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Single-Neuron Mechanisms Underlying Cost-Benefit
Analysis in Frontal Cortex

Takayuki Hosokawa,* Steven W. Kennerley,”* Jennifer Sloan,' and Jonathan D. Wallis!
"Helen Wills Neuroscience Institute and Department of Psychology, University of California at Berkeley, Berkeley, California 94720-3190, and 2Institute of
Neurology, University College London, London, WCIN 3BG, England, United Kingdom

Effective decision-making requires consideration of costs and benefits. Previous studies have implicated orbitofrontal cortex (OFC),
dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC) in cost-benefit decision-making. Yet controversy remains
about whether different decision costs are encoded by different brain areas, and whether single neurons integrate costs and benefits to
derive a subjective value estimate for each choice alternative. To address these issues, we trained four subjects to perform delay- and
effort-based cost-benefit decisions and recorded neuronal activity in OFC, ACC, DLPFC, and the cingulate motor area (CMA). Although
some neurons, mainly in ACC, did exhibit integrated value signals as if performing cost-benefit computations, they were relatively few in
number. Instead, the majority of neurons in all areas encoded the decision type; that is whether the subject was required to perform a
delay- or effort-based decision. OFC and DLPFC neurons tended to show the largest changes in firing rate for delay- but not effort-based
decisions; whereas, the reverse was true for CMA neurons. Only ACC contained neurons modulated by both effort- and delay-based
decisions. These findings challenge the idea that OFC calculates an abstract value signal to guide decision-making. Instead, our results suggest

that an important function of single PFC neurons is to categorize sensory stimuli based on the consequences predicted by those stimuli.

Introduction

Damage to frontal cortex can produce dramatic deficits in value-
based decision-making (Kennerley et al., 2006; Rudebeck et al.,
2008; Noonan et al., 2010; Walton et al., 2010; Camille et al.,
2011) and neurons in anterior cingulate cortex (ACC), orbito-
frontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC)
encode many decision-related attributes, such as the potential
costs or benefits of a decision (Amiez et al., 2006; Kim et al., 2008;
Hayden et al., 2009, 2011; Kennerley et al., 2009; Hillman and
Bilkey, 2010; Amemori and Graybiel, 2012; Kennerley, 2012).
Theoretical models of decision-making emphasize the impor-
tance of integrating these attributes to form a single “abstract”
value estimate for each decision alternative to simplify com-
parison of disparate outcomes (Glimcher et al., 2005; Rangel
and Hare, 2010; Padoa-Schioppa, 2011; Wallis and Rich, 2011)
and abstract value signals are evident in neuroimaging studies,
commonly in the vicinity of OFC including adjacent ventro-
medial PFC (Levy and Glimcher, 2012; Clithero and Rangel,
2013).
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At the single neuron level, neurons in both OFC and ACC inte-
grate different attributes of reward, such as its size and taste prefer-
ence (Padoa-Schioppa and Assad, 2006; Cai and Padoa-Schioppa,
2012), consistent with encoding subjective reward value. However, it
remains less clear whether single neurons integrate decision costs
and benefits as if encoding the discounted value of a reward. Some
neurons in ACC and LPFC exhibit signals that reflect cost-benefit
integration during effort- and delay-based decision-making, respec-
tively (Kim et al., 2008; Hillman and Bilkey, 2010). Yet, most OFC
neurons do not exhibit cost-benefit integration for delays to reward
(Roesch etal., 2006) or risk of obtaining reward (O’Neill and Schultz,
2010). Cost-benefit integration may not be necessary at the single
neuron level; optimal choice might arise from populations of neu-
rons that evaluate costs and benefits independently, with each con-
veying this information to the motor system to bias which action is
selected.

Clouding this issue is that decision costs can be associated with
the action required to obtain the outcome (e.g., physical effort) or
associated directly with the outcome (e.g., delay to outcome; Rangel
and Hare, 2010). These costs are typically confounded. For example,
manipulating effort by varying the number of actions required to
obtain reward (Croxson et al., 2009; Kennerley et al., 2009; Gan et al.,
2010; Toda et al., 2012) inherently introduces a delay to obtain re-
ward. When effort and delay are independent, both rodent lesion
(Rudebecketal., 2006) and human neuroimaging studies (Prévost et
al., 2010) suggest effort- and delay-based decisions may be sup-
ported by ACC and OFC, respectively. Yet effort-based MRI activa-
tions are often near the cingulate motor area (CMA; Croxson et al.,
2009; Prévost et al., 2010; Kurniawan et al., 2013). CMA neurons are
implicated in action valuation and execution (Shima and Tanji,
1998; Akkal et al., 2002), and are modulated as animals work to
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Flattened cortical representations illustrating recording locations from the four subjects. Gray shading indicates the position of a sulcus. The anterior—posterior (AP) position is measured relative to

() OFc () DLPFC

theinteraural line. ACCand CMA recording locations were in the dorsal bank of the cingulate sulcus and the lateral-medial position was calculated relative to the fundus. We defined ACC recording locations as
anterior to the genu of the corpus callosum, whereas CMA recording locations were defined as at least 2 mm posterior to the genu. The position of the genu is indicated by a dashed vertical line. In three subjects
(B, E,andK) it was at AP 30 mm, whereas in the fourth subject (N) it was at AP 25 mm. OFCrecording locations were largely located within and between the lateral and medial orbital sulci. They are plotted relative
tothe ventral bank of the principal sulcus, which s a more consistent landmark across subjects than the orbital sulci. DLPFC recording locations were located within and dorsal to the principal sulcus. CS, Cingulate
sulcus; MOS, medial orbital sulcus; LOS, lateral orbital sulcus; SAS, superior arcuate sulcus; PS, principal sulcus; IAS, inferior arcuate sulcus.

obtain reward (Shidara and Richmond, 2002). These findings raise
the possibility that any specialization for effort-based decision mak-
ing might be better ascribed to CMA than ACC. To address these
issues, we trained four monkeys to perform a novel decision-making
task that enabled us to fully dissociate effort and delay costs and
recorded simultaneously from primate ACC, OFC, DLPFC, and
CMA neurons.

