis was quantified by flow cy-
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ferred onto polyvinylidene difluoride membranes (Bio-
Rad, Hercules, CA, United States). After blocking in 5% 
milk in TBST [10 mol/L Tris/HCl pH 7.4, 150 mol/L 
NaCl, and 0.1% (v/v) Tween-20], the membranes were 
incubated with primary antibodies, followed by secondary 
antibodies. Protein bands were visualized using an ECL 
system (Amersham Biosciences, United States).

Statistical analysis
Data were summarized using means ± SD. Statistical 
comparisons were made using the Student’s t-test. P-values 
of  less than 0.05 were considered statistically significant.

RESULTS
Targeted deletion of PTEN in colorectal cancer cells
Recombinant adeno-associated virus vectors were used 
to disrupt the endogenous PTEN gene in a near-diploid 
colon cancer cell line, HCT116, containing two wild-type 
alleles of  PTEN. Targeting was directed to the exon 4 
of  PTEN, which resulted in a frame-shift mutation and 
thus a loss of  PTEN expression. The detailed strategy is 
depicted in Figure 1A. The first allele of  PTEN was dis-
rupted by homologous recombination with the PTEN-
targeting vector. The PTEN+/- clones were confirmed 
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by PCR and transiently exposed to Cre recombinase, 
mediating the excision of  the internal neomycin selec-
tion cassette flanked by loxP sites. A PTEN+/- clone was 
then used to generate PTEN-/- cells via a second round of  
recombination with the PTEN-targeting vector. The ab-
sence of  PTEN mRNA in PTEN-/- clones was verified by 
PCR (Figure 1B). Western blotting analysis confirmed a 
decrease in PTEN levels in PTEN+/- cells and a complete 
loss of  PTEN expression in PTEN-/- clones, which was 
accompanied by increased AKT phosphorylation (Figure 
1C). Deletion of  exon 4 of  the PTEN gene was further 
verified by sequencing (Figure 1D). The PTEN-/- cells 
displayed a similar morphology to the parental PTEN+/+ 
cell line (Figure 1E). The effect of  PTEN deficiency 
on the viability of  HCT116 cells was assessed using the 
MTT assay. However, no significant difference in cell 
growth characteristics was observed between PTEN+/+ 
and PTEN-/- cells (Figure 1F).

Curcumin shows enhanced cytotoxicity toward PTEN-
deficient cancer cells
PTEN acts as a tumor suppressor and its status is as-

sociated with sensitivity to chemotherapeutic agents[23,24]. 
Therefore, we investigated whether PTEN disruption 
affected the cytotoxicity of  several clinical drugs and 
natural anti-cancer compounds. The PTEN-deficient 
cells and isogenic PTEN positive cells were exposed to 
increasing concentrations of  anti-cancer compounds 
and their viability was determined. Disruption of  the 
PTEN gene had no effect on the sensitivity of  HCT116 
cells to 5-FU, CPT-11, DHA, or OXA (Figure 2A-D). 
Surprisingly, PTEN-deficient cells were more sensitive to 
curcumin as compared with the parental PTEN+/+ cells. 
The IC50 value of  curcumin for HCT116 PTEN-/- cells 
was approximately 2-fold lower than that for PTEN+/+ 

cells (Figure 2E). Next, we determined whether curcumin 
also showed increased cytotoxicity toward HCT116 cells 
deficient in p53. However, we found that disruption of  
p53 had no effect on the sensitivity of  HCT116 cells to 
curcumin (Figure 2F). The fact that PTEN deficiency 
resulted in increased sensitivity of  HCT116 cells to cur-
cumin was further confirmed using a clonogenic assay. 
Following curcumin exposure, a significantly smaller 
number of  colonies was observed with HCT116 PTEN-/- 
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cells than with PTEN+/+ cells (Figure 3). Together, these 
results suggest that curcumin exhibits enhanced cytotox-
icity toward HCT116 cells deficient in PTEN.

PTEN deficiency does not increase curcumin-induced 
apoptosis
Curcumin treatment induces cell apoptosis[25]. To under-
stand the molecular mechanism underlying the increased 
cytotoxicity of  curcumin toward PTEN-deficient CRC 
cells, we tested whether PTEN loss resulted in increased 
curcumin-mediated apoptosis. Using flow cytometric 
analysis with FITC-labeled annexin V and propidium 
iodide staining, we observed significantly increased apop-
tosis in both HCT116 PTEN+/+ and PTEN-/- cells after 
curcumin exposure. However, the apoptotic index was 
not affected by disruption of  the PTEN gene, being 
similar in PTEN+/+ and PTEN-/- cells (Figure 4A and B). 
In accordance with these results, the expression patterns 
of  apoptosis-related proteins, such as Bcl-2, procaspase 
3 and 9, p53 and PARP were similar in both cell lines fol-

lowing curcumin exposure (Figure 4C). Therefore, these 
data suggest that the enhanced cytotoxicity of  curcumin 
toward PTEN-/- colon cancer cells is not due to an in-
crease in curcumin-induced apoptosis.

