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Bengt Westermark, Karin Forsberg Nilsson, Lene Uhrbom, Linda Karlsson-Lindahl,
Philip Gerlee, and Sven Nelander

Sahlgrenska Cancer Center, Gothenburg, Sweden (L.S., T.K., N.M., P.G., M.O., C.H., L.K.-L., S.N.); Cell screening

facility, Science for Life Laboratory Stockholm, Department of Biochemistry and Biophysics, Stockholm

University, Solna, Sweden (B.L., U.M., M.H.); Department of Immunology, Genetics and Pathology, Uppsala

University, Uppsala, Sweden (S.N., S.B., B.W., K.F.N., L.U.); Mathematical Sciences, University of Gothenburg

and Chalmers University of Technology, Gothenburg, Sweden (P.G.)

Background. Glioblastoma multiforme (GBM) is the
most aggressive brain tumor in adults, and despite state-
of-the-art treatment, survival remains poor and novel
therapeutics are sorely needed. The aim of the present
study was to identify new synergistic drug pairs for
GBM. In addition, we aimed to explore differences in
drug-drug interactions across multiple GBM-derived
cell cultures and predict such differences by use of tran-
scriptional biomarkers.
Methods. We performed a screen in which we quantified
drug-drug interactions for 465 drug pairs in each of the 5
GBM cell lines U87MG, U343MG, U373MG, A172,
and T98G. Selected interactions were further tested using
isobole-based analysis and validated in 5 glioma-initiating
cell cultures. Furthermore, drug interactions were pre-
dicted using microarray-based transcriptional profiling
in combination with statistical modeling.
Results. Of the 5 × 465 drug pairs, we could define a
subset of drug pairs with strong interaction in both stan-
dard cell lines and glioma-initiating cell cultures. In par-
ticular, a subset of pairs involving the pharmaceutical
compounds rimcazole, sertraline, pterostilbene, and gefi-
tinib showed a strong interaction in a majority of the cell
cultures tested. Statistical modeling of microarray and in-
teraction data using sparse canonical correlation analysis
revealed several predictivebiomarkers, which we propose
could be of importance in regulating drug pair responses.

Conclusion. We identify novel candidate drug pairs for
GBM and suggest possibilities to prospectively use tran-
scriptional biomarkers to predict drug interactions in in-
dividual cases.

Keywords: drug combination responses, glioblastoma
therapy, glioblastoma stem cell cultures, predictive
medicine.

G
lioblastoma multiforme (GBM) is the most
common primary brain tumor in adults and the
highest grade of astrocytoma (World Health

Organization grade IV).1,2 Clinically, GBM is character-
ized by rapid progression and poor response to therapy.
The median life expectancy is 14 months after diagnosis,
and state-of-the-art therapy for GBMinvolves acombina-
tion of surgery, radiation, and chemotherapy using the
orally administered DNA alkylating agent temozolomide
(TMZ).2 The survival benefit of TMZ treatment,
however, is relatively modest (estimated 2.5 mo3). In ad-
dition, TMZ treatment is fraught with side effects, such
as hematological toxicity, vomiting, fatigue, and nausea.4

Further, many GBM patients develop resistance to the
drug.5,6 There is thus a need to identify novel strategies
for pharmacological treatment with improved efficacy,
lower variability across patients, reduced rate of resistance
development, and fewer side effects.

One frequently discussed approach to enhance efficacy
and delay the onset of drug resistance is to apply drug
combinations.7–9 For GBM, a current strategy seen in
clinical trials is to combine TMZ with an additional
agent such as an inhibitor of epidermal growth factor re-
ceptor (EGFR) and of vascular endothelial growth factor
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receptor (erlotinib and bevacizumab, respectively) or the
protease inhibitor nelfinavir.10,11 In many instances, a
drug combination is preferably synergistic, meaning that
the combined effect is more effective than single drugs
alone.12 However, there is limited knowledge about
which cellular pathways can be targeted in combination
to produce synergistic anticancer effects in GBM. In addi-
tion, there is little empirical data on how the effect of dif-
ferent drug combinations might be modulated by the
transcriptional profile of an individual tumor.