Materials and Methods

Subjects and neurophysiological procedures

Four male rhesus monkeys (Macaca mulatta) served as subjects (B, E, K, and
N). Subjects were 5-6 years of age and weighed 8—15 kg at the time of
recording. We regulated daily fluid intake to maintain motivation. Our
methods for neurophysiological recording were reported in detail previously
(Lara et al.,, 2009). We used a 1.5 T magnetic resonance imaging (MRI)
scanner to ensure accurate positioning of our electrodes. Neuronal wave-
forms were digitized and analyzed offline (Plexon Instruments). We re-
corded from ACC, DLPFC, OFC, and CMA (Fig. 1) using arrays of 1024
tungsten microelectrodes (FHC Instruments). In most sessions we recorded
from at least three of the four brain areas simultaneously. We determined the
approximate distance to lower electrodes from the MRI images and ad-
vanced the electrodes using custom-built, manual microdrives. We ran-
domly sampled neurons; we did not attempt to select neurons based on
responsiveness. This procedure aimed to reduce bias in our estimate of neu-
ronal activity thereby allowing a fairer comparison of neuronal properties
between the different brain regions. All procedures were in accord with the
National Institute of Health guidelines and the recommendations of the
University of California Berkeley Animal Care and Use Committee.

Behavioral task

Subjects were trained to make choices between pairs of stimuli (Fig. 2). In
one set of trials, subjects were offered choices between stimuli that indi-
cated both the amount of reward, as well as the amount of effort required
to lift a lever to obtain reward. We held the time between effort onset and

reward delivery constant, allowing us to examine effort costs indepen-
dent of delay to reward. In the other set of trials, subjects made choices
between stimuli that indicated both the amount of reward as well as the
delay before reward delivery. As there was no required effort in these
trials, we were able to examine delay costs independent of effort. Subjects
completed an average of 465 trials during a single recording session.

For subjects B and E, we used NIMH Cortex (http://dally.nimh.nih.
gov) to control the presentation of stimuli and task contingencies. For
subjects Kand N, we used MonkeyLogic (Asaad and Eskandar, 2008). We
monitored eye position and pupil dilation using an infrared system
(ISCAN). For subjects B and E, the sampling rate was 120 Hz, whereas for
subjects K and N it was 60 Hz. Each trial began with the subject fixating a
central square 0.3° in width (Fig. 2A). If the subject maintained fixation
within 1.8° of the cue for 1000 ms (fixation epoch), two pictures (2.5° in
size) appeared at 5.0° to the left and right of fixation, drawn from one of
two sets of 16 pictures (Fig. 2B). Subjects were required to maintain
fixation throughout the choice epoch. However, one subject (K) was unable
to do thisand was allowed to freely view the pictures. After 1 s the fixation cue
changed color, which instructed the subject to choose one of the pictures by
making an eye movement toward it. The first set of pictures tested effort-
based decisions. On selecting one of these pictures, the subject had to lift a
lever against resistance (varied using a custom-built pneumatic pressure
regulator) and hold the lever in the up position for 1.5 s. A specific volume of
juice reward was then delivered. The second set of pictures tested delay-based
decisions. On selecting one of these pictures, the subject simply had to sitand
wait a specific delay until the juice reward was delivered. We varied the
volume of juice delivered by adjusting its flow rate. The subject could detect
this as soon as juice delivery began, thereby enabling us to detect neuronal
responses related to reward onset that encoded the reward amount. A 1000
ms intertrial interval (ITT) separated each trial.

We tailored the precise costs and benefits for each subject to ensure that
they received their daily fluid allotment over the course of the recording
session and to ensure that they were sufficiently motivated to perform the
task. Occasionally we would adjust these amounts from one recording ses-
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Figure 2.  The behavioral task. A, Sequence of events in the effort and delay cost-benefit task. Subjects made choices
between pairs of presented pictures. On effort trials, they had to lift a lever and hold it for 1.5 s to earn the reward. On delay
trials, they simply had to wait for a specific delay before they received the reward. The amount of reward they received, the
force to lift the lever and the length of delay varied depending on the picture they chose. Effort and delay trials were
intermingled in the same session. B, The sets of pictures used on effort (left) and delay (right) trials. There were four levels
of increasing benefit and four levels of increasing cost (effort or delay), comprising 16 pictures for each type of trial. We
tailored the precise amounts of cost and benefit from subject to subject and even across recording sessions so as to ensure
that the subjects worked for sufficient trials and received their daily aliquot of fluid within a single recording session. C,
Mean (== SEM) parameters used for each subject.
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sion to another, for example, increasing the re-
ward amounts if it appeared that a subject
required additional motivation. Figure 2C shows
the mean parameters used for each subject. We
note that for the purposes of interpreting our
data, the precise costs and benefits that we used
are not important because we calculated discount
functions for each subject for each individual re-
cording session (Fig. 3B).

We used the same pictures throughout record-
ing. Within a set (effort or delay), we presented all
possible picture pairings. However, not all pair-
ings required a cost-benefit analysis. For exam-
ple, if the pictures were equivalent in cost or
benefit, or if one picture was better in terms of
both cost and benefit, then a cost-benefit analysis
was not necessary. To ensure that we had suffi-
cient trials for our analyses, we presented those
choices requiring a cost-benefit analysis 20%
more frequently than would be expected by pair-
ing pictures randomly. In all other respects the
ordering of presented choices was pseudoran-
dom and effort- and delay-based choices were
randomly intermingled. If the subject broke fixa-
tion during the trial, failed to lift the lever for 1.5,
or moved the joystick before the go cue, the sub-
ject was given a timeout penalty of 5 s and the trial
was aborted. Only successfully performed trials
are included in our analysis.

Statistical analysis

Behavior. To examine the influence of our ex-
perimental parameters on choice behavior, for
each recording session and each set of pictures,
we calculated the discounted value of the left
and right picture (DV, and DVy, respectively).
We tested whether our data were best fit by
either a linear, hyperbolic or exponential dis-
count function.

