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Coastal ecosystems that are characterized by kelp forests encounter daily pH

fluctuations, driven by photosynthesis and respiration, which are larger than

pH changes owing to ocean acidification (OA) projected for surface ocean

waters by 2100. We investigated whether mimicry of biologically mediated

diurnal shifts in pH—based for the first time on pH time-series measurements

within a kelp forest—would offset or amplify the negative effects of OA on

calcifiers. In a 40-day laboratory experiment, the calcifying coralline macro-

alga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05

or 7.65). For each mean, two experimental pH manipulations were applied.

In one treatment, pH was held constant. In the second treatment, pH was

manipulated around the mean (as a step-function), 0.4 pH units higher

during daylight and 0.4 units lower during darkness to approximate diurnal

fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced

mean pH, and fluctuations in pH acted additively to further reduce growth.

Photosynthesis, recruitment and elemental composition did not change with

pH, but d13C increased at lower mean pH. Including environmental hetero-

geneity in experimental design will assist with a more accurate assessment

of the responses of calcifiers to OA.
1. Introduction
Ocean acidification (OA), the process of sustained absorption of anthropogeni-

cally derived atmospheric CO2 by the world’s oceans [1], is predicted to cause

large-scale changes in many marine ecosystems [2]. This absorption of CO2 has

already led to significant changes to the seawater carbonate system and is pre-

dicted to cause a decrease in pH of 0.3–0.5 units by the end of the century [3].

If pH is reduced by 0.4 units, these changes are expected to reduce [CO3
22] by

30%, increase [HCO3
2] by 9% and increase [Hþ] by approximately 200% [3,4].

OA is also predicted to decrease the net calcification and/or increase dissolution

of many organisms that build CaCO3 structures [5].

In the open ocean, pH does not vary greatly in time and space, making labora-

tory simulations of future pH levels relativelystraight forward [6]. By contrast, near-

shore marine organisms live in a highly variable pH environment where daily pH

fluctuations owing to biological activity can exceed 1 unit [6–16]. These changes are

often driven by primary producers increasing pH in the surrounding seawater

during the day via photosynthesis, and decreasing pH at night owing to respiration

[15]. In some regions, night-time decreases in pH (to less than 7.4; [17]) exceed those

predicted owing to OA over the next 100 years (pH � 7.65; [3]).

Currently, it is not known how daily shifts in pH within near-shore ecosys-

tems influence the physiology or the ecology of calcifying organisms, nor is it

understood how these pH fluctuations could interact with the effects of OA.
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It is difficult to reproduce the environmental heterogeneity

that occurs in the field within a laboratory setting. For

example, experimental manipulations of light and tempera-

ture in experiments with marine species usually use tightly

controlled continuous levels, even though these environ-

mental factors are much more variable in the field [18,19].

To date, only one study has manipulated pH over a diurnal

cycle mimicking ecologically relevant pH shifts (daytime

pH ¼ 8.00, night-time pH ¼ 7.77) to examine short-term (3–6

day) effects on coral recruits [20]. Although this study [20]

did not report the pH variability occurring naturally in the

organism’s habitat, they found that in some instances coral

recruits responded positively to both daily fluctuations in

pH and to OA. Incorporating such daily fluctuations in pH/

CO2 into OA manipulation studies is the next step in better

identification of the responses of near-shore species to climate

change-mediated alteration of pH conditions.

Periods of high pH/low CO2 could potentially ameliorate

some of the negative effects of OA on calcifying organisms

[12,15,20], by providing them with a period of respite where

they can calcify at much higher rates [9]. This study investi-

gated the interactive effects of daily fluctuations in pH that

simulate biological activity, and the long-term decline in

seawater pH predicted owing to OA on the growth and physi-

ology of the coralline macroalga Arthrocardia corymbosa, a

member of a genus that is found in temperate regions of both

the Northern and Southern Hemispheres [21,22]. Arthrocardia
corymbosa was incubated in pH treatments representative of

typical surface seawater today and seawater pH predicted for

2100 in static conditions that are characteristic of oceanic

waters. Both of these treatments also included diurnal fluctu-

ations in pH that more accurately mimicked the amplitude of

pH change typical of coastal waters dominated by macroalgae

than previous research investigating the effects of OA on

marine organisms. The magnitude of pH change within incu-

bations was based on pH changes measured in situ in a kelp

forest (from where A. corymbosa was collected) and from pub-

lished oceanic measurements [6,23]. The aim of the laboratory

incubations was to determine whether elevated daytime pH

(similar to that observed in regions influenced by macroalgal

photosynthesis) could provide a period where high calcifica-

tion rates could compensate for the overall decline predicted

to occur because of lowering seawater pH owing to OA.
2. Material and methods
(a) Monitoring in situ pH fluctuations
An ENVCO pHTempion combined pH and temperature logger

