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The Major Brain Cholesterol Metabolite
24(S)-Hydroxycholesterol Is a Potent Allosteric
Modulator of N-Methyl-p-Aspartate Receptors
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N-methyl-p-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic
function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of
various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids
modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates
asendogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol
(24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of
other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neu-
rons but fails to affect AMPAR or GABA, receptors (GABA,Rs)-mediated responses. Cholesterol itself and other naturally occurring
oxysterols present in brain do not modulate NMDARs at concentrations =10 uMm. In hippocampal slices, 24(S)-HC enhances the ability of
subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR
channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated
EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function
as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug

development.

Introduction

N-methyl-p-aspartate receptors (NMDARs) are heterotetra-
meric ligand-gated ion channels implicated in forms of synaptic
plasticity, such as long-term potentiation (LTP) and long-term
depression (LTD), thought to underlie learning and memory
(Bashir et al., 1991; Asztely et al., 1992; Cui et al., 2004; Traynelis
et al., 2010). NMDARs have been implicated in the pathophysi-
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ology of several neuropsychiatric disorders including schizophre-
nia, depression, Alzheimer’s disease, and epilepsy (Li and Tsien,
2009; Zorumski and Izumi, 2012) and many of these disorders
are associated with deficits in cognitive function. Because
NMDAR channel blockers, such as ketamine and phencyclidine
(PCP) produce psychotic symptoms and cognitive deficits (Luby
etal., 1959) mimicking schizophrenia in humans (for review, see
Tamminga, 1998; Coyle, 2006), there has been considerable in-
terest in discovering drugs that augment NMDAR function to
treat the debilitating negative and cognitive symptoms of schizo-
phrenia (Tamminga, 1998; Coyle, 2006). Recent clinical studies
of NMDAR enhancers appear to support this strategy (Coyle,
2006).

NMDARSs are regulated by various natural substances includ-
ing neuroactive steroids (Williams, 2009). Neuroactive steroids
are natural or synthetic steroids that directly and rapidly modu-
late ligand-gated ion channels, such as GABA ,-type receptors
(GABA,Rs) or NMDARSs to alter inhibitory and excitatory neu-
rotransmission (Majewska et al., 1986; Paul and Purdy, 1992).
Among these, the neurosteroid pregnenolone sulfate (PREGS)
has been studied as a potential endogenous NMDAR modulator
(Belelli and Lambert, 2005). PREGS is a positive and negative
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24(S)-HC and SGE-201 are potent oxysterol positive allosteric modulators of NMDA receptors. A, Natta projection structures for 24(S)-HC, SGE-201, and SGE-301. Note that the key

hydroxyl group (denoted inred) in all three structures is on the same carbon relative to the cholesterol backbone. The similarity in the location of the hydroxyl group is further emphasized in the three
dimensional stick and ball models below (D-ring and C-17 side chain shown). The 3-« methyl group that distinguishes SGE-201 and SGE-301 is circled in red. B, Effects of endogenous oxysterols and
other cholesterol metabolites on NMDA receptor currents. Cultured primary hippocampal neurons were preincubated with 10 wum test compound in 0.5 wm glycine for 90's, followed by 10 s NMDA
(10 um). The percentage change in NMDA current s plotted. C, Representative traces from B. The red lines represent application of test article (note that the red lines do not encompass the full 90 s
of preincubation). The black lines represent the application of NMDA (10 wum, 10s). Scale bar: vertical = 200 pA, horizontal = 105. D, Active oxysterols compared with pregnenolone metabolites.
All compounds were tested at 10 wum, 90 s preincubation, with the exception of 24(S)-HC (10 um, 360 s preincubation), and pregnenolone sulfate (10 and 50 wum, 90 s preincubation). Cholesterol was
solubilized in ethanol rather than DMSO. Asterisk represents a significant difference from current induced by NMDA alone (p < 0.05).

allosteric modulator of NMDARs and GABA-ARs, respectively
(Wu et al,, 1991; Park-Chung et al., 1999; Horak et al., 2004).
PREGS enhances LTP in hippocampal slices (Sliwinski et al.,
2004), enhances memory, and reverses memory impairment in-
duced by NMDAR blockers in rodents (Flood et al., 1992; Mathis
etal., 1994). However, PREGS is a relatively weak NMDAR mod-
ulator in vitro (Wu et al., 1991) and is essentially undetectable in
rodent brain (Liere et al., 2009). Nonetheless, these findings have
prompted efforts to find other steroidal NMDAR modulators.
In a preliminary report, Madau et al. (2009) identified other
steroid-like NMDAR-positive allosteric modulators (PAMs).
The oxysterol derivative [A>°-3B-oxy-nor-cholenyl]-dimethyl-
carbinol (CAS No. 35882-85-0; SGE-201) and several structurally
related oxysterol derivatives appeared to act as potent NMDAR
PAMs in vitro (Madau et al., 2009) and in vivo (Connick et al.,
2009), but the exact nature of this PAM activity and it relation-
ship to activity observed for PREGS remain unclear. Given the
structural similarity of these compounds to natural oxysterols
and the recently appreciated role oxysterols play in cell signaling
(Janowski et al., 1996; Corcoran and Scott, 2006), we screened a
series of natural oxysterols and related compounds at NMDARs
and now report that the major cholesterol metabolite in brain,
24(S)-hydroxycholesterol (24(S)-HC), is a highly selective and
potent NMDAR PAM. We show that 24(S)-HC interacts with a

privileged NMDAR binding site that is distinct from PREGS. We
also identify synthetic derivatives of 24(S)-HC that selectively
and potently modulate NMDAR function. These data suggest
that 24(S)-HC may serve as a natural modulator of NMDARs,
acting at a novel oxysterol regulatory site that is a potential target
for therapeutic drug development.