Linear:
DV, = B, — w,C, (1)
DVy = By — w,Cy (2)
Hyperbolic:
BL
DV, = 1% wa, (3)
DVy = B (4)
1 + w,Cy
Exponential:
DV, = B, X "¢ (5)
DVy = By X e (6)

C and B represent the costs and benefits associ-
ated with the left and right picture. We then fita
logistic regression model using the difference be-
tween the discounted values (DV, — DV}) to
predict P;, the probability that the subject will
choose the left picture. We included a bias term,
b, which accounted for any tendency of the sub-
ject to select the leftward picture that was inde-
pendent of the pictures’ values.

1
P, = 1 + w(dVi—DVa) —wib (7)
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Figure 3.

Behavioral performance. A, The probability that the subject would choose a picture increased with increasing benefit and decreased with increasing cost. The choice probabilities for 16 pictures

collapsed across all recording sessions and all possible picture pairings are shown. Each cell of the matrix corresponds to a picture in Figure 28. B, The ability of linear discount functions to predict subjects’ choice.
The x-axis indicates the difference in value between the left and right pictures as determined by Equations 1and 2. Green circles indicate actual data, whereas bluelines indicate the results predicted by the model
for each individual session. The values in the top left of each plot indicate the mean percentage of variance (== SEM) explained by the linear discount function as opposed to a null model in which we assumed no
discountingi.e., that costs have no effect on the pictures' value. €, Behavioral performance as assessed by the percentage of trials on which the subject chose the more valuable option. Trials are grouped according
to whether the subjects needed to attend to both the costs and benefits to choose optimally. The gray line indicates chance level performance (50%).

We estimated the free parameters in the model by determining the values
that minimized the log likelihood of the model.

Neuronal encoding. We began our neuronal analysis by visualizing
neuronal selectivity through the construction of spike density histo-

grams. We averaged neuronal activity across the appropriate conditions
using a sliding window of 100 ms. Although it was evident in the spike
density histograms that neurons were encoding some of the parameters
related to the decisions, many of these parameters were highly correlated
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Table 1. Parameters included in the stepwise regression

Chosen
2 Unchosen

3 Chosen + unchosen
4 Chosen—unchosen
5 Ipsilateral
6

7

8

1 Discounted value

Contralateral
Ipsilateral— contralateral

Benefit Chosen

9 Unchosen
10 Chosen + unchosen
1 Chosen—unchosen
12 Ipsilateral
13 Contralateral
14 Ipsilateral— contralateral
15 Cost Chosen
16 Unchosen
17 Chosen + unchosen
18 Chosen—unchosen
19 Ipsilateral
20 Contralateral
21 Ipsilateral— contralateral
22 Behavioral response
23 Decision type

Discounted value was calculated for each session by integrating the costs and benefits using the best fitting model
from the behavioral analysis. For each parameter, we examined different ways in which the parameter could be
related to the pictures, sorted according to either the picture that the subject chose or did not choose, or the spatial
position of the picture relative to the recorded neuron. Note that the sum of the ipsilateral and contralateral picture
is identical to the sum of the chosen and unchosen picture, and so it was not included in the model as a separate
predictor. We also included the interaction between decision type and the other 22 predictors so that a total of 45
regressors were tested.

with one another. Therefore to identify what information neurons were
encoding, we performed stepwise regression. For each neuron, we calcu-
lated its average firing rate in two epochs, corresponding to the first half
(100—600 ms) and second half (600—1100 ms) of the choice epoch. (The
100 ms offset allowed time for visual information to reach the frontal
cortex). We contrasted this activity with that recorded in the fixation
period, defined as the 500 ms immediately preceding the onset of the
pictures.

The first four parameters tested whether the neuron encoded the ben-
efit associated with either the picture that the subject did or did not
choose, or the spatial position of the picture relative to the recorded
neuron. We also included three additional parameters that looked at how
these parameters might be combined: chosen + unchosen, chosen —
unchosen and ipsilateral — contralateral. Note that the sum of the ipsi-
lateral and contralateral picture is identical to the sum of the chosen and
unchosen picture, and so it was not included in the model as a separate
predictor. Thus, there were a total of seven parameters related to poten-
tial ways of encoding benefits. We added analogous parameters for costs,
bringing the number of parameters to 14. We also calculated the dis-
counted value for each parameter using the best fitting model from the
behavioral analysis to determine how the subject was integrating costs
and benefits, thereby bringing the number of parameters to 21. We added
a parameter encoding the subjects’ behavioral response (whether he
chose left and right) and a dummy coded decision type parameter that
indicated whether the subject was performing an effort or delay-based
decision. Finally, we included the interaction between decision type and
the previous 22 parameters. This enabled us to detect neurons that en-
coded one of the parameters but only for one type of decision. Thus, we
tested 45 parameters in total (Table 1).

The first step in the stepwise regression was to regress each parameter
individually against the neuron’s firing rate and determine whether any
parameter significantly predicted firing rate (assessed at p < 0.05). If
more than one parameter predicted firing rate, we determined which
parameter was the best predictor (X) and the amount of variance ex-
plained by this predictor alone. For each of the remaining predictors, we
computed the amount of variance explained if they were included in the

J. Neurosci., October 30, 2013 - 33(44):17385-17397 « 17389

model in addition to X. To establish whether the inclusion of an addi-
tional predictor explained significantly more variance than X alone, we
calculated an F value using the following equation:

N - f- DX (R - R
F-nxa-g)

RZis the variance explained by the reduced model (in this case, X alone)
and R?%is the variance explained by the full model (i.e., including the
additional predictor). In addition, N is the number of data points, fis the
number of predictors in the full model, and r is the number of predictors
in the reduced model. The significance of F was then calculated using f —
rand N — f — 1 degree of freedom. If the addition of the extra predictor
variable significantly improved the amount of explained variance (as-
sessed at p < 0.05) it was included in the model. We repeated this process
until the addition of further variables produced no significant improve-
ment in explained variance. In addition, at each step, before we added a
new variable, we tested whether any variable included at an earlier step
could be removed on the grounds that it no longer made a significant
contribution (assessed at p > 0.1). To determine whether the proportion
of neurons encoding a given parameter exceeded the proportion we
would expect by chance, we performed the same stepwise analysis on the
data from the fixation period. We then performed a binomial test to
examine whether the proportion of selective neurons in the choice period
exceed the proportion of selective neurons observed in the fixation pe-
riod. We used a Bonferroni correction to correct for the multiple com-
parisons (the 45 parameters) involved in this procedure.