and was placed within a Macrocystis pyrifera forest (1–2 m

depth) at Karitane, near Dunedin, South Island, New Zealand

(45838’20" S, 170840’15" E) for 4–5 days in each season between

4 April 2010 and 27 May 2011. For a description of the macro-

algal community composition and underwater irradiance at the

study site, see Hepburn et al. [24]. pH was measured on the

total scale (pHT).

(b) Macroalgal collection
Thirty assemblages of the articulate coralline alga A. corymbosa
were collected on 13 March 2011 from the same M. pyrifera forest

in which the coastal pH data were recorded. Each assemblage con-

tained 10 individual A. corymbosa (40 mm high) on a small base of

crustose coralline algae. Six of these assemblages were sacrificed to
assess the physiological status of the macroalgae at the start of the

experiment (hereafter, ‘initial’ samples).

(c) Experimental design and seawater carbonate
chemistry

The remaining 24 assemblages were placed into one of four pH

treatments for 40 days. pH treatment levels were multifactorial

with two mean pH levels measured on the total scale (pHT 8.05

and 7.65). For each level of mean pH, there were two levels of pH

variability. In one treatment, pH was held constant. In a second

treatment, pH fluctuated around the mean and was 0.4 pH units

higher than the mean during the day and 0.4 units lower than the

mean during the night. The target mean pH within each treatment

was achieved using a modified version of the pH-controlled auto-

mated culture system described by McGraw et al. [25], in which

pH is measured spectrophotometrically to +0.01 units accuracy

and controlled within 0.03 units. The mean pH in the ambient sea-

water treatments (8.05) was selected to represent unmodified

seawater from an oceanic site 68.5 km offshore (8.05) [23], a value

that is very similar to that considered representative of the global

mean pH of surface waters in the best practices guide (8.065) [3].

Seawater (salinity 34 SA and pH 8.05) was collected from Otago

Harbour, South Island, New Zealand (45852.51’ S, 170830.9’ E)

every 6 days and stored in a 1000 l tank. Mean nitrate and phos-

phate concentrations were 1.16+0.07 and 0.24+0.01 mmol l21,

respectively, throughout the experiment (see the electronic sup-

plementary materials for methodological details). Twice a day, a

150 l storage tank was filled with seawater filtered using Filter

Pure polypropylene spun melt (0.5 mm pore size) and ultraviolet

sterilized with an Aquastep 25 W Ultraviolet Sterilizer. The pH of

the seawater in the 150 l storage tank was increased to pHT 8.45

using NaOH additions. This was necessary because the pH of sea-

water from the seawater collection site was 8.05, but seawater with a

higher pH was needed to achieve the daytime pH values in the fluc-

tuating mean pH 8.05 treatment (pH 8.45). All other treatments

were subsequently achieved by reducing the pH using the methods

detailed below. This system was housed in a walk-in temperature

controlled room at 10.88C and under a mean irradiance of

18 mmol m22 s21 photon flux density 12 L : 12 D ratio.

Each of the 24 A. corymbosa assemblages was cultured separ-

ately in a 650 ml Perspex flow-through culture chamber. Each

chamber was attached to the outflow of an individual 1 l Perspex

header tank. The pH in each header tank was controlled by auto-

matically refilling the tank with seawater from a 1 l mixing tank.

Target pHT levels were achieved in the mixing tank by adding

exactly equal amounts of HCl and NaHCO3 (a process chemi-

cally identical to adding CO2) [26] to 1 l of seawater that was

pumped from the 150 l storage tank. Before the newly mixed sea-

water was transferred to the appropriate header tank, pHT was

measured at 10.88C using the automated spectrophotometric

system. If the measured pH was within 0.03 units of the target

pHT, the seawater was transferred to the appropriate 1 l header

tank. If the pH varied more than 0.03 pH units from the target

value, the seawater in the mixing tank was sent to waste and

the process repeated until the correct pH was achieved. Using

this method, the automated system delivered new seawater at

the target pH to each of the 24 header tanks approximately

every 4.4 h. The order in which the seawater was refreshed in

each of the 24 treatment chambers was randomly allocated at

the beginning to avoid potential artefacts.