Here, we performed a drug pair interaction screen
across 5 different GBM cell lines. In our screening exper-
iment, we tested all pairs from a set of 31 drugs forming a
matrix of 465 unique pairs and calculated an interaction
score, as previously described,13 for each pair. In contrast
to the traditional design of a screen (matrix of pairs in a
single system), the experiment conducted here analyzed
multiple GBM-derived cancer cell lines in parallel.
Selected hits were subsequently retested using additional
criteria, including the combination index and the a inter-
action metric.14–16 Apart from finding novel anticancer
drug pairs, this extended experimental design had 2 key
benefits. First, it enabled the estimation of interaction var-
iability across GBM cell lines, which made it possible to
assess the degree to which an interaction effect was
context specific or likely to work across a broader range
of cases. Second, the variability of interaction effects
among the GBM cell lines made it possible to associate in-
teractions with cell line molecular profiles, whereby we
could define novel biomarkers predicting anticancer
drug-drug interactions in GBM.

Key results of our study include 4 drug pairs displaying
a strong synergyand robust effect (exhibiting a synergistic
interaction in several cell lines) in the majority of the cell
lines and glioblastoma-initiating cell (GIC) cultures
tested. Of particular interest is an interaction between
the sigma receptor ligand rimcazole and the antidepres-
sant sertraline. These are approved compounds that
have been implicated as single agents against breast
cancer,17 colon cancer,18 and GBM,19 but to our knowl-
edge a synergistic interaction in GBM has not previously
been reported. In addition, we defined subsets of robust
and more “variable” interactions (the latter meaning
that these agents had effects in a small number of the
cell lines tested), which we, alongside microarray experi-
ments, utilized to propose a statistical method to predict
drug pair interactions in individual cases.

Taken together, we identified a set of novel drug pairs
as possible treatments for GBM. We also propose a
method to predict drug-drug interactions, which
provide a roadmap for extended efforts to find both
robust and more tailored anti-GBM therapies.

Material and Methods

Cells

T98G was obtained from American Type Culture
Collection, while A172, U343MG, U373MG, and
U87MG were obtained from Cell Lines Services. These

cell lines are commonly used as models of GBM
and present a spectrum of different genetic lesions20

(Supplementary Table S1). All cell lines were grown in
monolayer and maintained in high-glucose (4.5 g/L)
Dulbecco’s modified Eagles’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS), 1% penicil-
lin/streptomycin, and 2 mM L-glutamine (Fisher
Scientific). Cells were incubated at 378C with 5% CO2.

Human GICs, from the Human Glioma Cell Culture
project at Uppsala University (S.N., K.F.N., B.W., and
L.U., manuscript in preparation) were originally derived
from serum-free tumor samples and grown in defined
stem cell media as previously described.19 To keep the
GICsasadherent cultures,weused the laminin-basedpro-
tocol developed by Pollard et al.19

Normal human fibroblasts were obtained from Coriell
Cell Repository (AG07095B)andAmericanTypeCulture
Collection (AG1523 and AG1518). Cells were grown in
monolayer and maintained in high-glucose (4.5 g/L)
DMEM supplemented with 10% FBS, 1% penicillin/
streptomycin, and 2 mM L-glutamine (Fisher Scientific).
Cells were incubated at 378C with 5% CO2.

Drugs

Activepharmacological agents (here referred toas“drugs”)
were obtained from BioMol (Enzo Life Sciences), National
Institutes of Health (NIH) Clinical Collection, National
Cancer Institute/NIH Developmental Therapeutics
Program Approved Oncology Drugs Set, Sigma Aldrich,
and Tocris Biosciences (Table 1). The resulting list repre-
sents drugs targeting different signaling pathways—non-
cancer drugs chosen based on prior involvement as
possible cancer therapeutics or chemotherapeutic drugs,
such as (i) the chemotherapeutic mitotic inhibitor paclitax-
el, (ii) the EGFR inhibitor gefitinib, and (iii) the antidepres-
sant sertraline with a noncancer application. In addition to
these manually chosen compounds, the list was supple-
mented with 15 randomly picked compounds from the li-
braries. All drugs were dissolved in dimethyl sulfoxide
(DMSO), except for cefaclor, which was dissolved in
water. Drug concentrations were standardized to 10 and
20 mM (see Table 1 for doses used for each drug). For
most of the individual compounds, these doses produced
no or a mild (.80% viability compared with control) phe-
notype, which is a screening strategy that enriches for syn-
thetic lethal (synergistic) pairs.13 For all experiments,
equal amounts of DMSO were used as untreated (vehicle)
controls; the final concentration of DMSO in the medium
following addition of the compound was 0.1%–0.4%.

