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Abstract
Bone is a dynamic tissue that is constantly renewed 
by the coordinated action of two cell types, i.e. , the 
bone-resorbing osteoclasts and the bone-forming os-
teoblasts. However, in some circumstances, bone re-
generation exceeds bone self repair capacities. This is 
notably often the case after bone fractures, osteolytic 
bone tumor surgery, or osteonecrosis. In this regard, 
bone tissue engineering with autologous or allogenic 
mesenchymal stem cells (MSCs) is been widely devel-
oped. MSCs can be isolated from bone marrow or other 
tissues such as adipose tissue or umbilical cord, and 
can be implanted in bone defects with or without prior 
amplification and stimulation. However, the outcome of 
most pre-clinical studies remains relatively disappoint-
ing. A better understanding of the successive steps and 
molecular mechanisms involved in MSC-osteoblastic dif-
ferentiation appears to be crucial to optimize MSC-bone 
therapy. In this review, we first present the important 
growth factors that stimulate osteoblastogenesis. Then 
we review the main transcription factors that modulate 
osteoblast differentiation, and the microRNAs (miRs) 
that inhibit their expression. Finally, we also discuss 

articles dealing with the use of these factors and miRs 
in the development of new bone MSC therapy strate-
gies. We particularly focus on the studies using human 
MSCs, since significant differences exist between osteo-
blast differentiation mechanisms in humans and mice 
for instance.
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Core tip: Several excellent reviews on the transcrip-
tion factors involved in osteoblast differentiation have 
recently been published, but none also presented the 
microRNAs (miRs) that control the expression of these 
transcription factors. Moreover, most of these reviews 
mainly reported mouse studies but important differ-
ences are well acknowledged between humans and 
mice. For instance vitamin D3, an important hormone 
controlling bone homeostasis, has very different effect 
in these species. Therefore, in the present review we 
particularly focus on human cells to present the tran-
scription factors and miRs controlling mesenchymal 
stem cells-osteoblastic differentiation.
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BONE REPAIR WITH MESENCHYMAL 
STEM CELLS
Historically, Friedenstein et al[1] were the first to report 
the presence of  fibroblastoid cells in the adult bone mar-
row that can make bone and reconstitute a hematopoietic 
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microenvironment when transplanted subcutaneously. 
These mesenchymal stem cells (MSCs) were later report-
ed to contribute to various musculoskeletal tissues such 
as bone, cartilage, fat, muscle, ligament and tendon[2]. In 
2006, the International Society for Cellular Therapy pro-
posed that cells with the following characteristics should 
be considered as MSCs, (1) cells adherent to plastic in 
culture; (2) presence of  CD105, CD73 and CD90 but 
absence of  CD34, CD45, CD14 or CD11b, CD79α or 
CD19, and HLA-DR molecules; and (3) cells with the 
capacity to differentiate into osteoblasts, chondrocytes 
and adipocytes[3]. However, although these criteria are 
widely accepted, they may still be imperfect. Indeed, the 
three markers are co-expressed in a wide variety of  cells, 
and may therefore not be able to indentify a single MSC 
population in vivo[4].

MSCs represent less than 0.01% of  the bone mar-
row cell population. At birth, the frequency of  MSCs has 
been reported as 1 MSC/104 BM-mononuclear cells, de-
creasing to 1 MSC/105 BM-mononuclear cells in teenag-
ers to 1 MSC/2 × 106 BM-mononuclear cells in 80-year-
old individuals[5]. To overcome the drawbacks associated 
with MSC isolation from bone marrow, other sources 
have been contemplated. MSCs can indeed be recovered 
from several different locations such as adipose tissue[6], 
dental pulp[7] and umbilical cord[8]. Recently, Sacchetti et 
al[9] reported CD146 high pericytes surrounding bone 
marrow vascular sinusoids can be considered as MSCs as 
they are self-renewing osteoprogenitors capable of  ecto-
pic bone formation. Finally, differences appear to exist 
between MSC populations from different tissues, which 
represents an additional challenge to devise a universal 
definition[10].

MSC differentiation into osteoblasts can be achieved by 
adding vitamin D3, ascorbic acid and β-glycerophosphate 
to the culture medium[11]. Several laboratories use dexa-
methasone, a synthetic glucocorticoid, instead of  vitamin 
D3. Dexamethasone appears to optimize differentiation 
from MSCs, but not specifically to the osteoblast lin-
eage[12]. In osteogenic conditions, human MSCs secrete a 
matrix enriched in type Ⅰ collagen which will be be miner-
alized with apatite crystals upon activation of  tissue-non 
specific alkaline phosphatase (TNAP) (Figure 1)[13]. Os-
teoblasts also secrete a tissue-specific protein, osteocalcin, 

recently shown to act as a circulating hormone involved 
in the control of  insulin secretion and sensitivity[14]. How-
ever, although this protein is a useful marker of  osteoblast 
differentiation, it doesn’t seem to impact bone formation. 
Eventually, some osteoblasts will become surrounded by a 
mineralized collagen matrix and further differentiate into 
bone-residing osteocytes, which secrete different proteins 
such as sclerostin, a canonical Wnt signaling inhibitor, and 
dentin matrix protein-1, a molecule controlling phospha-
temia[15].