Materials and Methods

Chemicals and solutions

Oxysterols were prepared as concentrated stocks in 100% DMSO; work-
ing solutions contained =0.1% DMSO. SGE-201 (Madau et al., 2009),
previously described as an intermediate in the synthesis of steroids, was
synthesized as described previously (Plattner and Pataki, 1943; Mourifio
etal., 1978). Briefly, SGE-201 was prepared in four steps from commer-
cially available 3«, 6a-dihydroxy-58-cholan-24-oic acid. First, the
methyl ester was formed, followed by tosylation of the 3a- and 6a-
hydroxyl groups. In a single pot under mild basic conditions, the C5/C6
double was formed after elimination of the 6-tosylate and the 383-
hydroxyl moiety was obtained after inversion of the configuration of the
3a-tosylate upon hydrolysis. In the last step, the dimethyl groups were
installed at C-24 via methyl lithium addition to the ester. SGE-301 was
synthesized from SGE-201 in a straightforward manner. Dess—Martin
oxidation of the 38-hydroxy to the ketone, followed by methyl Grignard
addition yielded SGE-301 in two steps. SGE-201 and SGE-301 were char-
acterized by liquid chromatography (LC)/MS and 'H-NMR as described



17292 - J. Neurosci., October 30, 2013 - 33(44):17290-17300

in patent: W0O2013/036835A1 and were =95% pure. 24(S)-HC and all
other steroid derivatives were purchased from Avanti Polar Lipids or
Steraloids.

Whole-cell recording

Hippocampal cultures were prepared using previously reported methods
(Mennerick et al., 1995). Whole-cell and excised-patch recordings were
made using an Axopatch 200B amplifier (Molecular Devices) at room
temperature from primary dissociated cultures of mouse (see Fig. 1) or
rat (see Figs. 2-5, 7) hippocampal neurons from either sex (days in vitro
5-13) grown as mass cultures or on substrate microdots to elicit recur-
rent EPSC/IPSCs (Mennerick et al., 1995). Bath solutions for the screen-
ing studies in Figure 1 contained the following (in mm): 140 NaCl, 3 CsCl,
0.2 CaCl,, 10 glucose, 10 HEPES, 4.5 sucrose, 0.0005 glycine, 0.00035
TTX, pH 7.4. Bath solution for subsequent studies in cultured neurons
contained the following (in mm): 140 NaCl, 4 KCl, CaCl, (1 for synaptic
studies, 0.5 for exogenous NMDA applications), 10 glucose, 10 HEPES,
pH 7.25. NBQX (1 um), D-APV (25 um), and gabazine (10 um) were
included as needed to isolate relevant currents. Membrane potential was
typically clamped to —70 mV, and saline solution contained 0.5 um
glycine and was nominally Mg? " -free. Whole-cell pipette solutions for
the screening studies in Figure 1 contained the following (in mm): 120
CsCl, 2 ATP, 0.2 CaCl,, 10 EGTA, 10 HEPES, 1 MgCl,, 20 TEA-CI, 0.2
cAMP, pH 7.2. For subsequent studies in cultured neurons the whole-cell
pipette solution contained the following (in mm): 140 cesium methane-
sulfonate, 4 NaCl, 0.5 CaCl,, 5 EGTA, 10 HEPES, pH 7.3, and the same
solution was used for excised outside-out patch recordings. For evoked
recurrent PSCs, potassium gluconate replaced cesium methanesulfonate.
For application of drugs to whole cells and to excised patches, a multi-
barrel solution exchange system with common delivery tip was used
(Warner Instruments). The common tip was placed 0.5 mm from the
center of the microscope field. Solution exchange times were 120 * 14 ms
(10-90% rise) estimated from the rise of junction currents at the tip of an
open patch pipette. Experiments were performed at room temperature,
and quantification of whole-cell peak current response was used for all
figure summaries.

Outside-out membrane patches were excised from DIV2-5 hippocam-
pal neurons. Currents were sampled at 8 kHz and filtered at 1 kHz. NPo
values were calculated by idealization of traces using QUB software (Uni-
versity of Buffalo). Perfusion buffer for patch experiments included 1 um
NBQX, 0.5 uMm tetrodotoxin, and 10 uM gabazine.

Electrophysiological recordings obtained from heterologous cells ex-
pressing NMDA receptors were obtained as follows. HEK 293 cells stably
expressing human GluN1 (transcript variant NRI1-3, RefSeq: NM_
007327.1, NP_015566) were transiently transfected with a plasmid
encoding human GluN2A (RefSeq: NM_000833.2, NP_000824). In sub-
sequent experiments (see Fig. 6C) constructs used for transient HEK cell
transfections included rat GluN1A splice variant (accession numbers
U11418,U08261), mouse GluN2A (NM008170), rat GluN2B (M91562),
rat GluN2C (M91563), and rat GluN2D (L31611). Constructs were val-
idated by selective restriction digests and functional testing, including
verification of high Zn** sensitivity of GluN2A vs. GluN2B subunits and
low Mg?* sensitivity of GluN2C and GluN2D subunits. Manual patch-
clamp electrophysiology recordings were obtained with an EPC-7/EPC-
10, HEKA Electronics Amplifier. Electrical signals were captured and
analyzed with PatchMaster Software (HEKA Electronics). Each com-
pound was tested at 0.1 um or 1.0 uMm in the presence of NMDA (30 um)
and glycine (5.0 uMm). NMDA and glycine induced currents in the pres-
ence of test compound were compared with current induced by NMDA
and glycine alone. Fifty micrometers PREGS served as the positive con-
trol. 0.1% DMSO was used as the vehicle.