Arthrocardia corymbosa assemblages were individually tied

with nylon to circular Perspex plates, each of which had six

holes (1 cm diameter) to allow seawater to flow around the macro-

algae. These plates were located 5 mm above the bottom of the

culture tank. To minimize the thickness of diffusion boundary

layers that can form at the surface of macroalgae and cause large

differences in pH between an organism’s surface and the bulk
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Figure 1. Summertime pHT measurements over 5 days within a kelp bed
located in 1 – 2 m water depth. Grey bars indicate periods of darkness.
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seawater [8], culture chambers were individually placed on a mag-

netic stirrer (Ika Squid, Global Science) at 450 r.p.m. and a 25 mm

long stirrer bar was placed into each of the culture chambers. In

order to monitor changes in seawater pH owing to biological

activity within the culture tank, additional spectrophotometric

pH measurements were made within each culture chamber at

06.00 (night) and 18.00 h (day) on day 1, and every 5 days there-

after. On days 1 and 40, 500 ml samples were taken from each

culture chamber at 06.00 and 18.00 h and used to determine AT

(see the electronic supplementary material for details).

(d) Biotic responses
Macroalgal growth was measured by weighing algae at the

beginning of the experiment and again after 40 days, and then

converting this into growth rate relative to the initial blotted wet

weight [27]. On day 11 of the experiment, recruitment of juvenile

A. corymbosa was visible. Recruitment onto the Perspex plates

that were located under the algal assemblages was measured on

day 40 by photographing the plates and sub-sampling a random

10 � 10 mm2 in which the number of individuals was counted

using the software IMAGEJ 1.42q [28].

The rates of gross photosynthesis and respiration of the

A. corymbosa assemblages in each of the culture chambers were

measured non-invasively between 16.00 and 18.00 h in light and

between 06.00 and 08.00 h in the darkness on days 1, 10, 30

and 40. A Presens 50 mm oxygen microoptode measured linear

changes in oxygen concentrations over time through a purpose-

built aperture. Seawater flow into and out of the cell was halted

for 5 min, while oxygen evolution or consumption was recorded.

Gross photosynthetic rates were calculated using linear regression

then standardized to algal wet weight, and net rates were deter-

mined by deducting respiration. Algal wet weight after day 1

and before day 40 was estimated using a linear regression between

the two time points for the purposes of the calculations.

The ratio of variable (Fv) to maximal (Fm) quantum yield of

photosystem II (Fv/Fm) of all mature, experimental A. corymbosa
was measured on days 1 and 40 using a Pulse Amplitude Modulated

(PAM) chlorophyll fluorescence meter (Diving PAM, Walz,

Germany). Fv/Fm was measured on A. corymbosa individuals

that had been dark adapted for 15 min. This model PAM has a

red-light-emitting diode, and both gain and dampening were set

to 2. On all occasions, Fo was greater than 130 before measurements

were made.

Pigment concentrations were determined for the six initial A.
corymbosa on day 1 and for each experimental macroalga on day

40 following the exact methods of Sampath-Wiley & Neefus [29]

for phycobillins (phycocyanin, PC and phycoerythrin, PE), and

Richie [30] using ethanol extraction for chlorophyll (Chl) a.

%C, %N, d13C and d15N were analysed from the organic

tissue of the initial and experimental macroalgae by removing all

inorganic tissue in 1 M HCl then drying at 808C and grinding

samples in a mortar and pestle. Sub-samples were then combusted

in a CE NA1500 Elemental Analyzer (Carlo-Erba instruments)

interfaced to a Europa Scientific 20–20 update continuous flow

mass spectrometer. Corrections for drift were made automatically

every five samples from an EDTA standard with a known isotope

ratio. Inorganic d13C was also sampled in the same way, but the

organic tissue was first removed with bleach [31]. The initial and

treatment A. corymbosa were also analysed for Ca, Mg, Sr and Mn

content. Dried samples were dissolved in concentrated HNO3 in

Savillex vessels. The analytes were quantified against multi-element

standards on an Agilent 7500ce ICP-MS using a helium collision cell

following the manufacturer’s recommendations.

(e) Statistical analyses
Relative growth rates, recruitment, pigments (PE, PC and Chl a)

and %Ca, %Mg, %MgCO3, %C, %N, d13C and d15N were analysed
using a two-way analysis of variance (ANOVA) with pH mean and

pH variability classed as factors in the model, each with two levels

(pH 8.05, pH 7.65; and static, fluctuating, respectively). The inter-

action between the two factors was also included in the model.