Preparations of Combinations and Cell Viability Assay

Tumorcells were platedat1.5 × 104 cells/well in 96-well
plates (TPP, Techtum Lab) 24 h prior to treatment. Cells
were treated with drugs diluted in media, single or in com-
bination, and treated cells were incubated for 48 h. Three
replicates were performed with a 3-replicate negative
control (DMSO). (In some plates, 4–6 replicates were
used when plate space was available.) Viability studies
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were performed using the resazurin assay (Alamar Blue,
Invitrogen) according to manufacturer’s protocol. For
the isobole experiments, 2000 cells/well were seeded in
a 384-well plate (BD Falcon #353221) 24 h prior to

treatment. Apart from this, the viability readout proce-
durewassimilar to thedescribed setup,with theexception
of the dose-titration plate plan (see Supplementary infor-
mation sheet S3).

Drug Pair Interaction Assessments

Wequantified the drug response as the viability ratio W ¼
Ytreated/Ycontrol, where Y represents the average fluores-
cence signal gained from all replicates. This setup was
used for all types of interaction calculations. To assess
drug pair interactions and possible synergies, we used
ratio values and calculated interaction scores as previous-
ly described,13 derived from the Bliss independence
model.21 The interaction scores presented provide a one-
point quantitative measurement of the interaction, where
a score less than, equal to, and more than 1 indicated
synergy, additivity, and antagonism, respectively. For
the follow-up experiments of the 4 interesting pairs, we
used the experimentally more demanding isobologram
analysis to assess possible synergies in a quantitative
manner. Isobolograms are built up by isoboles, curves
of constant effect. Further, the analysis of isoboles is
based on the Loewe additivity model,22 which quantifies
the interaction between 2 drugs based on the assumption
that a drug cannot interact with itself.23 Eight different
concentrations for each drug were combined in a
2-dimensional matrix (64 data points in 5 replicates/
combination), where the lowest concentration was 0
and the highest concentrations were 32 mM (rimcazole
and sertraline) and 64 mM (gefitinib and pterostilbene)
(see Supplementary information sheet S3 for doses and
Supplementary Fig. S4 for single dose response curves
for the single drugs). Additional matrix entries were
imputed using linear interpolation so that the resulting
isobologram contained 32 × 32 entries. From each isobo-
logram, weextracted2 independentquantitativemeasure-
ments of interaction: the combination index23,24 and the
alpha (a) interaction parameter.25 The former has the
value 1 as a baseline, with synergy corresponding to acombi-
nation index smaller than 1 and antagonism greater than 1,
while the latter has zero as a baseline, with a smaller than
zerocorrespondingtoasynergyandagreater thanzerotoan-
tagonism. We present both types of quantitative measure-
ments (Table 2) in addition to interaction scores (Figs. 1–
3). Other studies15,16,23 have compared other interaction
calculations.

Transcript Profiling

All cells were seeded at 5 × 105 cells/well in 6-well TPP
plates 24 h prior to harvest. RNA for all microarray ex-
periments was extracted and purified, according to proto-
col, using the RNeasy Plus Mini-kit (Qiagen). RNA
was prepared from untreated cells. Affymetrix 1.1 ST
was used and experiments were performed by the
Bioinformatics and Expression Analysis core facility at
Karolinska Institutet, Stockholm, Sweden.

Table 1. List of drugs used in the study, dose used, and target(s)/
mechanism of action

Compound Dose
(uM)