MSCs have been implanted in association with dif-
ferent scaffolds to rebuild bone[16,17]. Injection of  MSCs 
has also been shown to correct bone defects. Notably, 
allogenic bone marrow transplants or injection of  iso-
lated MSCs in children with osteogenesis imperfecta 
(OI) have improved bone formation and function[18,19]. 
However, although promising data were reported, many 
others led to contrasting if  not disappointing results[20]. 
In this regard, it appears crucial to better understand the 
molecular mechanisms of  osteoblast differentiation from 
human MSCs. This will allow us to improve the bioactiv-
ity of  injected MSCs or MSC-containing hybrid materials 
by stimulating their osteoblast differentiation. This may 
be achieved through genetic modification of  MSCs. For 
instance, autologous MSCs may be modified to correct 
the abnormal collagen synthesis in patients with OI[21]. 
Several excellent reviews on osteoblast differentiation 
have been published in recent years. To our knowledge 
however, none has focused on the interactions between 
transcription factors and microRNAs in human mesen-
chymal stem cells specifically. We believe that it is par-
ticularly important since significant differences are well 
acknowledged between osteoblastogenesis of  human and 
mouse MSCs. For instance, while vitamin D3 binds to a 
vitamin D response element (VDRE) in the osteocalcin 
promoter in humans and rats, the mouse osteocalcin pro-
moter is devoid of  any VDRE and vitamin D3 exerts an 
indirect inhibitory effect on osteocalcin transcription[22,23].

GROWTH FACTORS STIMULATING 
MSC-OSTEOBLASTIC DIFFERENTIATION
Two families of  growth factors appear to stimulate osteo-
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Figure 1  transcription factors involved in 
osteoblast differentiation form mesenchy-
mal stem cells. Markers of differentiation are 
shown in black, stimulatory transcription factors 
in green, and inhibitory ones in red. MSCs: 
Mesenchymal stem cells; ATF4: Activating tran-
scription factor 4; C/EBP: CCAAT/enhancer-
binding proteins; Coll: Collagen; DMP-1: Dentin 
matrix protein-1; Ob: Osteoblast; Osx: Osterix; 
PPAR: Peroxysome proliferator activated recep-
tor; SATB2: Special AT-rich sequence binding 
protein 2; TAZ: Transcription coactivator with 
binding capacity to PDZ motifs; TNAP: Tissue-
nonspecific alkaline phosphatase; Runx2: Runt-
related 2.



blast differentiation from MSCs: the Wnt (a portmanteau 
of  Wingless and integration 1) family and the bone mor-
phogenetic proteins (BMPs).

Wnt family members
Wnt proteins are a family of  19 highly conserved secret-
ed glycoproteins that play essential roles during develop-
ment and tissue homeostasis[24]. Some Wnt proteins such 
as Wnt3a and Wnt10b bind to Frizzled receptors, and 
recruit the LRP5/6 coreceptors to activate the canonical 
signaling pathway, leading to glycogen synthase kinase-β 
inhibition, β-catenin stabilization, translocation into the 
nucleus and regulation of  T-cell factor/lymphoid en-
hancer factor (TCF/LEF) transcriptional activity. Binding 
of  Wnt proteins to LRP5/6 is inhibited by secreted fac-
tors such as Dickkopf-related protein 1 (Dkk1)[24]. Dkk1 
binds to LRP5/6 causing the receptor to attract Kremen, 
and this interaction promotes clathrin-mediated internal-
ization thereby inactivating LRP5/6.

The importance of  the canonical Wnt signaling 
in bone is well-acknowledged. Genetic reports estab-
lished that Wnt/β-catenin activity is essential for bone 
development[25]. Deficiency of  Dkk1 is associated 
with increased bone formation in mice and humans[26]. 
Wnt10b may be particularly important for bone for-
mation. Wnt10b is expressed in the bone marrow by 
osteoblast progenitors[27], and transgenic overexpres-
sion of  Wnt10b in mesenchymal cells leads to increased 
bone density and accelerated osteoblastogenesis in vitro, 
whereas Wnt10b-/- mice have reduced trabecular bone[28]. 
Moreover, Wnt10b seems to stimulate osteoblast func-
tions through a positive autocrine loop[29]. On the other 
hand, other recent findings indicate that canonical Wnt 
signalling inhibits osteoblast differentiation in human 
MSC cultures[30-32]. These contrasting findings have been 
reconciled recently by Liu et al[33] who found that Wnt/
β-catenin signalling favours osteogenic commitment 
in basal medium by inhibiting MSC commitment into 
adipocytes, but inhibits osteoblast differentiation in os-
teogenic conditions. This was confirmed by Kang et al[34] 
who reported that Wnt10b induction of  osteogenesis in 
mouse progenitors was due to inhibition of  peroxysome 
proliferator-activated receptor (PPAR)γ and CCAAT/
enhancer-binding protein (C/EBP)α activity. The mu-
tual inhibition between β-catenin and PPARγ will be 
discussed below.