To examine the time course of neural selectivity related to the encod-
ing of decision type we calculated the coefficient of partial determination
(CPD) for this parameter. This is the amount of variance in the neuron’s
firing rate that can be explained by decision type over and above the
variance explained by other predictors included in the model. It is de-
fined by:

(8)

(SSE, — SSE))

CPD = SSE,

9)
SSE, is the sum of squared errors in a regression model that includes all of
the relevant predictor variables (as indicated by the stepwise regression)
except decision type, whereas SSE; is the sum of squared errors in a
regression model that includes decision type. We calculated CPD for
each neuron using a 200 ms window of neural activity at every time point
in the trial. To calculate the latency at which neurons first encoded in-
formation about decision type, we determined the maximum CPD value
for each neuron during the fixation period. We then used the 95™ per-
centile of this distribution of values as our criterion for encoding the
decision type during the choice epoch.

Results

Analysis of behavioral data

Choice behavior

Subjects chose a picture more often as benefit increased and cost
decreased (Fig. 3A), demonstrating that they were able to weigh
the costs and benefits associated with different pictures. To ex-
amine how subjects integrated costs and benefits, we estimated
the extent to which the costs associated with the picture dis-
counted the value of the benefit, and then examined how well the
discounted values of the left and right pictures predicted subjects’
choice. In addition to a linear discount function, we also exam-
ined the fit of hyperbolic and exponential discount functions,
which have frequently been found to better predict choice behav-
ior (Kable and Glimcher, 2007; Hwang et al., 2009). A linear
discount function provided a clearly superior fit for all subjects
for both effort- and delay-based decisions (Table 2). Figure 3B
illustrates the ability of the fitted discount functions to predict the
subjects’ choices. We calculated the pseudo r-squared values of
our models by comparing the predicted choice probabilities to a
“null” model in which the value of the pictures was not dis-
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Table 2. Formal model comparison of discount functions used to predict subjects’
choice behavior

B E K N

Effort

Linear 809 442 2558 2252

Hyperbolic 1049 538 2882 2912

Exponential 1016 524 2911 2843
Delay

Linear 848 739 1596 1798

Hyperbolic 1039 817 2431 3136

Exponential 992 799 2213 2993

The values shown are Akaike Information Criterion (AIC) values, with smaller values indicating a better fit. The best
fit was provided by a linear discount function for all subjects and for both effort- and delay-based decisions. Indeed,
a comparison of AIC weights showed that in all cases a linear fit was at least 1 x 10 times more likely than a
hyperbolic or exponential fit.

counted by the cost. Calculating the pseudo r-squared values of
the logistic regression model revealed that the model explained a
mean of 85 * 1% of the variance in the subjects’ choices for
effort-based decisions and 92 * 1% of the variance for delay-
based decisions.

The fact that a linear discount function predicted subjects’
choices better than a nonlinear discount function appears coun-
ter to the behavioral evidence that nonlinear discount functions
typically provide a better fit of choice behavior (Kable and Glim-
cher, 2007; Hwang et al., 2009). However, our experiment used a
relatively limited range of costs compared with previous studies.
For example, in behavioral studies of temporal discounting in
humans, delays of several months or even years are used (Thaler,
1981). It is possible that had we used a larger range of costs we
would have seen a better fit for nonlinear discount functions.
However, given the limited number of trials that we can collect in
a single recording session, we wanted to focus on the part of the
decision space where cost is maximally affecting the value of the
benefit, rather than the part of the decision space where the effect
of cost is reaching an asymptote. This may have biased us toward
seeing a linear discount function.

Finally, we note that to motivate the subjects to complete a
sufficient number of effort trials, we needed to provide a slightly
larger reward on effort trials relative to delay trials (Fig. 2C).
However, the difference in the mean value of the pictures across
effort and delay trials was relatively small compared with the
range of values for pictures within trial type. The mean difference
in the value of the effort and delay pictures was equivalent to 0.03
ml of juice. In comparison, the mean range of values within effort
pictures was 0.48 ml and within delay pictures was 0.47 ml.

We next grouped trials according to whether the subject could
make his choice by focusing on either the cost or the benefit
(“Either” trials: one option was both lower cost and higher ben-
efit than the other option), or by focusing on solely the cost or
benefit (“Cost” or “Benefit” trials: e.g., one option was the same
cost but a different benefit to the other option) or whether the
choice required the consideration of both the costs and benefits
(“Both” trials: one option was higher cost but also higher benefit
than the other option). Only this last group of trials required a
cost-benefit analysis. We then calculated the percentage of trials
on which the subject chose the more valuable picture (Fig. 3C).
Subjects’ performance was equally good regardless of whether or
not a cost-benefit analysis was required: for every subject there
were no significant differences in performance of the different
trial types (one-way ANOVA, p > 0.1 in all cases). Thus, subjects
appeared to attend to both the costs and benefits associated with
each picture on every trial.