PTEN deficiency results in altered curcumin-induced 
cell cycle arrest 
Next, we tested whether the enhanced cytotoxicity of  
curcumin to PTEN-deficient cells was caused by altered 
cell cycle progression. Consistent with a previous re-
port[26], we found that curcumin exposure led to a marked 
G2/M phase cell cycle arrest in HCT116 cells with wild-
type PTEN (Figure 5A). Surprisingly, in PTEN-/- cells, 
curcumin treatment resulted in a significant accumula-
tion of  cells in G0/G1 phase, characteristic of  a G0/G1 
phase arrest (Figure 5A). To explore the mechanism 
underlying the altered cell cycle arrest pattern, we investi-
gated the expression of  proteins related to AKT signaling 
and the cell cycle. Curcumin exposure marginally reduced 
AKT phosphorylation and significantly induced p21 ex-
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pression in HCT116 cells harboring wild-type PTEN. In-
terestingly, the opposite results were observed in HCT116 
PTEN-/- cells, which showed a significant induction of  
AKT phosphorylation. Curcumin exposure further el-
evated this increase in AKT phosphorylation, which was 
accompanied by a significant reduction in p21 expression 
(Figure 5B). In agreement with the differential expression 
of  p21 in curcumin-treated PTEN+/+ and PTEN-/- cells, 
we observed a down-regulation of  Cyclin B1 and Cdc2 in 
PTEN+/+ cells, whereas decreased expression of  Cyclin 
D1 was observed in PTEN-/- cells (Figure 5B), consistent 
with their respective patterns of  cell cycle arrest. p27 is 
another known regulator of  G0/G1 phase; however, we 
observed no difference in its expression levels between 
the PTEN+/+ and PTEN-/- cells following curcumin 

exposure (Figure 5B). Together, these data suggest that 
the enhanced cytotoxicity of  curcumin caused by PTEN 
deficiency might be due to an altered pattern of  cell cycle 
arrest that is related to the PTEN/AKT/p21 pathway.

DISCUSSION
PTEN is a tumor suppressor gene that is frequently mu-
tated in human colorectal cancers. PTEN functions as a 
lipid phosphatase that negatively regulates PI3K/AKT 
signaling, which is critical for cell proliferation, apoptosis, 
and cell cycle progression[27]. PTEN mutations result in 
aberrant activation of  the AKT pathway, facilitating can-
cer progression and causing drug resistance in CRC[28,29]. 
Therefore, chemotherapeutic agents, such as natural 
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products and synthetic compounds, that can enhance 
therapeutic efficacy for CRC with PTEN mutations, are 
urgently needed. In the present study, we found that cur-
cumin showed enhanced cytotoxicity toward CRC cells 
deficient in PTEN. This intriguing finding indicates that 
curcumin might be applied alone or in combination with 
other chemotherapeutic agents for the therapy of  PTEN-
mutant cancers. 

Curcumin is a natural pigment extracted from the 
roots of  the turmeric plant (Curcuma longa). In addition 
to its anti-oxidative and anti-inflammatory properties, 
curcumin inhibits cell proliferation in a number of  cancer 
cell lines, including those derived from colon, breast, lung 
and bladder cancers[30-33]. Moreover, curcumin inhibits 
tumorigenesis in vivo. It has been shown that curcumin 
effectively prevents tumor implantation and growth in 
mice, and suppresses the development of  bladder cancer 
in a rat model[34,35]. Mechanistic studies demonstrated 
that curcumin targets a number of  molecules, including 
apoptosis-related proteins such as Bcl-2, caspase 3 and 
9, as well as cell cycle regulators[36,37]. In this study, we 
report for the first time that the enhanced cytotoxicity of  
curcumin toward PTEN-deficient cells is not due to an 
increase in apoptosis, but rather to altered cell cycle arrest 
patterns, from the G2/M phase arrest seen in PTEN+/+ 
cells to a G0/G1 phase arrest in PTEN-/- cells.

The PTEN+/+ and PTEN-/- cells used in this study 
differ only in their PTEN status. Since PTEN is an up-
stream regulator of  AKT signaling, the differential effects 
of  curcumin on cells with and without PTEN might be 
associated with altered AKT signaling. Consistent with 
this hypothesis, we observed differences in curcumin-
induced AKT phosphorylation in PTEN+/+ and PTEN-/- 
cells. In contrast to the slight decrease observed in p-AKT 
in PTEN+/+ cells, p-AKT was significantly increased in 
PTEN-/- cells after curcumin exposure. p21 is a well-
known downstream effector of  AKT signaling. p-AKT 
can phosphorylate p21 and restrict it to the cytoplasm for 
degradation[38]. In accordance with this, p21 expression 
was significantly increased in PTEN+/+ cells, but mark-
edly decreased in PTEN-/- cells following curcumin expo-
sure. Consequently, the increased expression of  p21 led 
to a down-regulation of  Cyclin B1 and Cdc2 and thus a 
G2/M phase arrest in PTEN+/+ cells, which is consistent 
with a previous study[39]. Despite its function as a nega-
tive regulator of  the cell cycle, p21 can also positively 
regulate cell cycle progression by serving as an assembly 
factor for the Cyclin D/Cdk4 complex and facilitating 
the transition from G1 phase to S phase[40-42]. Consistent 
with this role, we observed a decrease in p21 expres-
sion, accompanied by a reduced level of  Cyclin D1 and 
G0/G1 arrest in PTEN-/- cells after curcumin exposure. 
Based on our findings, we speculate that PTEN defi-
ciency alters AKT signaling and thus the expression of  
p21 induced by curcumin, and that this alteration results 
in an increased G0/G1 phase arrest, which may account 
for the enhanced curcumin sensitivity of  PTEN-deficient 
cells. Our results suggest that p21 is a potential regulator 
in the enhanced cytotoxicity of  curcumin toward PTEN-

deficient cells; however, the detailed mechanism remains 
to be elucidated.

In conclusion, we have shown that curcumin exhib-
its increased cytotoxicity toward PTEN-deficient can-
cer cells, and the underlying mechanism might involve 
cell cycle arrest alterations that are associated with the 
PTEN/AKT/p21 pathway. These findings also suggest 
that curcumin might potentially contribute to the therapy 
of  PTEN-mutated cancers. 
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