Alternatively, non-canonical Wnt members may also 
be involved in the effects of  TNF-α on ossification. 
In particular, Wnt5a seems to be the predominant Wnt 
variant expressed during osteoblastic differentiation of  
human MSCs[35]. Wnt5a+/- mice present a reduced bone 
mass phenotype with decreased osteoblast number[36]. 
Wnt5a appears to stimulate osteoblast differentiation 
through an autocrine loop in human MSCs[37,38]. Another 
non-canonical Wnt with a potential interest in bone 
repair is Wnt4. In two different models of  craniofacial 
bone injury, Chang et al[39] observed that human MSCs 
genetically engineered to express Wnt-4 enhanced osteo-

genesis and improved the repair of  craniofacial defects in 
nude mice.

Bone morphogenetic proteins
BMPs are growth factors that belong to the transforming 
growth factor beta (TGF-β) superfamily[40,41]. The term, 
bone morphogenetic protein was first introduced to 
describe the components in demineralized bone matrix 
that can induce ectopic bone formation when implanted 
intramuscularly or subcutaneously into rodents[42,43]. To 
date, more than 20 BMP members have been character-
ized. As TGF-β, BMPs trigger cellular responses mainly 
through the Smad pathway[44], although they can also ac-
tivate the mitogen-activated protein kinase pathway[45]. In 
the Smad pathway, type Ⅱ and type Ⅰ receptors with ser-
ine/threonine kinase activity and intracellular Smad pro-
teins relay the signal from the cell surface to the nucleus. 
Three type Ⅱ receptors can bind BMPs: type Ⅱ BMP 
receptor, and type Ⅱ and ⅡB activin receptors (ActR-
Ⅱ and ActR-ⅡB)[40]. Three type Ⅰ receptors for BMPs 
have also been characterized: type ⅠA and ⅠB receptors 
(BMPIA or ALK3 and BMPIB or ALK6), and type Ⅰ
A activin receptor (ActRIA or ALK2). The receptors 
activated by ligand binding phosphorylate a subgroup of  
receptor-regulated Smads (R-Smads including Smad 1, 5 
and 8). The phosphorylated R-Smads then disassociate 
from their receptor and form complexes with the com-
mon partner Smad 4. Smad heterodimers then migrate 
into the nucleus where they associate with transcription 
factors to regulate gene transcription. This Smad signal 
is inhibited by Smad 6 and Smad 7, which block phos-
phorylation of  R-Smads.