Hosokawa, Kennerley et al. @ Neuronal Mechanisms of Cost-Benefit Analysis

Table 3. Number of neurons recorded from each area in each subject

Subject DLPFC OFC ACC (MA
B 0 28 37 4
E 0 19 54 67
K 125 98 n7 0
N 185 61 12 0
Total 310 206 320 108

Movement times

One problem with many studies of effort-based decision-making
is that the manipulation to increase the effort associated with a
choice option inadvertently increases the delay until the subject
receives a reward. For example, clambering over a higher barrier
(Walton et al., 2002), not only takes more effort, but also takes
more time. Such manipulations could potentially confound delay
and effort discounting. Our behavioral task was explicitly de-
signed to avoid such confounds but they could conceivably arise
if it took longer for the subject to lift the lever when there was a
greater load. There was little evidence that this was the case. We
measured mean movement time for each level of effort from the
time from that a choice target was fixated (causing the other
target to disappear and indicating that the subject was free to lift
the lever) until the time at which the completion of the move-
ment was registered (which initiated the 1.5 s period that the
subject had to hold the lever in position). In all subjects, there
were significant differences in the time to perform movements
requiring different degrees of effort (one-way ANOVA, F > 5.1,
p < 0.005 in all cases). However, the pattern of effects differed
across subjects. In subject N, more effortful movements took
longer to complete than less effortful movements. However, in
two subjects (E and K) more effortful movements were com-
pleted more quickly than less effortful movements, and in the
final subject (B) there was no consistent relationship between
effort and movement times. Furthermore, in all subjects, the
movement times varied by only ~200 ms, a relatively trivial delay
compared with the delays used in the delay discounting trials.
Thus, differences in movement times on effort trials are unlikely
to explain the subjects’ valuation of the different pictures.

Analysis of neuronal data
We recorded from 944 neurons distributed across four brain ar-
eas (Fig. 1; Table 3), and examined whether neurons had a firing
rate that correlated with the costs and benefits associated with the
two options on each trial. We focused our analysis on the choice
epoch (the 1 s period between picture onset and go cue) as this
was uncontaminated by any movement or exerted effort. Neu-
rons often encoded the benefit and/or cost associated with the
presented pictures, particularly the picture that the animal even-
tually chose. Figure 4 illustrates three examples. To quantify the
information each neuron was encoding, we performed stepwise
regression analysis on neuronal data during the first and second
half of the choice epoch (see Materials and Methods; Table 1).
We tested a total of 45 parameters. During the first half of the
choice epoch 843/944 or 89% of neurons encoded at least one
parameter, and this figure rose to 872/944 or 92% during the
second half of the choice epoch. The majority of the neurons
(79%) encoded no more than three variables. The most prevalent
encodingin all areas indicated the type of decision the subject was
performing-that is, whether the subject was currently performing
an effort- or delay-based choice (Fig. 5). We will first describe
encoding of value- and response-related results as these were the
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representation of reward, at least in fron-
tal cortex, is only encoded as it relates to
the decision costs, i.e., as a signal that re-
flects the discounted value of the reward
based on the integration of costs and
benefits.

Other variables were also encoded, al-
beit rather modestly. Neurons tended to
be biased toward encoding the variables
associated with either the picture the sub-
ject intended to choose or the picture lo-
cated contralaterally to the position of the
recorded neuron. DLPFC tended to be

biased toward encoding the behavioral re-
sponse, either on its own or in an interac-
tion with decision type (e.g., the neuron
encoded the behavioral response but only
for effort-based decisions). In total, across
both epochs, 140/310 or 45% of DLPFC
neurons encoded something about the be-
havioral response, which was significantly
more than the proportion in either ACC
(85/320 or 27%, x* = 23,p <5 X 10~°),
CMA (24/108 or 22%, x> = 17,p <5 X
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1 10 %), or OFC (44/206 or 21%, x> = 30,
p<1X1077).

Neuronal dynamics of decision

type encoding

Across all four brain areas, 638/944 (68%)
of neurons encoded the decision type in at
least one of the choice epochs. Although
the prevalence of such neurons was signif-
icantly higher in ACC (250/320 or 78%)
and CMA (83/108 or 77%), there was still
a sizeable majority of neurons encoding

Time from choice onset (s)

Figure4.

benefits.

initial focus of our investigation, and we will then return to de-
scribe the encoding of decision type in more detail.

Encoding of costs, benefits, and responses

With respect to value coding, ACC differed from the other areas
in that a sizeable proportion of neurons integrated information
about costs and benefits to encode the value of the chosen picture.
Across both epochs, 74/320 or 23% of ACC neurons encoded
chosen value, significantly more than the proportion in OFC
(18/206 or 9%, x> = 17, p < 5 X 10>) or DLPFC (44/310 or
14%, x> = 7.7, p < 0.01) and a trend toward significance com-
pared with the proportion in CMA (15/108 or 14%, x> = 3.6,p =
0.056). A significant population of neurons in both ACC and
OFC encoded chosen cost-that is, they encoded the cost regard-
less of cost decision type. This suggests that the neural represen-
tation of decision costs is in an abstract or general form. However,
we did not find any significant population of neurons in any of
the four brain areas that encoded chosen benefit. Thus, the neural

Spike density histograms from neurons encoding costs or benefits. The vertical gray lines indicate the onset and offset
of the choice epoch. A, Aneuron thatincreased its firing rate as the benefit associated with the chosen picture increased, but did not
encode the effort cost. B, A neuron that increased its firing rate as cost increased, but was not affected by the benefit. €, A neuron
that performed a cost-benefit analysis for delay decisions. Itincreased its firing rate as the benefit increased or the delay decreased.
All three of these examples were recorded in ACC, the area in which we typically observed the most robust encoding of costs and

1 decision type in DLPFC (212/310 or 68%)
and OFC (117/206 or 57%, x> > 6.7, p <
0.01 for all relevant pairwise compari-
sons). Neurons exhibited a variety of
dynamics in these signals. Some showed
tonic encoding of decision type throughout
the choice epoch (Fig. 6 A, B), whereas oth-
ers showed relatively phasic encoding (Fig.
6C,D). In DLPFC, OFC, and ACC there was
an approximately even proportion of neu-
rons that showed a higher firing rate on either effort or delay trials.
During the first half of the choice epoch, of those neurons that en-
coded the decision type 97/177 or 55% of ACC neurons responded
more strongly on effort trials, compared with 84/154 or 54% of
DLPFC neurons and 37/80 or 54% of OFC neurons. None of these
proportions were significantly different from what would be ex-
pected by chance (binomial test, p > 0.1). We saw similar results in
the second half of the choice epoch (binomial test, p > 0.1 in all
cases). However, neurons in CMA were biased toward encoding
effort. During the first half of the choice epoch, 28/41 or 68% of the
decision type neurons in CMA responded more strongly on effort
trials compared with delay trials (binomial test, p < 0.05) and this
bias become even more pronounced in the second half of the choice
epoch (53/74 or 72% of neurons responded more strongly on effort
trials, binomial test, p < 0.0005).