Hippocampal slice recordings

Hippocampal slices were prepared from juvenile [postnatal day
(P)30-32] or adult (P120) Sprague Dawley rats purchased from Har-
lan (Izumi and Zorumski, 1999). Rats were anesthetized with isoflu-
rane and decapitated. Slices were cut transversely into 500 wm slices
using a rotary slicer in artificial CSF (ACSF) containing the following
(in mm): 124 NaCl, 5 KCl, 2 MgSO,, 2CaCl,, 1.25 NaH,PO,, 22

Paul et al. ® A Cholesterol Metabolite with NMDA Receptor Modulatory Activity

ww“WHH
[24(S) HC] (nM)

0 100 1000 10000

3.5 -
304 @ 24(S)-HC
25| O SGE-201
2.0 -
1.5 -
1.0 -
0.5 -
0-0 T T T 1

1 10 100 1000 10000

[compound] (nM)

Current increase w

Figure2.  24(S)-HCand SGE-201 are effective at submicromolar concentrations. 4, Potenti-
ation of 10 m NMDA (0.5 wum glycine) by increasing 24(S)-HC concentrations with 40 s oxys-
terol preapplication in a DIV5 rat hippocampal neuron. B, Potentiation values for 24(S)-HC and
for SGE-201 were fit with the Hill equation (solid lines). ECs, estimates were 0.11 puu for SGE-
201 (N = 7 cells), and 1.2 pum for 24(5)-HC (N = 5 cells).

NaHCOj;, 10 glucose, bubbled with 95% O,/5% CO, at 4-6°C.
Acutely prepared slices were placed on mesh in 10 ml beakers con-
taining gassed ACSF and maintained for at least 1 h at 30°C before
experiments (Tokuda et al., 2010).

At the time of study, slices were transferred individually to a sub-
merged recording chamber. Experiments were performed at 30°C with
continuous bath perfusion of ACSF at 2 ml/min. Extracellular recordings
were obtained from the apical dendritic layer of the CA1 region (stratum
radiatum) for analysis of population EPSPs. EPSPs were measured by
their maximal slopes and were monitored by applying single stimuli to
the Schaffer collateral pathway every 60 s at half-maximal intensity (es-
timated from baseline input-output curves). After establishing stable
responses for atleast 10 min, LTP was induced using a standard 100 Hz X
1 s high-frequency stimulus (HFS). This HES produces reliable LTP at
P30, but is subthreshold for LTP at P120 resulting only in short-term
potentiation (STP) under the ionic conditions used (Izumi and Zorum-
ski, 1999). The magnitude of LTP was determined 60 min following HES.
Signals were digitized and analyzed using PCLAMP software (Molecular
Devices).

Slice data are expressed as percentage of baseline control responses (set
at 100%). In these studies, n represents the number of slices studied in a
given condition, and, unless stated otherwise, data were normalized with
respect to initial control responses. Points in the graphs without error
bars have SEM smaller than the symbol size. Statistical comparisons are
based on analysis of input/output curves at baseline and 60 min following
HEFS, and represent the degree of change at the half-maximal point on the
input/output curves compared with baseline responses. Slice statistical
analyses were performed using commercial software (SigmaStat 3.11;
Systat Software). For slice studies, if a test of equal variance failed, the
nonparametric Mann-Whitney rank sum test was applied.

Bioanalytical methods

Plasma and brain concentrations of SGE-201 and SGE-301 were deter-
mined by LC-MS/MS. Briefly, brain samples were homogenized with 3
volumes (v/w) of PBS, pH 7.4, before analysis. One-hundred milliliters
internal standard (diclofenac 200 ng/ml) was added to aliquots of plasma
(30 wl) or brain (200 ul) and extracted with 1 ml of methyl tert-butyl
ether. The extracts were centrifuged and a portion of the organic phase
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Figure 3.

24(S)-HC potentiation.

was removed and evaporated to dryness under nitrogen. The extracts
were reconstituted in 60 ul of methanol/water for analysis. A 20 ul ali-
quot was chromatographed on a Waters Atlantis C18 column eluting
with a gradient of methanol/water/0.2% formic acid. SGE-201 was de-
tected using positive ion electrospray ionization and mass transitions of
371.3/353.3 on a Sciex API 4000 Q-Trap. The limit of quantitation was
typically 1 ng/ml for plasma and 4 ng/g for brain. SGE-301 was quanti-
tated following the same tissue extraction procedure. The reconstituted
samples were chromatographed on a Waters Acquity BEH C18 column
with a methanol/ water/0.2% formic acid solvent gradient. SGE-301 was
detected using positive ion electrospray ionization with mass transitions
of 385.3/95.0. The limit of quantitation was typically 2 ng/ml for plasma
and 40 ng/g for brain.

Behavioral methods

MK-801 impaired Y-maze spontaneous alternation task. Male Swiss CD-1
mice (7-8 weeks, N = 17-19 per treatment group) were used to assess
spontaneous alternation behavior in the Y-maze test (Hefco et al., 2003).
The maze was constructed from clear Plexiglas with arms at 120° angles
and with dimensions in cm: 57 long, 17 wide, and 35 high. Each mouse
was placed in the center of the maze at the start of the study and allowed
to move freely for 10 min. An alternation is defined as sequentially en-
tering all three arms without reentry into a previously visited arm. Per-
centage alternation was calculated as follows: (alternations/total
entries — 2) X 100. One hour before testing mice received an intraperi-
toneal injection of vehicle (25% hydroxypropyl-B-cyclodextrin in PBS)
or SGE-201 (3, 10, and 30 mg/kg) in a volume of 10 ml/kg. MK-801 was
administered 30 min before testing (0.25 mg/kg in water, i.p.). Data are
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Slow oxysterol reversibility. A, B, NMDA (10 rum) currents were potentiated with 24(S)-HC (2 wum) or with SGE-201
(0.2 um, red traces) with repeated 20 s preapplication of potentiator between successive NMDA challenges. Following 60 s total
oxysterol exposure (three red traces), cells were challenged with saline wash for 80's (four black traces). There was little reversibility
for either drug. Cells were then challenged with ~y-cyclodextrin (CDX; 500 wum) wash, before NMDA application in the absence of
y-cyclodextrin (blue traces). A7, BT, Traces show results from representative neurons. A2, B2, Summary plots for five and
six cells, respectively. y-Cyclodextrin extracted SGE-201 potentiation but not 24(S) potentiation. C, D, Oxysterols were premixed
with y-CDX in solution at subsaturating oxysterol concentrations (0.5 pm for each compound mixed with T mm -y-cyclodextrin).
v-Cyclodextrin effectively reduced the free concentration of SGE-201, indicated by reduced potentiation, but failed to affect
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reported as the mean = SEM and data were
analyzed using one-way ANOVA with Bonfer-
roni post hoc comparisons.