BMP factors are important in skeletogenesis[40]. 
BMP-2 is expressed in areas surrounding cartilage 
condensations[46,47], while BMP-4 is expressed in peri-
chondrium[47]. BMP-2 is also expressed in periosteal and 
osteogenic zones[46]. Due to their effect on runt-related 2 
(Runx2) and osterix expression[48], BMPs are very potent 
inducers of  mesenchymal progenitor cell differentiation 
into osteoblasts[49]. Recombinant BMPs can be added 
in different materials such as in collagen sponges and 
calcium phosphate ceramics to be delivered in situ for 
clinical practice[50-52]. In humans, recombinant human 
BMP-2 and BMP-7 have been approved for clinical 
use in orthopedic surgery for long bone open-fractures 
treated with intramedullary fixation and non-union frac-
tures, and in spine surgery for spinal fusion in place of  
iliac crest bone graft[53]. BMPs do not seem to accelerate 
fracture healing but tend to increase healing rates with-
out requiring a secondary procedure[54]. Nevertheless, 
several concerns today complicate the use of  BMPs, 
such as heterotopic ossifications, immunogenic reactions 
or hardware failure[54,55]. Moreover, the clinical interest 
of  BMPs is limited to local applications, and BMPs may 
not represent an alternative treatment to systemic bone 
diseases such as osteoporosis. Systemic use of  BMPs is 
limited by their non-skeletal effects, mitogenicity, and 
short half-life.
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looking for 14-3-3-interacting proteins[70]. TAZ contains a 
14-3-3-binding motif, a single WW domain, an extended 
coiled-coiled region within a larger transcriptional regula-
tory domain, multiple sites of  phosphorylation, and a 
C-terminal motif  that can interact with PDZ-containing 
proteins[71]. The WW domain of  TAZ binds to the se-
quence motif  Pro-Pro-X-Tyr. This motif  can be found 
within the regulatory regions of  a large number of  tran-
scription factors, including Runx2 and PPARγ, as well as 
members of  the Sox, and SMAD families, suggesting that 
TAZ may be involved in the regulation of  MSC com-
mitment and differentiation into osteoblasts, adipocytes 
and chondrocytes[71]. The WW domain-containing mol-
ecule TAZ directly interacts with Runx2 and co-activates 
Runx2-dependent gene transcription[72]. In contrast, TAZ 
binds to, and markedly inhibits, the ability of  PPARγ to 
drive the expression of  adipocyte-associated genes such 
as adipocyte protein 2, and depletion of  TAZ increases 
their adipocyte differentiation[72]. The processes through 
which TAZ is induced and/or activated are poorly un-
derstood[71]. TAZ levels increase substantially in MSCs in-
duced to differentiate into osteoblasts with BMP-2, whilst 
conversely, they decrease during adipocyte differentia-
tion[71]. It was also reported that TNF-α stimulates osteo-
genesis in hMSCs from adipose tissue through NF-κB 
activation and TAZ expression[73]. However, the patho-
physiological significance of  this finding remains obscure. 
In mouse mesenchymal cells, high-throughput screen-
ing allowed to identify a chemical compound, so-called 
TM-25659, that enhances TAZ nuclear localization and 
osteoblast differentiation at the expense of  adipocytes[74]. 
Moreover, TM-25659 suppressed bone loss in vivo and 
decreased weight gain in an obesity model. Although this 
compound seems to have a favorable pharmacokinetic 
profile, work remains to be done to demonstrate its pos-
sible interest in clinical application.

Special AT-rich sequence binding protein 2: Special 
AT-rich sequence binding protein 2 (SATB 2) is a mem-
ber of  the family of  special AT-rich binding proteins 
that binds to nuclear matrix attachment regions (MARs) 
and activates transcription in a MAR-dependent manner. 
SATB2 inactivation in man results in cleft palate[75]. SATB 
2-/- osteoblasts are characterized by a decreased differen-
tiation, illustrated by reduced bone sialoprotein (BSP) and 
osteocalcin expression[76]. SATB2 can physically interact 
with both activating transcription factor 4 (ATF4) and 
Runx2 and enhance the transactivation function of  both 
proteins[76]. Overexpression of  SATB 2 in mouse bone 
marrow stromal cells stimulates expression of  osterix 
and BSP[77]. Transplanted SATB 2-overexpressing adult 
stem cells genetically double-labeled with BSP promoter-
driven luciferase and β-actin promoter-driven enhanced 
green fluorescent protein into mandibular bone defects 
accelerated new bone formation[77]. In addition, SATB 
2-overexpressing murine induced pluripotent stem cells[78] 
show increased mineral nodule formation and elevated 
mRNA levels of  key osteogenic genes, osterix, Runx2, 

TRANSCRIPTION FACTORS INVOLVED 
IN MSC-OSTEOBLAST DIFFERENTIATION 
Stimulatory transcription factors
β-catenin: As detailed above, β-catenin is potently acti-
vated in the canonical Wnt signaling pathway[24]. In this 
pathway, unphosphorylated β-catenin molecules accu-
mulate in the cytoplasm, translocate to the nucleus, and 
activate the transcription of  downstream genes by binding 
tLEF/TCF transcription factors. Conditional deletion of  
β -catenin gene in Dermo-Cre or Prx1-Cre transgenic mice 
reveals its essential role in osteoblast differentiation[25,56]. 
In addition, conditional deletion of  β -catenin gene in 
Wnt1-Cre transgenic mice, in which Cre is expressed in 
neural crest cell precursors, results in loss of  cranial bones 
derived from neural crest cells[57]. Interestingly Runx2 is 
expressed in β-catenin deficient cells[25,56], but is strongly 
enhanced by β-catenin/TCF1. It is required for osterix 
expression and osteoblast differentiation[58] (Figure 1). 

Runx2: Runx2 belongs to the Runx family, which consist 
of  Runx1, Runx2 and Runx3. These transcription factors 
form heterodimers with Cbfb and bind to the consensus 
sequence TGPyGGPyPy[59]. Runx2 is considered as the 
master osteoblast transcription factor (Figure 1). It was 
identified as a factor binding to an osteoblast specific cis-
acting element in the promoter of  the genes encoding for 
osteocalcin[60]. Runx2 deficiency in mouse leads to the for-
mation of  a skeleton devoid of  osteoblasts[61,62]. In man, 
inactivating mutations in Runx2 leads to a skeletal dyspla-
sia called cleidocranial dysplasia[63]. Runx2 regulates many 
genes that determine the osteoblast phenotype. Runx2 
is sufficient to induce the expression of  many osteoblast 
markers, such as osteocalcin, in non-osteoblastic cells[60]. 
However, Runx2 overexpression in osteoblasts severely 
reduces osteocalcin expression and osteoblast matura-
tion[64,65]. Therefore, whereas Runx2 is required to commit 
undifferentiated cells towards the osteoblast lineage, it ap-
pears to maintain these cells in an immature stage[66].