We next examined the strength and time course of these re-
sponses at the population level. For those neurons that encoded
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Percentage of neurons that were identified, using stepwise regression, as encoding specific variables during the first or second half of the choice epoch. For clarity, we only plotted the

five variables that were most frequently encoded, because beyond that there were <<10% of the neurons encoding a given variable. The horizontal dotted line represents chance levels of neuronal
selectivity which we determined by calculating the mean percentage of neurons that were quantified as selective using the same analysis method during the fixation period i.e., before any
decision-related information was revealed to the subject. Red bars indicate that the proportion of selective neurons is significantly higher than the average proportion of selective neurons in the
fixation period, assessed using a binomial test at p << 0.05, with a Bonferroni correction for multiple comparisons (the 45 parameters).

decision type (as defined by the sliding CPD analysis; see Fig. 8),
we divided them into two groups based on whether they showed
a higher firing rate on effort or delay trials. We then plotted their
mean firing rate on effort and delay trials relative to their mean
firing rate during the fixation period (Fig. 7). For each neuron we
calculated its mean firing rate on effort and delay trials in a 500 ms
epoch that was centered on the brain area’s mean latency to en-
code decision type (see Materials and Methods). We then per-
formed a two-way ANOVA, with each neuron’s mean firing rate
as the dependent variable and two independent variables: deci-
sion (effort or delay) and preference (whether the neuron showed
a higher firing rate on effort or delay trials).

In each area there was a significant decision X preference
interaction, but this was to be expected, given how we had
grouped the data. More interesting was the pattern of simple
effects, particularly how the encoding of the Decision varied be-
tween effort- and delay-preferring neurons. In LPFC and OFC,
there was a strong significant difference in neuronal firing on

delay trials between the delay- and effort-preferring neurons
(LPEC: F(; 160) = 18.5,p <5 X 10 % OFC: F(; o9 = 19, p <5 X
10 °) but only a weak difference between these two groups of
neurons on effort trials (LPFC: F(, ,40) = 5.5, p < 0.05, OFC:
F(1 90y = 3.5,p <0.1). In other words, in both LPFC and OFC, the
encoding of decision type was driven almost entirely by modula-
tion on the delay trials, with one group of neurons showing inhi-
bition on delay trials and another group of neurons showing
excitation. The reverse was true in CMA: there was a significant
difference in neuronal firing on effort trials between the delay-
and effort-preferring neurons (F(; 5¢) = 33, p <5 X 10~7), but
no difference on delay trials (F(, sy < 1, p > 0.1). In CMA, the
encoding of decision type was driven entirely by modulation on
effort trials, with one group of neurons showing excitation and
the other group showing inhibition. Finally, both contrasts were
equally significant in ACC (effect of neuronal Preference on delay
trials: F(, 197y = 17, p < 0.0005, effort trials: F(, ;) = 15, p <
0.0005). Thus, ACC was the only area that contained populations
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able across the two types of decision (t
test, p > 0.1 in all three cases). In other
words, although individual neurons fre-
quently showed stronger modulation fora
given variable on delay or effort trials,
across the population, the stronger mod-
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ulation was equally likely to occur for ei-
ther type of decision.
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require the animal to wait. Thus, neural ac-
tivity differentiating effort and delay trials
may simply reflect motor preparation pro-
cesses on effort trials. This explanation ap-
pears to account for the neuronal activity in
CMA. As we already noted, for those neu-
rons that encoded decision type, there was
an even split between neurons encoding ei-

ther effort or delay in DLPFC, OFC, and
ACC, but in CMA, the majority of neurons
encoded effort. In addition, in CMA encod-
ing of any variable other than decision type
was very weak (Fig. 5). The only proportion
to exceed the amount of encoding present in
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Figure6.  Examples of neuronalfiring during the choice epoch for effort- or delay-based decisions. In each example, the top plot

shows the spike density histogram, with the red line indicating the neuron’s mean firing rate on effort trials and the blue line
indicating the neuron’s mean firing rate on delay trials. The bottom plot shows the coefficient of partial determination for the
decision type parameter. This measure indicates the amount of variance in the neuron’s firing rate that is accounted for by the
decision type and cannot be explained by any of the other parameters in the model (see Materials and Methods). Red data points
indicate that the decision type significantly predicts neuronal firing rate (p << 0.05 corrected for multiple comparisons). Neuron 4

was recorded from OFC, whereas neurons B—D were recorded from ACC.

of neurons that were strongly modulated by both types of deci-
sion costs.

Although we found much stronger encoding of decision type
relative to the encoding of value, it might be possible that value
coding was dependent on decision type. For example, neurons
might encode the value of the chosen picture, but only on effort
trials, which would have been evident as an interaction between
chosen value and decision type. In general, there was little evi-
dence that encoding of other variables depended on the type of
decision. There were three exceptions to this. In DLPFC, 58/310
or 19% of neurons encoded the behavioral response for one de-
cision type but not the other (behavioral response X decision
type interaction) in at least one of the choice epochs, whereas
14/108 or 13% of CMA neurons encoded this same information.
In ACC, 45/283 or 16% of neurons encoded the chosen cost for
one decision type but not the other (chosen cost X decision type
interaction). To examine whether these neurons favored either
effort or delay decisions we performed two separate regressions.
For each neuron, we included the variables identified by the step-
wise regression, and performed the regression separately on effort
and delay trials. We then compared the absolute value of the
standardized B coefficient for the variable that interacted with
decision type on effort and delay trials. There was no systematic
difference in the size of the B coefficients for the interacting vari-

the fixation period was the interaction be-
tween decision type and response during
the second half of the choice epoch, and
even this accounted for only a small mi-
nority of neurons (10/108 or 9%).