Subchronic PCP model of schizophrenia. Male
Long—Evans rats (160—220 g, N = 12-15 per
treatment group) were group housed in a cli-
mate controlled environment (22 * 2°C, 12 h
light/dark cycle) with ad libitum access to food
and water. PCP (5 mg/kg; Sigma-Aldrich) or
vehicle (0.9% saline) was administered twice
daily for 7 d (intraperitoneally) followed by a
7 d washout period (Grayson et al., 2007;
Snigdha and Neill, 2008). On day 13, rats were
habituated to the test chamber (90 X 90 X 40
cm square arena; 60 lux) for 10 min. On day 14,
rats received acute intraperitoneal administra-
tion of SGE-301 (3, 10, or 30 mg/kg) or vehicle
(30% Captisol+ 0.01% Tween 80) 60 min be-
fore testing social interaction, or risperidone as
a positive control (0.2 mg/kg, i.p.; 60 min pre-
treatment). Social interaction (SI) was tested
during the light phase by placing each rat into
the test chamber with an unfamiliar naive male
rat (Snigdha and Neill, 2008). Spontaneous SI
was monitored by an observer blind to treat-
ment for 10 min. The time spent engaged in
active nonaggressive social behavior (defined
as sniffing, following, grooming, kicking,
mounting, wrestling, boxing or crawling over/
under) was recorded. After SI testing, rats re-
ceived an additional 7 d washout period before
novel object recognition (NOR) testing. On
day 20 the rats were habituated to the NOR
chamber (60 X 60 X 40 cm; 60 lux) for 10 min
(Grayson et al., 2007). On day 21, rats received
acute intraperitoneal administration of SGE-
301 (1, 3, or 10 mg/kg), vehicle (30% Capti-
sol+ 0.01% Tween 80) or risperidone as a
positive control (0.2 mg/kg, i.p.) 60 min before
NOR training, where each rat is allowed a max-
imum of 6 min to accumulate 8 s of exploration
on each of two identical objects (familiar ob-
jects). After a 30 min retention interval, rats were placed back into the
arena with one familiar and one novel object and the duration of object
exploration was scored manually by an observer blind to treatment for 3
min. For NOR, the discrimination ratio was calculated by dividing the
time spent exploring the novel object by the total object exploration time
in the test session. This measure corrects for variance in total exploration.
With this ratio, 0.5 = chance performance (equal exploration of novel
and familiar objects); 1= only novel object exploration, and 0 = only
familiar object exploration. All behavioral data are reported as the
mean = SEM and were analyzed with ANOVA and Bonferroni post hoc
comparisons.

160 240

160 240

Results

24(S)-Hydroxycholesterol is a potent NMDAR modulator

To determine whether endogenous oxysterols modulate
NMDARs, we initially screened a series of naturally occurring
oxysterols (and structurally related sterols and steroids; Fig.
1A,B) at 10 uM in neonatal mouse hippocampal neurons using
whole-cell patch-clamp electrophysiology (Fig. 1B, C). Compar-
ators were SGE-201 (10 wMm) and PREGS (50 um) (Fig. 1D).
Remarkably, 24(S)-HC, one of the most abundant endoge-
nous cholesterol metabolites in brain, significantly potenti-
ated NMDAR-mediated currents (Fig. 1B, C). 24(S)-HC did not
alter membrane current on its own in the absence of NMDA.
None of the other oxysterol liver X receptor (LXR) ligands, in-
cluding 22(R)-HC and 20(S)-HC, affected NMDARSs at concen-
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Figure 4.  Occlusion studies suggest a unique mechanism for oxysterols versus other lipo-
philic positive modulators. 4, B, Examples of occlusion protocol. Cells were preincubated for >5
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Arachidonic acid was used at 5 pm. SGE-301 was used at 0.5 m. Asterisks indicate a significant
reduction in potentiation (p << 0.05).
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Figure5. Potentiation in excised outside-out membrane patches. A, Baseline NMDAR chan-
nel activity (black trace) in 300 pem NMDA in an excised outside-out patch from a DIV2 hip-
pocampal neuron was augmented following SGE-201 incubation for 60 s (0.2 um, red trace).
The patch was excised before drug applications. B, The all-points histograms represent 30 s of
NMDA-induced channel activity before (black) and following (red) SGE-201 application from
the patch represented in A. ¢, Summary of NPo analysis from eight excised outside-out patches.

trations =10 um (Fig. 1B-D). Cholesterol itself was also inactive
at concentrations =10 uM (Fig. 1B).

The concentration-response relationship of NMDAR modu-
lation by 24(S)-HC and SGE-201 was explored by preincubating
hippocampal neurons for 40 s in increasing concentrations of
compound before agonist application (Fig. 2). Both oxysterols
potentiated NMDA-induced currents at submicromolar concen-
trations (Fig. 2A, B). Interestingly, 24(S)-HC was active at con-
centrations well below those measured in the CNS (Meljon et al.,
2012). SGE-201 was ~5- to 10-fold more potent than 24(S)-HC
(Fig. 2B). We synthesized another synthetic analog, SGE-301,
designed to be more bioavailable than 24(S)-HC or SGE-201 by
introduction of a 3a-methyl group (Fig. 1A), and evaluated its
activity in subsequent experiments (see below).