In murine fibroblasts, the forced expression of  Runx2 
is sufficient to induce expression of  osteoblast markers 
such as collagen type Ⅰ, osteocalcin or bone sialoprotein. 
Adenoviral overexpression of  Runx2 in mouse MSCs 
generated substantially more bone than control MSCs 
when implanted in subcutaneous tissue or in calvarial 
defects[67]. Similarly, rat bone marrow stromal cells trans-
duced with Runx2 retroviral vector seeded onto 3D-fused 
deposition-modeled polycaprolactone scaffolds, produced 
biologically-equivalent mineralized matrices at nearly 2-fold 
higher rates than control cells[68]. In human MSCs isolated 
from adipose tissue, electroporation of  Runx2 stimulated 
osteoblast differentiation in vitro with increased expression 
of  alkaline phosphatase and osteocalcin[69].

Transcription coactivator with binding capacity to 
PDZ motifs: Transcription coactivator with binding ca-
pacity to PDZ motifs (TAZ) was originally identified dur-
ing a series of  control experiments in a proteomic screen 
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Bsp and osteocalcin[79]. SATB 2-overexpressing induced 
pluripotent stem cells combined with silk scaffolds and 
transplanted into critical-size calvarial bone defects cre-
ated in nude mice induced enhanced bone repair[79].

Osterix: Besides Runx2, the second transcription fac-
tor absolutely required for osteoblast differentiation is 
Osterix (Osx, also known as Sp7). Osx is a zinc finger-
containing transcription factor belonging to the SP family 
of  transcription factors. Osx is specifically expressed in 
osteoblasts, and is required for bone formation[80]. The 
fact that Runx2 is expressed in Osx-deficient mice com-
bined with the absence of  Osx in Runx2 null mice places 
Osx downstream of  Runx2[80]. Actually, Runx2 may in-
duce Osx expression, through direct binding on its pro-
moter[81]. Interestingly, Osx binds to the promoter of  Satb 
2 to increase the transcription of  the Satb 2 gene[82]. Thus, 
part of  the effects of  Osx may rely on SATB 2 activity. 
Murine bone marrow stromal cells overexpressing Osx 
associated with type Ⅰ collagen sponge as a carrier exhib-
ited five times more amounts of  newly formed calvarial 
bone than that the control group in adult mice[83]. In ad-
dition, overexpression of  Osx in human umbilical cord-
derived MSCs result in increased alkaline phosphatase 
activity and osteocalcin expression, and enhanced bone 
regeneration in nude mice using polylactic-co-glycolic 
acid as a carrier[84].

Smads: Runx2 cooperates with Smad (a portmanteau of  
Sma in Drosophila and Mad in C. elegans) 2 and Smad 
5 to regulate bone-specific genes[85,86]. These interactions 
appear to be important in vivo[87-89]. Whilst Runx2 alone 
does not induce osteoblast differentiation, it synergizes 
with Smad 2 and Smad 5 to achieve this event. Mutant 
Runx2 with a truncated transcription activation domain 
fails to interact with Smad1 and consistently blocks 
BMP/Smad-induced osteoblast differentiation[86]. In 
addition to Runx2, menin, the product of  the multiple 
endocrine neoplasia type 1 gene, is required for BMP-
induced osteoblast differentiation[90]. Menin interacts with 
both Runx2 and Smad 1/5 in multipotential mesenchy-
mal cells. When menin is knocked down, the cells fail to 
differentiate into the osteoblast lineage. 

CCAAT/enhancer-binding proteins β: CCAAT/en-
hancer-binding proteins (C/EBPs) belong to the group 
of  basic leucine zipper transcription factors. They are 
known to modulate both adipocyte and osteoblast differ-
entiation. C/EBPβ forms a homodimer or heterodimer 
complex with other C/EBP family members. C/EBPβ 
is expressed before PPARγ and induces it[91,92]. More pre-
cisely, two main protein forms of  C/EBPβ, induced by 
alternative translation initiation, present opposite effects 
on adipogenesis[91]. Whereas LAP, the main long isoform, 
is proadipogenic, the short one, LIP, acts as a dominant 
negative inhibitor of  LAP. In murine mesenchymal cells, 
LIP inhibits adipocyte differentiation and preferentially 
induces osteoblast differentiation[93]. C/EBPβ promotes 