Fv/Fm was analysed as a repeated measures ANOVA, with time

as the random factor and pH mean and pH variability as the

fixed factors along with the interaction terms. Photosynthetic

rates were analysed in the same way. All data used in univariate

analyses were analysed for homoscedasticity and normality.

Recruitment data failed this assumption and were log (X þ 1)

transformed. When p-values under 0.05 were detected, Tukey hon-

estly significant difference (HSD) post hoc tests were used to

determine differences between treatments. All statistical analyses

were performed in R v. 2.7.0 [32].
3. Results
(a) In situ and experimental pH
pH variability within the M. pyrifera kelp bed ranged by 0.94

units (7.92–8.86) over 5 days in the austral summer (figure 1).

The average pH within the kelp bed was highest in the

summer (8.43), lowest in the winter (7.93) and was 8.32 on

average. Clear diurnal fluctuations in kelp bed pH were

evident with values decreasing at night and increasing to a

peak around noon (figures 1 and 2). pH within the culture

tanks that housed A. corymbosa were close (within 0.05

units) to the target pH means (means and standard error

shown in table 1, for a visualization, see figure 2a,b) during

the night and the day. These values corresponded to pCO2

concentrations of 145 matm for pH 8.45, 415 matm for pH

8.05, 1130–1150 matm for pH 7.65 and 2960 matm for pH

7.25. As expected, AT remained relatively constant across

pH treatments. For other carbonate parameters, see table 1.
(b) Effects of pH on growth rates
Decreasing the mean pH and increasing the variability in pH

both resulted in reduced growth rates for A. corymbosa over

the 40 day experiment (pH mean F1,20 ¼ 9.24, p ¼ 0.006 and

pH variability F1,20 ¼ 9.82, p ¼ 0.005; figure 3a). The highest

growth rates occurred in the pH 8.05 static treatment and the

lowest rates in the pH 7.65 fluctuating treatment. Compared
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with macroalgae in the pH 8.05 static treatment, growth rates

were 62% lower in the pH 7.65 static treatment, 64% lower in

the pH 8.05 fluctuating treatment and 98% lower in the pH

7.65 fluctuating treatment. There was no interaction between

the effects of daily fluctuations in pH and the mean pH

levels used (F1,20 ¼ 0.50, p ¼ 0.49; figure 3a).
(c) Recruitment of juvenile coralline algae
Juveniles recruited onto the Perspex plates beneath the adults

throughout the experiment, and at day 40 the number of vis-

ible recruits was counted. There were between 10 and 20

recruits cm22 and mean pH treatment, level of pH variability,

and the interaction between the two factors did not influence

the number of recruits (figure 3b; F1,20 , 0.21, p . 0.65 on

all occasions).
(d) Effects of pH on other biotic responses
There was no effect of decreased mean pH or increased varia-

bility in pH on rates of photosynthesis, Fv/Fm, pigment

concentrations, nor any other measured physiological response

of A. corymbosa. Net photosynthetic rates were not different

between treatments at any given time point, nor was there

any difference among treatments over time (Tukey’s HSD all

p . 0.11; table 2). Mean Fv/Fm was greater than 0.57 (indicative

of photosynthetically healthy coralline algae) [34] both before

and after the 40 day experiment in all treatments (see electronic

supplementary material, table S1). Inorganic material

accounted for 59–64% of the total dry weight and there was

no effect of mean pH, the level of pH variability or the inter-

action between the two factors on the %Ca (F1,20 , 0.48, p .

0.50), %Mg (F1,20 , 0.26, p . 0.62), the %MgCO3 (F1,18 ,

3.93, p . 0.06) nor in the inorganic d13C between treatments

(F1,20 , 2.04 p . 0.17) (see electronic supplementary material,

table S2). Pigment concentrations, C : N ratio, and the d15N of

the organic tissue did not vary with mean pH treatment, nor

the level of pH variability ( p . 0.18 on all occasions, see elec-

tronic supplementary material, tables S3 and S4). There was a

statistically significant decrease (2‰) in organic d13C signa-

tures between pH 8.05 and 7.65 treatments (see electronic

supplementary material, table S4).
4. Discussion
This study demonstrates that diurnal variability in pH, simi-

lar to that occurring within coastal systems, is an important

factor controlling the growth rates of calcifying organisms

in today’s ocean and may have significant implications for

predicting the responses of coastal calcifiers to OA. Coralline

macroalgae grown in seawater with diurnally fluctuating

pH (with pH higher during the day and lower at night)

had significantly lower growth rates than the equivalent

treatments with constant pH. The response of coralline

macroalgae to OA under the fluctuating treatment was stron-

ger than would be predicted under static conditions alone, as

the absolute growth rates were even further reduced by

the additive negative effects of diurnal fluctuations in pH.