Although we did not fully explore the pharmacological mech-
anisms of oxysterol modulation, an interesting aspect of potenti-
ation is that it did not appear to depend strongly on agonist or
coagonist concentration. Normalized to baseline responses, SGE-
201 potentiation of responses of hippocampal neurons to a near
saturating concentration of 300 uM NMDA was 2.8 = 0.6 (N =
5). Under comparable conditions, the potentiation of responses
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Figure 6.  Potentiation of recombinant receptors suggests little or no subunit selectivity. 4,
HEK-293 cells stably expressing human GluN1-3 and transiently expressing human GluN2A
were activated with NMDA (30 wum) and glycine (5.0 um) (small gray bars). After determining
the baseline response to NMDA and glycine, a test compound (as indicated) was added at 0.1
M (short white bars) or 1 wm (tall white bars). B, The mean (== SEM) percentage potentiation
(by 1 pum test compound) above NMDA and glycine alone is plotted. Asterisks denote a signifi-
cant difference from baseline (p << 0.05). , Sample traces from HEK cells transiently trans-
fected with GluN1a plus each of the indicated GIuN2 subunits. Potentiation of 10 m NMDA
currents (0.5 pmglycine) by 0.2 um SGE-201is shown (gray traces of each pair). D, Each subunit
combination exhibited significant potentiation by SGE-201 above baseline (asterisks), but no
significant difference in potentiation values among subunits was detected.

to 10 uM NMDA (below the EC;; Patneau and Mayer, 1990) was
2.5 £ 0.8 (N = 5, p > 0.05). Similarly, potentiation did not
strongly depend on coagonist concentration. Potentiation of re-
sponses to 10 uM NMDA in 0.5 uM glycine was similar to poten-
tiation in 10 uM glycine (2.1 £ 0.2 vs 2.4 = 0.3, p > 0.05, N = 7).

Oxysterols modulate NMDARs with slow kinetics

In pilot experiments we found that 24(S)-HC and SGE-201 re-
quired preincubations >20 s to reach maximal effect, and once
established, potentiation was poorly reversible. It is possible that
the slow onset of potentiation and slow reversibility observed for
these ligands could result from a direct receptor interaction that
involves membrane partitioning or cell permeation (Akk et al.,
2005). Alternatively, potentiation could involve indirect modu-
lation by second messengers or transcriptional regulation. Both
of these alternative mechanisms have precedent in explaining the
effects of oxysterols in other signaling pathways (Kalaany and
Mangelsdorf, 2006; Nachtergaele et al., 2012). Furthermore, it
appeared that macroscopic desensitization was augmented in the
presence of oxysterol (Fig. 3A1), a phenomenon that represents
additional kinetic complexity and could reflect a mixed potenti-
ating/inhibiting action similar to PREGS (Horak et al., 2004). If
the slow oxysterol actions require rate-limiting partitioning that
equilibrates with a receptor binding site, potentiation might be
rapidly reversed by applying y-cyclodextrin, a scavenger of mem-
brane neurosteroids and sterols (Ohtani et al., 1989; Akk et al.,
2005). We found that y-cyclodextrin effectively reversed poten-
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Figure7.  Selective potentiation of NMDAR EPSCs. 4, Potentiation by 1 um 24(S)-HC of evoked NMDAR EPSCs isolated with 1 um NBQX and 10 wum gabazine. Slow onset, slow reversibility, and
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um; 90 s) also potentiated peak NMDAR EPSCs with little effect on decay time course of the EPSCs (inset). D, Summary of effects of 1 pum 24(S)-HC on NMDAR EPSCs and AMPAR EPSCs (N = 8 and
7, respectively). AMPARs were statistically unaltered. A summary of 0.2 um SGE-201 effects is also shown (N = 7 and 6). E, GABA,R IPSCs were statistically unaltered by prolonged 24(S)-HC
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tiation of NMDARs by SGE-201 but
much less so for 24(S)-HC (Fig. 3A,B).
Although this result could suggest distinct
mechanisms of NMDAR potentiation by
SGE-201 and 24(S)-HC, it is also possible
that the natural oxysterol may not as effi-
ciently form inclusion complexes with
y-cyclodextrin, or may partition at a site
inaccessible to y-cyclodextrin.

To test the former possibility, we pre-
pared solutions of 0.5 um 24(s)-HC or 0.5
M SGE-201 with 1 mMm y-cyclodextrin. If
oxysterols effectively bind y-cyclodextrin,
the mixture should result in a lower free
oxysterol concentration, and brief expo-
sures to the mixtures should reduce
potentiation compared with control ex-
posures in the absence of y-cyclodextrin.
Consistent with this expectation, SGE-
201 potentiation was reduced compared
with a control solution containing no
y-cyclodextrin (Fig. 3C,D). By contrast,
the effect of a subsaturating 24(S)-HC
concentration was unaffected by y-cy-
clodextrin premixing (Fig. 3D). These re-
sults are consistent with the idea that
24(S)-HC fails to effectively bind y-cy-
clodextrin, explaining the resistance to cy-
clodextrin extraction of 24(S)-HC.

24(S)-Hydroxycholesterol shares a
common mechanism of action with
SGE-201 and SGE-301 but not with
known lipophilic positive modulators
To test more directly whether 24(S)-HC
shares a common mechanism of action
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SGE-201 and SGE-301 reverse synaptic plasticity deficits following NMDA receptor blockade. A, B, Reversal of ketamine suppression of long-term potentiation (LTP) by 24(S)-HC (4) and

SGE-201 (B) in P30 hippocampal slices. Open symbols are baseline response following ketamine administration (1 wum, 30 min preincubation) to 100 Hz X 1's HFS (vertical arrow). The change in
baseline EPSP slope was 93.1 == 2.3% 60 min following HFS in ketamine-treated control slices. Solid symbols represent the same condition except 0.5 um 24(S)-HC (4; 131.3 == 6.7% of baseline,
p < 0.001, N = 5) or SGE-201 (B; 129.1 = 9.2% of baseline, p << 0.001, N = 5) was present; N = 5 each, p = 0.008. Calibration bars: 1mV, 5 ms.

with synthetic oxysterol analogues and (or) shares a mechanism
with the known lipophilic modulators PREGS or arachidonic
acid, we incubated neurons for >5 min in 10 um 24(S)-HC, and
then challenged cells with agonist plus another modulator to
probe occlusion (Fig. 4). 24(S)-HC preincubation did not signif-
icantly occlude PREGS or arachidonic acid potentiation but pre-
vented further SGE-201 potentiation and potentiation by the 3a-
methyl analog SGE-301. These latter two results demonstrate a
shared mechanism of action between natural 24(S)-HC and the
synthetic analogues and also demonstrate that preincubation in
10 M 24(S)-HC was saturating, important for the interpretation
of the PREGS and arachidonic acid results. Thus, 24(S)-HC likely
acts via distinct modulatory sites from known modulators, but
24(S)-HC, SGE-201, and SGE-301 likely share a common or
overlapping binding site.