osteoblast differentiation of  mesenchymal cells in Runx2-
dependent and -independent mechanisms[93]. C/EBPβ 
up-regulates Runx2 expression by directly binding to the 
Runx2 P1 promoter in mesenchymal, pre-osteoblastic, 
and osteoblastic cells[94]. In addition, C/EBPβ interacts 
with Runx2 and activates the transcription of  the osteo-
calcin gene[95]. C/EBPβ heterodimerizes with activating 
transcription factor 4 (ATF4, presented below), another 
basic leucine zipper transcription factor crucial for osteo-
blast maturation. This complex transactivates osteocalcin-
specific element 1 of  the osteocalcin promoter[96]. Ab-
sence of  all C/EBPβ isoforms results in decreased bone 
mass in mice, associated with impaired osteoblast dif-
ferentiation and functional deficiency[96]. These data sug-
gest that C/EBPβ activates osteoblastogenesis. However, 
before commitment C/EBPβ may act as a transcriptional 
repressor of  Runx2 and of  osteoblast differentiation[91,97]. 
Mechanistically, it has been proposed that once osteogen-
ic differentiation is initiated, Smad3 expression increases, 
binds to C/EBPβ, and blocks its inhibitory action on 
Runx2[98].

Activator protein 1 proteins: Activator protein 1 rep-
resents heterodimeric transcription factors composed 
of  members of  the Jun and Fos family of  basic leucine 
zipper proteins. Overexpression of  ΔFosB or Fra1 leads 
to enhanced bone formation. Osteopetrosis in ΔFosB 
overexpressing mice is due to the inhibition of  mesen-
chymal cell differentiation into adipocytes, leading to an 
increased number of  osteoblasts[99]. Moreover, condi-
tional Fra1-/- mice display reduced levels of  several matrix 
proteins, such as osteocalcin[100]. Finally conditional dele-
tion of  JunB causes bone defects with reduced osteoblast 
proliferation, and expression of  osteocalcin and bone 
sialoprotein[101].

ATF4: Mice deficient in ATF4 display a decreased bone 
formation, leading to a severe low bone mass pheno-
type[102]. At the molecular level, ATF4 directly binds to 
the promoter of  osteocalcin to activate transcription[102]. 
This activation appears to rely on the physical interaction 
between ATF4, SATB2 and Runx2 at the promoter lev-
el[103]. ATF4 may also cooperate with C/EBPβ to activate 
transcription of  the osteocalcin gene[96]. Finally, ATF4 
also plays indirect effects through its activation of  amino 
acid transport[104]. Indeed, osteoblasts from ATF4-/- mice 
do not synthesize normal levels of  typeⅠcollagen unless 
nonessential amino acids are added to the culture[102].

Inhibitory TFs
Peroxysome proliferator-activated receptor γ: PPARγ 
proteins are expressed in mice and humans as two dif-
ferent isoforms, PPARγ1 and PPARγ2, due to alternative 
promoter usage and alternative splicing. PPARγ1 is ubiq-
uitously expressed whereas PPARγ2 expression is restrict-
ed to adipocytes[105,106]. Homozygous PPARγ-deficient 
ES cells fail to differentiate into adipocytes, but sponta-
neously differentiate into osteoblasts[107]. Heterozygous 
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Pparγ-deficient mice exhibit a high bone mass phenotype 
but normal osteoblast functions[107]. Pparγ2 has been 
reported to bind to Runx2 and inhibit its transcriptional 
activity[108]. Inhibition of  PPARγ with the pharmacologi-
cal inhibitor GW9662 in human MSCs stimulates miner-
alization and bone formation in vitro and in vivo[109,110]. Be-
sides the inhibition of  Runx2, PPARγ inhibitory effects 
may also include β-catenin. Indeed, activated PPARγ in 
mesenchymal cells induces the proteasomal degradation 
of  β-catenin following direct interaction[111]. Moreover, 
Lu et al[112] reported that the PPARγ inhibitor GW9662 
significantly activates TCF reporter plasmid activity. Fur-
thermore, Krause et al[110] reported that GW9662 treat-
ment of  hMSCs resulted in β-catenin accumulation in 
the nucleus and PPARγ nuclear export. However, it was 
recently suggested that whereas PPARγ2 pro-adipocytic 
activity relies on β-catenin inhibition, its anti-osteoblastic 
activity is independent of  this interaction[113].