In addition, no other diagnostic that provides a measure of

organism fitness was influenced by pH treatment, except

organic dC13, which increased under both lower mean pH

treatments, indicating an increase in the use of diffusive

CO2 [35,36]. Increased variability in pH did not act to amelio-

rate the longer term effects of OA (at least over 40 days) as

was hypothesized, but amplified OA’s negative influence

on growth. This reduction in growth was most probably

owing to dissolution of calcareous structures during exposure

to low pH during the night (discussed below).

The response of A. corymbosa in this study indicates that

exposure to the extremes of naturally fluctuating pH is poten-

tially as important as mean decreases in pH owing to OA.

The negative response of A. corymbosa to fluctuating pH is

opposite to our initial predictions, and different to the

response of coral recruits to fluctuations in pH [20]. The

growth rate of Seriatopora caliendrum recruits over 3–6 days

was higher under a diurnally fluctuating pH treatment (pH

8.00 during the day and pH 7.77 at night) and a static low

pH of 7.77, compared with a static pH 8.00 treatment [20].

Differential responses of marine organisms to diurnal fluctu-

ations in other environmental factors have also been reported.

For example, some adult corals (Pocillopora meandrina and

Porites rus) respond negatively to fluctuations in tempera-

ture [37], whereas the adult corals Pocillopora damicornis and

Seriatopora hystrix showed no response to fluctuating temp-

erature, but their larvae responded positively [18,37]. Taken

together, these studies indicate that responses to short-term
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changes in environmental variables can be complex and

the direction and magnitude of these effects may be species-

(or even life-stage) specific. Short-term local variability in

environmental factors driven by natural processes, such as

the diurnal fluctuations in primary production highligh-

ted in our study, may play a more important role than

the long-term global changes predicted to occur owing to

anthropogenic processes [38].

Arthrocardia corymbosa showed little response to the effects

of OA compared with the responses of tropical and subtropi-

cal coralline macroalgae, where static low pH had an adverse

effect on coralline macroalgal pigments, photosynthetic rates

[39,40] and recruitment [41,42]. The lack of negative physio-

logical responses to pH shown here (apart from growth)

could be owing to the lower temperature (10.88C) employed

in our experiment compared with other studies. Higher

temperatures exacerbate the negative impacts of OA [39,43],

and experiments where widespread bleaching (i.e. mortality)

or lower recruitment are reported were conducted at temp-

eratures more than or equal to 198C [39,41,43,44]. Another

explanation for the lack of physiological responses observed

in this study is that the negative responses attributed to OA

by previous research could be an artefact of inappropriate

methods of pH manipulation (e.g. HCl [26]), or inappropriate

of control of pH (i.e. high pH variability and/or no measure-

ment of pH within the culture tank) [40,41]. Measured pH

within culture tanks can be very different to that of the

inflowing seawater encountered by experimental macroalgae,

as photosynthesis and respiration can alter pH both within

the mainstream seawater in culture tanks [45,46] and within

the diffusion boundary layer around macroalgae [8,15]. We

recommend that studies need to measure pH within culture

tanks, provide adequate mixing/exchange of seawater and

report these details sufficiently.

An alternate explanation of the lack of physiological

responses of A. corymbosa—and potentially other species

inhabiting similar coastal habitats [47,48]—to OA is that

they may be tolerant of the effects of changes in pH because

they regularly encounter daily shifts in pH in the field. Popu-

lations of organisms that contend with regular fluctuations in

an environmental variable are often more able to adapt to

permanent changes in that variable [49], owing to increa-

sed retention of phenotypic plasticity that is sometimes

lost by organisms residing in relatively static environmental

conditions [50,51]. By regularly encountering variable pH

conditions, organisms from coastal systems may be more

tolerant to the effects of continual periods of low pH

caused by OA [15,52].