Oxysterols show robust NMDAR PAM activity in excised
membrane patches

Recently PREGS was found to induce NMDAR receptor insertion
into the plasma membrane as part of its mechanism of potentiation
(Kostakis et al., 2013), although PREGS also modulates NMDARs in
excised membrane patches where insertion is unlikely (Bowlby,
1993; Abdrachmanova et al., 2001). To determine whether ox-
ysterol modulation primarily involves receptor insertion, po-
tentially explaining its slow onset and poor reversibility, we
explored the effects of SGE-201 in excised outside-out membrane
patches from hippocampal neurons. In support of direct alloste-
ric modulation, but contrary to expectations for receptor inser-
tion, we found that SGE-201 robustly potentiated NMDAR
channel activity in excised outside-out membrane patches (Fig.
5). All-point histograms revealed that potentiation increased
channel number and (or) open probability but did not discern-
ibly increase single-channel current (Fig. 5B). Evaluation of NPo
values from eight patches showed quantitative increases consis-
tent with potentiation values for whole-cell NMDA currents.
Given that the potentiation in outside-out patches, where recep-
tor insertion is extremely unlikely, is quantitatively similar to
whole-cell potentiation, it appears that 24(S)-HC mainly modu-
lates NMDARs through a mechanism that does not involve re-
ceptor insertion or transcription. Although the results do not
completely exclude a membrane-delimited second messenger

mechanism, the data are most consistent with binding to a direct
modulatory site.

Oxysterols modulate recombinant NMDARs

Because native cells are heterogeneous in their NMDAR subunit
combination, we examined oxysterol modulation of recombi-
nant receptors to gain additional insight into selectivity. We first
evaluated 24(S)-HC and the synthetic analogues SGE-201 and
SGE-301 on GluN2A-containing receptors expressed in HEK
cells (Fig. 6 A, B). Each of the three analogues (Fig. 6A; 0.1 and 1
uM) significantly potentiated NMDA responses, with the syn-
thetic analogues exhibiting stronger effects than the natural ox-
ysterol (Fig. 6B).

We also used recombinant receptors transiently expressed in
HEK cells to evaluate subunit dependence of oxysterol effects.
PREGS exhibits strong GluN2 subunit selectivity, potentiating
GluN2A and GluN2B responses, and inhibiting responses from
GluN2C and GIuN2D-containing NMDARs (Malayev et al.,
2002; Horak et al., 2006). By contrast, we found no qualitative
difference in subunit dependence of oxysterol potentiation. SGE-
201 significantly potentiated responses from all subunit combi-
nations (Fig. 6C,D), and potentiation values did not differ
significantly among the GluN2 subunits. Thus, these results fur-
ther distinguish the actions of oxysterols from the known mod-
ulator PREGS.

24(S)-Hydroxycholesterol is a selective NMDAR modulator
The selectivity of 24(S)-HC for NMDARs was evaluated by ex-
amining evoked EPSCs and IPSCs in cultured hippocampal neu-
rons. 24(S)-HC potentiated pharmacologically isolated, evoked
NMDAR EPSCs with characteristic slow onset and offset (Fig.
7A). Unlike neurosteroid GABAergic PAMs (Harrison et al,
1987) or AMPAR PAMs (Nagarajan et al., 2001), oxysterol ana-
logues primarily augmented NMDAR EPSC peak amplitude,
rather than decay kinetics (Fig. 7C). On average 10-90% decay
values were increased by 32 * 11% and 33 * 10% for 24(S)-HC
and SGE-201, respectively (p = 0.02 and 0.06). By comparison,
neither AMPAR EPSCs nor GABA R PSCs were significantly af-
fected by 24(S)-HC or by SGE-201 (Fig. 7 B, D,E). Insensitivity of
GABA ,Rs to 24(S)-HC is instructive because GABA,Rs are ex-
quisitely sensitive to other neurosteroid-like molecules, includ-
ing PREGS (Akk et al., 2001; Wang et al., 2002).
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Figure10.  SGE-201and SGE-301 reverse behavioral deficits following NMDA receptor blockade. A, Pharmacokinetic profiles of

SGE-201(10 mg/kg, N = 3) and SGE-301(20 mg/kg, N = 2) following acute intraperitoneal administration in the mouse and rat
respectively. Inset, Brain concentrations measured at 60 min following compound administration. Note that SGE-301 treatment
resulted in a disproportionately higher brain concentration than SGE-201. B, SGE-201 reverses MK-801-nduced deficits in sponta-
neous alternations in the Y-maze in mice (V = 17-19/group). Percentage alternation was significantly reduced by MK-801
compared with vehicle (#p << 0.0001). SGE-201 restores alternation after MK-8071, with increased percentage alternation in the 3
and 10 mg/kg SGE-201 groups compared with MK-801 alone (***p << 0.0005 and *p << 0.05). C, SGE-301 rescues social interaction
deficits in PCP-experienced rats (N = 12-15/group). Vehicle or PCP (5 mg/kg, bid, i.p.) was administered twice daily from days 1
to7.0n day 14, SGE-301 was administered 60 min before testing. Time spent in active, nonaggressive social behavior was assessed
during a 10 min session. PCP-experienced rats had significantly reduced interaction time compared with vehicle controls (#p <
0.0001). SGE-301 (3 and 10 mg/kg, i.p.) restored social interaction in PCP-experienced rats with significantly increased interaction
time (****p << 0.0001 and *p << 0.05) versus PCP + vehicle group. D, SGE-301 rescues novel object recognition in PCP-
experienced rats (12—15/group). On day 21, 7 d after social interaction testing, rats were administered SGE-301 intraperitoneally
60 min before object training. After the 30 min retention interval, object recognition was assessed in a 3 min test session.
Discrimination ratio (time spent exploring the novel object/time spent exploring both objects during the test session) was calcu-
lated, so thata ratio of 0.5 corresponds to equal object preference (chance performance). Vehicle-treated PCP-experienced rats did
not exhibit novel object preference and had a significantly reduced discrimination ratio (#p << 0.0001) compared with vehicle-
treated rats. SGE-301 (1 and 3 mg/kg) significantly increased the discrimination ratio in PCP-experienced (*p << 0.05 and **p <
0.07vs vehicle + PCP), demonstrating rescue of the object recognition deficit.
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robust LTP at 1 um (Fig. 8B). Similar to
results in cultured hippocampal neurons
(Fig. 2), SGE-201 was ~10-fold more po-
tent than 24(S)-HC (Fig. 8).