On the other hand, a stimulatory role for PPARγ in os-
teoblast differentiation has been reported. Overexpression 
of  PPARγ2 in C3H10T1/2 mouse mesenchymal precur-
sors do not only promote adipogenic differentiation, but 
also enhances osteogenic differentiation upon BMP-2 stim-
ulation[114]. Conversely, MSCs with PPARγ2 knockdown or 
mouse embryonic fibroblasts derived from PPARγ2-/- mice 
exhibit a decrease in adipocyte differentiation, coupled 
with reduced osteoblastogenesis and decreased mineraliza-
tion[114]. In mouse MC3T3-E1 osteoblasts, activation of  
PPARγ1 with low doses of  agonists stimulated alkaline 
phosphatase activity and mineralization[115]. In hMSCs, 
two PPARγ antagonists, BADGE and GW9662, as well as 
lentiviral knockdown of  PPARγ inhibited adipogenesis but 
had no effect on osteoblastogenesis[116].

In conclusion, while most data seem to demonstrate 
an inhibitory effect of  PPARγ on osteoblastogenesis, 
several articles suggest that PPARγ action on osteoblasts 
may actually be more ambiguous. Several mechanisms 
may account for these discrepancies. For instance, PPARγ 
directly binds and inhibits Runx2[108], and therefore in-
hibits MSC commitment into osteoblasts. On the other 
hand, since Runx2 appears to maintain osteoblasts in an 
immature stage[66], PPARγ may participate in osteoblast 
maturation. Besides Runx2, PPARγ has also been shown 
to bind and inhibit β-catenin pro-osteogenic function[111]. 
However, β-catenin and PPARγ may not be systemati-
cally inhibitory because an elegant article recently showed 
that BMP-2 activated β-catenin/PPARγ dimers have their 
specific transcriptional targets in endothelial cells[117]. 
Since BMP-2 is a potent osteogenic factor, PPARγ roles 
in osteoblasts may therefore be more subtle than com-
monly accepted. 

Finally, PPARγ activity is also dependent of  a wide 
number of  factors, such as 1,25(OH)2 vitamin D3 recep-
tor, PPAR coactivator (PGC-1), the histone acetyltrans-
ferase p300, CREB binding protein, and steroid receptor 
coactivator-1[118]; its effects on osteoblasts may thus vary 
as a function of  cell differentiation, species and mode of  

activation or inactivation. For instance, it was suggested 
that full but not partial agonist activation inhibits expres-
sion of  osteoblast markers in human MSCs[119].

Twist1: In mouse, there is a 4-5 d delay between the 
appearance of  Runx2 and that of  its target, osteocal-
cin. This delay seems to be due to the co-expression of  
Twist1[120]. Twist1 is a basic helix-loop-helix transcrip-
tion factor. Haploinsufficiency at the Twist1 locus causes 
Saethre-Chotzen syndrome, a form of  craniosynostosis, 
i.e., an increase in bone formation in the skull[121,122]. 
Molecularly, Twist1 binds to the DNA binding domain 
of  Runx2, and inhibits its transcriptional activity. Simi-
larly, Twist1 also interacts with ATF4 and decreases its 
binding to the Osteocalcin promoter[123]. As a conse-
quence, osteoblast differentiation during development 
proceeds when and where Twist1 expression drops. In 
C3H10T1/2 mouse cell progenitors, silencing of  Twist1 
using short hairpin RNA expression enhanced osteoblast 
gene expression and matrix mineralization in vitro[124]. In 
human MSCs, overexpression of  Twist1 and Dermo-1 
was associated with a decrease in the gene expression of  
osteoblast-associated markers, bone morphogenic pro-
tein-2, bone sialoprotein, osteopontin, alkaline phospha-
tase and osteocalcin[125].

MICRORNAS INVOLVED IN MSC 
OSTEOBLASTIC DIFFERENTIATION
MicroRNAs 
MicroRNAs (miRs) are small (19-23 nt) endogenous 
non-coding single-stranded RNA transcribed from both 
intergenic and genic regions of  the genome[126,127]. They 
are highly conserved molecules that control gene expres-
sion post-transcriptionally by binding to the 3′UTR of  
target mRNA. Near-perfect complementarity between 
the sequence of  miR and its target results in the cleav-
age of  target mRNA, whereas partial complementarity 
results in its translational inhibition[128]. The biogenesis 
of  these small regulatory RNA molecules starts out as 
primary transcripts termed pri-miR. The pri-miR is first 
processed in the nucleus by the RNAse Ⅲ enzyme DRO-
SHA to produce pre-miRNAs. Once in the cytoplasm, 
pre-miRs are further processed by a second RNase Ⅲ en-
zyme, DICER1 resulting in dsRNA miR complex, which 
unwound by the helicase activities of  the Argonaute 
multiprotein complex known as the RNA-induced silenc-
ing complex (RISC). The preferred guide strand is incor-
porated into the RISC complex[129]. MiR expression has 
both spatial and temporal specificity as well as tissue or 
cell specificity[130]. Strikingly, bioinformatics analysis sug-
gests that up to 30% of  human genes may be regulated 
by miR[131]. MiRs act as key regulators in diverse biological 
processes, such as early development, cell proliferation, 
differentiation, apoptosis, cancer and have the potential 
to control the expression of  virtually any gene[132]. Some 
miRs are directly involved in the formation of  the human 
skeletal system. Thus, miRs have the great potential to 
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become a research focus for the prevention and treat-
ment of  skeletal diseases[130].