Our in situ pH measurements indicate that metabolic

activity not only causes increased variability in pH within

kelp forest habitats, but it may also lead to an increase

in the mean pH and a decrease in the mean pCO2

during periods of high light and primary productivity

(i.e. summer). Our pH treatment of 8.05 was selected to rep-

resent the current mean pH of the world’s oceans, as

recommended by the best practices guide; in future exper-

iments, a mean pH which is representative of that within

kelp beds could be used (e.g. with a higher mean pH). Fur-

thermore, while the fluctuations in pH used here more

accurately mimicked the largest amplitude of pH change

occurring in the field (+0.89 units over 24 h) than in previous

studies, in a future high CO2 ocean, the night-time reductions

in pH owing to respiration may be less than that used here
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Figure 3. Biotic responses of the articulated coralline macroalga A. corymbosa exposed to one of four pH treatments for 40 days (see table 1 and figure 3
for pH conditions). (a) Relative growth rates and (b) recruitment of A. corymbosa. Treatments sharing the same letter in (a) are not statistically different
(Tukey’s HSD p � 0.05), whereas in (b) there were no treatment effects. Error bars represent standard error, n ¼ 6.

Table 2. Gross photosynthetic rates (mmol O2 g21 s21) measured at 14.00, on four days during the experiment. S indicates static pH treatments, while F
indicates fluctuating pH treatments. n ¼ 6, mean+ s.e.

time day 1 day 10 day 30 day 40

pH 8.05 S 0.04+ 0.01 0.07+ 0.01 0.09+ 0.02 0.05+ 0.02

pH 8.05 F 0.03+ 0.01 0.02+ 0.02 0.05+ 0.01 0.03+ 0.01

pH 7.65 S 0.04+ 0.01 0.04+ 0.01 0.05+ 0.01 0.04+ 0.02

pH 7.65 F 0.04+ 0.01 0.02+ 0.01 0.05+ 0.01 0.03+ 0.01
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(pH 7.25). Measurements of pH at the surface of macroalgae

indicate that respiration-driven reductions in pH in the dark

are lower in seawater simulating an OA scenario (approx.

0.10 units) than they are in ambient seawater (approx.

0.25–0.50 units), most probably because more CO2 is

needed to further lower pH as the concentrations increase

[8]. This means that future pH fluctuations encountered by

macroalgae may not be symmetrical around the daily

mean, as in the treatments used here, and that macroalgal

metabolism is even more likely to raise mean pH during

periods of high irradiance under a future OA scenario. The

investigation of these phenomena was outside the scope of

this study, but could be an important focus for future inves-

tigations examining the buffering capacity of biologically

active coastal ecosystems against pH change owing to OA.

Further investigations examining the role that OA will

play in influencing ecological and physiological processes

will be strengthened if they acknowledge that natural varia-

bility in pH (both within the habitat and at the surface of

the organism, i.e. within the boundary layer) could influence

these processes to the same extent as OA. The variability in

pH at our coastal site is an order of magnitude larger that

recorded at open ocean sites where pH varied by 0.025

units over 30 days [6] and pH derived from pCO2 varied by

0.08 units over 13 years [23]. This is consistent with pH

measurements made in other coastal environments globally

[6,10]. We demonstrate that these daily fluctuations in pH

can influence the growth of calcifiers and suggest that realis-

tically fluctuating pH levels during OA experiments on

coastal species is important for future research. While this

study is the first to attempt to mimic in situ observed changes

in the magnitude of pH change, and the duration of exposure

to high/low pH, this approach will be refined in future exper-

iments. This will be achieved by allowing ecologically
realistic assemblages of macroalgae to alter pH within the

experimental set-up themselves, or by using culture systems

such as ours [25] that are capable of altering pH on an

hourly basis to accurately simulate conditions measured in

the field.

To make accurate predictions regarding how climate

change will influence marine organisms, we need to first

understand how variability in local environmental condi-

tions influence species in today’s seas at both local scales

and larger, regional scales [53]. Using coastal species as

an example, the pH variability that an individual is exposed

to will depend on a variety of environmental factors that

each vary on different scales. At small scales (millimetres to

metres), the organism’s light environment or flow conditions

will influence the pH encountered [15]. At larger scales (hun-

dreds of metres to kilometres), the distance from inputs of

low pH freshwater, or the degree of upwelling encountered

at a particular locality, will influence the regional pH con-

ditions [54,55]. Studies that detail pH variability at the level

of the organism, and then determine how frequently such

variability is encountered across larger geographical scales

[56], will help broaden our understanding of the present-

day effects of pH variability on specific marine organisms.

Our demonstration of the fundamental role that pH variabil-

ity can play in an organism’s response to OA illustrates that

an understanding of in situ pH variability and its biological

consequences is required to reasonably predict how near-

shore ecosystems will respond to longer term changes in

oceanic properties.
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