In addition to enhancing LTP induc-
tion by weak tetanic stimulation in the
adult hippocampus, both 24(S)-HC and
SGE-201 reversed LTP deficits induced by
pretreatment with the NMDAR channel
blocker ketamine in hippocampal slices
from juvenile (P30) rats (Fig. 9). In these
experiments, pretreatment of slices with 1
uM ketamine for 30 min results in LTP
inhibition that is observed subsequent to
ketamine washout and that persists for
>2 h. In the presence of 24(S)-HC or
SGE-201, tetanic stimulation produced
LTP that was sustained for over 1 h in
ketamine-pretreated slices. Similar results
were obtained with SGE-301 (data not
shown).

SGE-201 and SGE-301 reverse
behavioral deficits induced by NMDAR
channel blockers
Given the ability of SGE-201 and SGE-301
to enhance LTP induction in vitro, we de-
termined whether systemic administra-
tion of these agents could reverse deficits
in rodent behavioral models. In contrast
to 24(S)-HC, systemic administration of
SGE-201 or SGE-301 results in good sys-
temic and brain concentrations (Fig.
10A). The brain concentration of SGE-
301 is improved when compared with
SGE-201 (Fig. 104, inset), as are its po-
tency and intrinsic efficacy in potentiating
NMDA receptor function (e.g., Fig. 6B).
The ability of SGE-201 to reverse MK-
801-induced impairment in spatial work-
ing memory was assessed in a Y-maze
spontaneous alternation task in mice. In
this test, animals must recall which arms
of the Y-maze they have previously ex-
plored in a trial, with an alternation con-
sisting of successive entry into each of the
three arms of the maze without re-entry
into a previously visited arm. Acute ad-
ministration of the NMDAR channel

24(S)-Hydroxycholesterol and SGE-201 enhance

synaptic plasticity

Do the potentiating effects of 24(S)-HC and SGE-201 on
NMDAR function at synapses influence synaptic plasticity? Con-
sistent with evoked EPSC results in Figure 7, we found no effect of
oxysterols on baseline AMPAR field fEPSPs from adult (P120) rat
hippocampal slices. However, both SGE-201 and 24(S)-HC
transformed a normally subthreshold stimulus into a stimulus
capable of inducing LTP (Fig. 8A,B). At P120, a single, high-
frequency tetanus produces only STP that fades to baseline
>15-20 min (Fig. 8). In the presence of 24(S)-HC or SGE-201,
the same single tetanus resulted in robust synaptic enhancement
that persisted for over 1 h. The effects of 24(S)-HC were
concentration-dependent with marginal effects at 0.1 wM and

blocker, MK-801, significantly reduces the performance of ani-
mals in this task, as measured by percentage of alternations dur-
ing a fixed testing interval. Treatment with SGE-201 produced a
significant reversal of MK-801-induced deficits at 3 and 10 mg/
kg, intraperitoneally (p < 0.0005 and p < 0.05, respectively; Fig.
10B). SGE-201 did not produce a significant effect on the overall
number of arm entries in the Y-maze task (p > 0.05).

In rats, subchronic (7 d) administration of the NMDAR chan-
nel blocker, PCP (5 mg/kg, bid, i.p.) results in several behavioral
deficits that persist for up to 14 d following cessation of treatment
(Grayson et al., 2007; Snigdha and Neill, 2008). In the current
study, at 7 d following cessation of PCP treatment, the duration
of time spent in active social interaction was significantly (p <
0.001) reduced in PCP-experienced rats (32 = 3 s) compared
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with vehicle-treated rats (62 * 4 s; Fig. 10C). Acute administra-
tion of SGE-301 (3 and 10 mg/kg i.p.) significantly (p < 0.001
and p < 0.05, respectively) increased time spent in active social
interactions in PCP-experienced rats (57 * 4 s and 48 * 3 s,
respectively) compared with vehicle-treated PCP-experienced
rats (32 = 3 s; Fig. 10C). Administration of risperidone (0.2 mg/
kg, i.p.) also significantly (p < 0.05) increased time spent in
active social interactions (51 = 3 s) when compared with vehicle-
treated PCP-experienced rats (data not shown).

Subchronic administration of PCP also significantly impaired
performance in the NOR task when tested 14 d following cessa-
tion of PCP treatment (Fig. 10D). Due to their natural proclivity
for novelty, rodents normally spend more time exploring the
novel object in the test session, as demonstrated by the vehicle-
treated group. Novel object preference was eliminated in PCP-
experienced rats, an effect that was significantly reversed by acute
administration of SGE-301 at 1 and 3 mg/kg intraperitoneally
(p <0.05and p <0.01, respectively). Risperidone also improved
novel object preference in PCP-experienced rats (p < 0.001, data
not shown). SGE-301 had no significant effect on locomotor ac-
tivity in PCP-experienced rats during the NOR task (p > 0.05).