MiRs and osteoblast differentiation
Conditional deletion of  the miR processing enzyme Dic-
er in osteoblasts, chondrocytes, and osteoclasts has re-
vealed their essential role in normal skeletal development 
and bone homeostasis[133]. Differential expression of  
miRs has a major impact on the regulation of  osteoblast 
differentiation[134], where by various signaling pathways/
transcription factors responsible for osteoblast differen-
tiation can be modulated by miRs. An increasing number 
of  miRs have been identified to negatively regulate os-
teoblast differentiation and bone formation by targeting 
important osteogenic factors and positively affect it by 
targeting negative regulators of  osteogenesis.

Negative regulators: Many miRs were shown to act as 
inhibitors of  osteoblast differentiation (Table 1). These 
include miR-206 by targeting connexin 43 gene (Cx43)[135] 

or MiR-34 that decreases SATB2 accumulation[136]. Ad-
ditionally, Hsa-miR-27a and has-miR-489 down-regulate 
differentiation through repression of  TNAP expres-
sion[137]; miR-204 a negative regulator of  Runx2 inhibits 
osteogenesis and promotes adipogenesis of  mesenchymal 
progenitor cells and BMSCs[138]. MiR-133 and miR-135 
target Runx2 and Smad1/5 respectively in C2C12 mouse 
mesenchymal progenitors[139]. MiR-433 suppresses 
BMP2-induced osteoblast differentiation via direct tar-
geting of  Runx2 mRNA in C3H10T1/2 cells[140]. Finally, 
some under-expressed miRs (hsa-miR-31, hsa-miR-106a, 
hsa-miR-148a and hsa-miR-424) in MSCs undergoing os-
teoblast differentiation have been predicted to target the 
mRNAs of  Runx2, Cbfb, and BMPs; whereas hsa-miR-
30c, hsa-miR-15b and hsa-miR-130b have been predicted 
to target MSC markers[141].

Positive regulators: MiRs that may induce osteoblast 
differentiation include miR-2861, which promotes BMP2-
induced ST2 osteoblast differentiation by repressing 
histone deacetylase 5 expression[142] (Table 1). MiR-335-
5p also enhances osteogenic differentiation by inhibiting 
Dkk1 expression, and consequently by activating Wnt 
signaling[143]. Moreover, Kapinas et al[144] have shown that 
miR-29a promotes osteoblast differentiation by down 
regulating the inhibitors of  canonical Wnt signaling such 
as Dkk1, Kremen2, and secreted frizzled related protein.

MiRs and hMSC
Several miRs appear to significantly modulate osteoblast 
differentiation in mesenchymal precursors[145]. Dicer or 
Drosha knockdown in human MSCs inhibits osteogenic 
differentiation (reviewed in[146]). MiR expression patterns 
differ in MSC progenitors and fully differentiated cells, 
e.g., osteoblasts, adipocytes and chondrocytes suggesting 
that these miRs are important in MSC lineage decisions. 
Indeed, high or low expression of  particular miRs may be 
a prerequisite for the commitment and differentiation of  
MSCs into specific lineages (reviewed in[147]). For instance, 
undifferentiated hMSCs isolated from various tissues were 
shown to express high levels of  miR-335 while their dif-
ferentiation resulted in a reduced expression of  miR-335. 
The same miR as well as miR-204/211 impaired hMSC 
osteoblast differentiation by targeting Runx-2[148,149]. In 
human MSCs, decreased expression of  miR-138 has also 
been associated with osteogenesis, possibly by targeting 
focal adhesion kinase[150]. Finally, and as presented above, 
MiR-148b, -27a, and -489 were found to play a critical role 
in early osteogenic differentiation of  hMSC[137].

CONCLUSION
In the last decade, we have considerably increased our 
knowledge on the molecular contributors to osteoblast 
commitment and maturation. Since the discovery of  the 
key role played by Runx2 in 1997[60], several other tran-
scription factors have been demonstrated to  modulate 
osteoblastogenesis. In addition, an increasing number of  
papers now indicate that the expression of  these tran-
scription factors is modulated by miRs, themselves being 
expressed under the control of  the transcription factors 
they regulate[151]. Many of  the results that had been ob-
tained with murine models have now been confirmed 
with human MSCs. Collectively, the better understand-
ing of  the interaction between transcription factors and 
miRs, and of  their effect on osteoblast to genesis and 
osteoblast function, will help develop new strategies to 
improve diagnosis and treatment of  bone diseases. 
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