If decision type encoding in CMA ac-
tually reflected motor preparation pro-
cesses we hypothesized that it would have
a later onset than neural activity that was
responsible for identifying the type of de-
cision with which the subject was faced.
To examine whether there were differ-
ences between the areas in terms of the onset of decision type
encoding, we calculated the CPD for decision type at each point
in the trial. Figure 8 shows that decision type encoding did appear
to occur later in CMA relative to DLPFC, OFC, and ACC. To
calculate the latency at which neurons first encoded information
about decision type, for each neuron we determined the time at
which the CPD exceeded 95% of the CPD values during the fix-
ation period. Because the latency to detect a signal is correlated
with the strength of the signal, we included the maximum value
of the CPD as a covariate in the analysis. The mean latency at
which decision type was encoded was at least 120 ms later in CMA
(596 ms = 26 ms) compared with the other three areas (DLPFC:
417 ms * 15 ms, OFC: 462 ms * 20 ms, ACC: 474 ms = 14 ms).
A one-way ANCOVA revealed significant differences between the
areas in terms of the mean latency to encode the decision type
(F3.501) = 10, p <5 X 10~ °). Tukey’s Honestly Significant Dif-
ference post hoc tests revealed that CMA was significantly slower
to encode the decision type than either DLPFC (p < 0.001) or
OFC (p < 0.01) and a trend toward being significantly slower
than ACC (p < 0.1). Decision type was also encoded significantly
more quickly in DLPEC relative to ACC (p < 0.05).

Thus, the data we collected from CMA, a predominately mo-
tor area, differed markedly from the data we collected from



17394 - ). Neurosci., October 30, 2013 - 33(44):17385-17397

ACC, OFC, and DLPEC. Although CMA
neurons did encode decision type, neural
activity was consistently higher on effort
trials, it occurred later in the choice epoch 6
and it did not reflect the costs and benefits
associated with the choice. In turn, this
highlights the aspects of the neuronal ac-
tivity in ACC, OFC, and DLPFC that are
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of decision type in all three areas, and in-
deed was completely absent in OFC. Thus,
encoding of decision type in ACC, OFC,
and DLPFC appears to signal whether the
subject is performing an effort- or delay-
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of cost decision the subject faced. We pre-
viously found that OFC neurons encoded
multiple decision attributes (reward
probability, magnitude, and effort costs)
when each attribute was tested indepen-
dently, which suggested that OFC may in-
tegrate multiple different decision
attributes to calculate an abstract value
signal to guide subject’s choice (Kennerley
et al., 2009; Wallis and Kennerley, 2010); a view echoing others
(Rangel and Hare, 2010; Padoa-Schioppa, 2011). However, not
all data has been consistent with this view. Rodent studies have
reported separate representations of delay costs and reward mag-
nitude in OFC (Roesch et al., 2006), whereas in the monkey, OFC
contains separate populations of neurons encoding reward risk
and reward magnitude (O’Neill and Schultz, 2010). Even in our
previous study, although we identified some OFC neurons that
encoded value across three decision attributes, the majority of
OFC neurons in fact encoded value for only one or two decision
attributes (Kennerley et al., 2009).

Previous studies that have identified integrated value signals
in OFC have typically manipulated the type and magnitude of a
juice reward (Padoa-Schioppa and Assad, 2006, 2008; Padoa-
Schioppa, 2009). OFC processes taste and smell information to

Figure7.

1 0 1

Time from choice onset (s)

Time course of activity encoding the type of decision for effort-preferring and delay-preferring neuronal populations.
Each plot shows the mean firing rate relative to baseline == SEM. The gray shading illustrates the 500 ms epoch used for analysis
which is centered on the mean latency at which the information is encoded in each area. The blue numbers indicate the number of
neurons included in each plot. Neurons were defined as encoding decision type based on reaching criterion on the sliding coeffi-
cient of partial determination analysis (see Fig. 8).

construct flavor representations (Small et al., 2007; Grabenhorst
etal., 2008; Wu et al., 2012). It is possible that OFC is responsible
for integrating only a subset of decision attributes, perhaps those
related to the sensory characteristics of reinforcers (Burke et al.,
2008; Mainen and Kepecs, 2009). Therefore, type and magnitude
of juice may have been ideal parameters for detecting OFC value
signals. More generally, decision-making may be a relatively dis-
tributed process with different brain areas responsible for encod-
ing and/or integrating different types of decision attributes.

We found stronger encoding of integrated value in ACC
rather than OFC, consistent with several studies reporting value
signals in ACC (Amiez et al., 2006; Hayden et al., 2009; Kennerley
et al., 2011; Amemori and Graybiel, 2012; Cai and Padoa-
Schioppa, 2012). In some models of decision-making, the process
of choosing between alternatives occurs between different action
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Figure 8.  Encoding of decision type across the population. Each horizontal line on the plot indicates the selectivity of a single

neuron as measured using the coefficient of partial determination (see Materials and Methods). Neurons have been sorted accord-
ing to the latency at which they first show selectivity. The vertical blue lines indicate the onset and offset of the choice epoch.

(rather than stimulus) values (Cisek, 2012; Rushworth et al.,
2012). This predicts that integrated value signals may be best
represented in relatively downstream structures, such as ACC,
which is more strongly connected with motor areas compared
with OFC (Van Hoesen et al., 1993; Carmichael and Price, 1995).
Interestingly, there were no value signals in CMA, suggesting that
CMA is responsible for movement implementation rather than
the value-based decision.

We also found that OFC and ACC neurons encoded a chosen
cost signal, whereas DLPFC encoded the cost associated with the
contralateral picture. These findings suggest that frontal neurons
may encode decision costs in an abstract manner, independent of
the specific way in which the cost is manipulated. Surprisingly, we
did not find any population of neurons that encoded chosen
reward independent of the costs. Thus, unlike decision costs, the
neural representation of reward in frontal cortex appears to de-
pend on the decision costs or decision context.