Discussion

The synthesis of 24(S)-HC, the major cholesterol metabolite in
brain, is critical to brain cholesterol metabolism and turnover
(Lund et al.,, 2003; Russell et al., 2009). Unlike cholesterol,
24(S)-HC is membrane-permeable and readily enters the periph-
eral circulation, where it is subsequently metabolized and ex-
creted (Liitjohann et al., 1996; Lund et al., 2003). 24(S)-HC has
been measured at very high concentrations in brain (10-20 ug/g
tissue or ~25 uM) in a variety of mammalian species (Smith et al.,
1972; Meljon et al., 2012). Russell et al. (2009) have identified the
highly conserved cytochrome P450 enzyme (cholesterol 24-
hydroxylase, CYP46A1) responsible for synthesis of 24(S)-HC
from cholesterol (Lund et al., 1999). This enzyme is expressed
predominantly in the endoplasmic reticulum of neuronal cell
bodies and dendrites, but not axons (Ramirez et al., 2008). Im-
portantly, cholesterol 24-hydroxylase deficiency disrupts hip-
pocampal LTP and memory acquisition in mice (Kotti et al.,
2006) and this disruption of hippocampal LTP is rescued by ge-
ranylgeraniol diphosphate, a downstream nonsteroidal iso-
prenoid metabolite of mevalonate (Kotti et al., 2008). Our data
suggest that 24(S)-HC may also directly impact synaptic plastic-
ity by modulating postsynaptic NMDARs in an autocrine man-
ner near sites of 24(S)-HC synthesis (Ramirez et al., 2008).
Interestingly, the potency of 24(S)-HC at NMDARs is almost
10-fold greater than at LXRs, the other major target of 24(S)-HC
(Janowski et al., 1996; Kalaany and Mangelsdorf, 2006), and the
potency of 24(S)-HC at NMDARs in our study may represent an
underestimate given the slow onset time of oxysterol action.
Other potent LXR agonist oxysterols, such as 22(R)-HC and
20(S)-HC, are not active NMDAR modulators (Fig. 1B), and
neither SGE-201 nor SGE-301 are LXR agonists (data not
shown). Combined with the excised membrane patch data in
Figure 5, these observations indicate that LXRs do not mediate
the modulatory effects of 24(S)-HC on NMDARs.

Oxysterols are now well recognized as important signaling
molecules that interact with various soluble intracellular as well
as membrane-bound receptors. In addition to serving as ligands
for LXRs in a variety of tissues (Janowski et al., 1996; Kalaany and
Mangelsdorf, 2006), oxysterols bind with relatively high affinity
to membrane proteins including Insig proteins (Radhakrishnan
etal., 2007) and oxysterol-binding proteins (Banerji et al., 2010),
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which act as oxysterol/cholesterol sensors to regulate cholesterol
synthesis and lipid metabolism. Oxysterols also activate the
Hedgehog (Hh) signaling pathway (Corcoran and Scott, 2006) by
binding to and allosterically activating the seven trans-membrane
protein Smoothened which mediates signal transduction by Hh
ligands (Nachtergaele et al., 2012). Thus, like steroids, oxysterols
can subserve cell signaling functions by binding to either soluble
or membrane-bound receptors and via both transcriptional and
post-translational mechanisms.

Our data on 24(S)-HC and NMDAR-mediated synaptic
transmission are reminiscent of previous work on neuroactive
steroids (Paul and Purdy, 1992), which directly enhance or in-
hibit synaptic transmission at GABA-ARs (Majewska et al., 1986;
Paul and Purdy, 1992) or NMDARs (Wu et al., 1991). PREGS,
one purported neurosteroid (Vallee et al., 1997), potentiates
NMDARs (Wu et al., 1991) and inhibits GABA-ARs (Akk et al.,
2001). Moreover, direct administration of PREGS to the CNS of
rodents has been reported to improve learning and memory and
to reverse the amnestic effects of NMDAR blockers (Flood et al.,
1992; Mathis et al., 1994). Nonetheless, PREGS seems unlikely to
play a significant role in the physiological regulation of NMDARs
asitisarelatively weak NMDAR PAM (EC5, = 50 um) (Wuetal.,
1991) and its presence in rodent brain is controversial (Liere et
al., 2009). Given its potency and high brain concentrations,
24(S)-HCis amore compelling candidate to modulate NMDARs
under physiological or pathophysiologic conditions. Further
work however will be required to determine whether 24(S)-HC
modulates NMDARs under physiological conditions. The avail-
ability of potent CYP46A1 inhibitors (Shafaati et al., 2010) and
CYP46A1-deficient mice (Lund et al., 2003) should facilitate
these studies. Nonetheless, regardless of a physiologic role for
24(S)-HC in regulating NMDAR function, it appears that the
novel oxysterol NMDAR modulatory site described here repre-
sents a potential target for drug discovery. The potencies of
24(S)-HC and its closely related synthetic analogs SGE-201
(Madau et al., 2009) and SGE-301 attest to the striking selectivity
of 24-hydroxylated oxysterols for NMDARs. Figure 1A shows
that these compounds bear significant structural similarity, par-
ticularly with respect to the 24-hydroxyl group of the sterol side
chain (at C-17) and the steroid backbone. The lack of any mea-
surable activity of other endogenous oxysterols at NMDARs (Fig.
1B) as well as additional compounds synthesized in an attempt to
optimize the drug-like properties of this series (data not shown),
further supports the specificity of these 24(S)-hydroxylated ox-
ysterols for NMDARs. Importantly, synthetic oxysterol deriva-
tives, like SGE-201 and SGE-301, have desirable in vivo drug-like
properties, including excellent brain concentrations after paren-
teral dosing (Fig. 10A). The reversal of NMDAR blocker-induced
impairment of cognitive and social behavior following treatment
with SGE-201 or SGE-301 suggests that this novel oxysterol
NMDAR modulatory site could serve as a target for designing
drugs to treat a variety of neuropsychiatric disorders where aug-
menting NMDAR function may be of therapeutic benefit.
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