Functional dissociation of effort- and delay-based decisions

Based on lesion studies in rats and neuroimaging studies in hu-
mans, we hypothesized that ACC and OFC may be specialized for
effort- and delay-based decisions, respectively. The strongest ev-
idence for specialization of decision cost coding would be to see
neurons encoding an interaction of the costs and/or benefits with
decision type. There were no such neurons in OFC and, in ACGC;
although there were neurons that showed an interaction between
chosen cost and decision type, there was no evidence that this
population of neurons favored encoding costs on effort trials.
Nevertheless, the different brain areas did show different degrees
of modulation in overall firing rate depending on the type of
decision. OFC and DLPFC showed stronger modulation on delay
trials, consistent with evidence suggesting a preferential involve-
ment of these areas in delay-based decisions (McClure et al.,
2004; Roesch and Olson, 2005; Kable and Glimcher, 2007; Mc-
Clure et al., 2007; Kim et al., 2008; Prévost et al., 2010). However,
we found the strongest modulation of firing rate on effort trials in
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CMA rather than ACC. We interpreted
this result as related to the increasing mo-
tor demands required as effort increases,
consistent with the relatively late onset of
neuronal selectivity in CMA.

Our results suggest reappraisal of

0
o o0 previous effort-related results that were
o =+ attributed to ACC. First, although the
e
3 & homology between human and monkey
> 2 cingulate areas is strong, the homology
g. =8 between primate and rodent is not
= straightforward (Rushworth et al., 2004;
’O\? = Wise, 2008). Thus, studies in rodents that
- Q

implicated ACC in effort-based decision
making (Walton et al., 2002; Rudebeck et
al., 2006; Hillman and Bilkey, 2010) may
have explored regions of rodent ACC that
are more homologous to CMA in pri-
mates. Second, effort-based activations in
neuroimaging studies are caudal to the
genu of the corpus callosum in and
around the location of human CMA
(Croxson et al., 2009; Prévost et al., 2010;
Kurniawan et al., 2013). In the present
study, all the value coding ascribed to
ACC was rostral to the genu of the callo-
sum, whereas the firing rate modulations
in CMA noted on effort trials were caudal to the genu. Further,
ACC/CMA BOLD activations correlate with effort exerted, rather
than value (Prévost et al., 2010; Kurniawan et al., 2013), consis-
tent with an explanation in motor terms rather than decision-
making. It is also noteworthy that ACC neurons in rodent do not
encode reward value when no effort is required (Hillman and
Bilkey, 2010). Together, we propose that more rostral parts of
primate ACC have a prominent role in decision making and ap-
pear to encode decision value both abstractly (Kennerley et al.,
2009, 2011) and as an integrated value signal (current results),
whereas the caudal CMA region encodes much less information
about the value of choices (Kennerley et al., 2009) but may be
critical for motivating and executing a course of action.

Representation of decision type

Despite relatively sparse value coding across all four frontal areas,
all areas exhibited prominent decision type selectivity. The ques-
tion remains as to why frontal neurons encode decision type.
More specifically, given the surprising lack of value signals in
OFC, what function is OFC performing if it is not calculating
value? OFC is argued to be responsible for encoding associations
between stimuli and the outcomes they predict (Ostlund and
Balleine, 2007; Balleine and O’Doherty, 2010; Camille et al., 2011;
McDannald et al., 2011; Luk and Wallis, 2013). In addition, pre-
frontal cortex is thought to be responsible for the abstraction of
stimuli and responses into high-level categories, rules and behav-
ioral “sets” (Miller et al., 2003) and OFC and DLPFC neurons
encode abstract rules (Wallis et al., 2001). Putting these findings
together, a function of OFC may be a dimensionality reduction of
stimulus space into important decision categories or sets based
on predicted outcomes. Encoding of decision type was also the
most prevalent encoding in DLPFC and ACC, suggesting that the
task is parsed in a similar way across multiple frontal areas. In-
deed, recent results have emphasized the role of DLPFC in pars-
ing the structure of behavioral tasks (Schapiro et al., 2013).
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These ideas might help to explain why value coding may or
may not be observed in OFC. Value becomes one of many dimen-
sions of an outcome that might help categorize the stimulus
space. Furthermore, in the current task, it is not a particularly
useful dimension for this purpose. The value of each of the pic-
tures is uniquely specified by a combination of the costs and
benefits associated with that picture and so value does not con-
dense the stimulus set. In contrast, decision type categorizes the
stimuli into two sets, based on whether they predict effort- or
delay-based decisions. Moreover, we presented every possible
combination of picture pairs within each decision cost, present-
ing subjects with 240 unique choice value contexts. In compari-
son, our previous experiment (Kennerley et al., 2009) grouped
pictures according to decision type and varied their associated
outcomes by a single attribute, leading to only 24 unique choice
contexts. In this case, OFC neurons encoded both the value of the
picture as well as the decision type. Thus, as the number of pos-
sible choice combinations increases, value coding may shift away
from a single neuron representation in OFC. The brain may en-
code the value of specific pictures in other areas, such as the tail of
the caudate (Kim and Hikosaka, 2013) or perirhinal cortex
(Ohyama et al., 2012), or the information may remain in OFC,
but rely on higher dimensional representations at the population
level (Rigotti et al., 2013; Shenoy et al., 2013). Finally, it is notable
that those tasks that observed the clearest value signals in OFC
(Padoa-Schioppa and Assad, 2006, 2008; Padoa-Schioppa, 2009)
used visual stimuli that directly correlated with the type and value
of the outcomes which may also bias OFC to categorizing the
visual stimuli according to their value.

Recent computational accounts of OFC function reached
similar conclusions (Takahashi et al., 2011). OFC lesions in rats
are more consistent with a loss of “state” information, which
corresponds to information about the task that enables more
accurate value predictions, rather than value information per se.
Thus, although the value of predicted outcomes is a component
of the information that OFC represents about sensory stimuli, it
is perhaps premature to conclude that this is its primary function.
In straightforward tasks, where value is the only manipulation, it
is the main feature encoded by OFC neurons. However, as tasks
become more complex it appears that OFC encodes higher-level
aspects of the task, such as the decision set that is guiding choice.
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