Target(s)/
Mechanism

Supplier

Erlotinib 10 EGFR DTP, Enzo

Gefitinib 10 EGFR NCC,DTP,
Selleck

Quercetin 10 PI3K BIOMOL

Wortmannin 10 PI3K BIOMOL

LY294002 10 PI3K BIOMOL, Enzo

ZM 336 372 10 cRAF BIOMOL

GW 5074 10 cRAF BIOMOL

Retinoic acid 10 RAR BIOMOL

Doxorubicin 10 Cytostatic/
topoisomerase

II BIOMOL

Imatinib 10 Bcr/Abl, c-KIT,
PDGFR

NCC

Imipramine 10 Tricyclic
antidepressant

NCC, Sigma

Sertraline 10 SSRI NCC

Temozolomide 20 Alkylating cytostatic DTP, NCC

Olomoucine 10 CDK BIOMOL

Roscovitine 10 CDK BIOMOL, Enzo

Metformin 10 GLUT4 Enzo, Sigma

Fluperlapine 20 Tricyclic atypical
antipsychotic

NCC, Enzo

Ipriflavone 20 Isoflavone osteoclast
inhibitor

NCC, Sigma

Physostigmine 20 Cholinesterase
inhibitor

NCC, Enzo

Rapamycin 10 mTOR BIOMOL, Enzo

Nelarabine 10 Purine nucleoside
analogue

DTP, Tocris

Rimcazole 10 Sigma receptors NCC, Tocris

Cefaclor 20 Cephalosporin
antibiotic

NCC, Enzo

Pirenperone 20 5-HT2 NCC, Sigma

AG-490 10 JAK2 BIOMOL, Enzo

U-0126 10 MEK1 and MEK2 BIOMOL,Enzo

Paclitaxel 10 Microtubuli inhibitor DTP, Enzo

Zolmitriptan 20 5HT1B/1D NCC, Enzo

Piroxicam 20 NSAID NCC, Enzo

Pterostilbene 20 Phytoalexin/
antioxidant

NCC, Enzo

PP2 10 Src-family kinases BIOMOL, Enzo

Abbreviations: PI3K, phosphatidylinositol-3 kinase; RAR, retinoic
acid receptor; CDK, cyclin-dependent kinase; GLUT4, glucose
transporter type 4; mTOR, mammalian target of rapamycin;
NSAID, nonsteroidal anti-inflammatory drug; NCC, National
Clinical Collection from NIH; DTP, Developmental Therapeutic
Program, Oncology drug plate supplied by NIH; Enzo, Enzo
Biosciences; Sigma, Sigma Aldrich; BIOMOL, BIOMOL plate from
Enzo; Selleck, SelleckChem; Tocris, Tocris Biosciences.
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Defining Predictive Transcripts by Sparse Canonical
Correlation Analysis

The goals of the analysis performed in this section were to
(i) assess the possibility of predicting drug-drug interac-
tion scores from mRNA biomarkers and (ii) define predic-
tive mRNAs for drug-drug interaction effects in GBM. To
do this, we used a multivariate method, sparse canonical
correlation analysis (sCCA), as follows. We selected as
our data the top 200 most variable transcripts, deter-
mined as the variance across the 5 cell lines, and data for
the 11 validated drug pairs (Fig. 3A). The mRNA data
were arranged into a 200-row (mRNA) × 5-column
(cell lines) matrix X and the drug pair data were arranged
into an 11-row (interaction scores) × 5-column (cell
lines) matrix Z (Supplementary Table S2). In detail, we
subsequently applied the sCCA function in the “PMA”
R package,26 using default settings and other parameters
(“penaltyx” and “penaltyz”) determined by 10-fold
cross-validation simulations. The sCCA function returned
sparse vectors u and v (of lengths 200 and 11, respective-
ly), such that Corr(uTX, vTZ) was maximal. From the
results, we obtained 3 pieces of information. First, the
nonzero elements of u indicated predictive mRNAs
(Supplementary Table S2). Second, the nonzero ele-
ments of v indicated a subset of interaction scores that
were well predicted by the elements in u (Fig. 4A and
Supplementary Table S2). Third, given an expression

pattern x, the u and v vectors could be used to predict
the interaction scores by Zpredicted ¼ vuTX. The sCCA
procedure can be used to extract either a single pair
(u,v) or a sequence of vector pairs (u1, v1), (u2, v2) to
predict increasing proportion of the interaction network
(Fig. 4).

Significance Testing

To statistically test for effects on viability, we used
Student’s 2-sample t test, assuming equal variance, to
quantify differences between combination (ratio) and
control (ratio) effects. We also tested the experimental
replicate interaction score distribution and thus per-
formed nonparametric bootstrapping (resampling data
points, 500 iterations from all replicates in all experi-
ments) to obtain empirical 95% confidence intervals for
the interaction scores (Fig. 3A and C). In Fig. 2B, potential
robust (blue, red) interactions are operationally defined
as interactions with a t test nominal P value ,.05, and
variable (yellow) interactions with a variance exceeding
the 95th percentile of the simulated sampling distribution
under the null hypothesis (constant interaction).
Combination index and a-values were tested for signifi-
cance using a single sample 2-tailed t test, with 5 indepen-
dent measurements of combination index and a-value
done in each of the cell lines tested.

Table 2. a-Values and combination indices for 4 combinations in 5 GICs

a-Values Combination Index

Cell Line Average P Cell Line Average P

Rimcazole 1 sertraline Rimcazole 1 sertraline

U3005MG 0.42 .9040 U3005MG 1.06 .9544

U3013MG 20.08 .3558 U3013MG 0.98 .1342

U3024MG 20.04 .4549 U3024MG 1.00 .5000

U3034MG 20.17 .3304 U3034MG 0.97 .1728

U3068MG 20.27 .2865 U3068MG 0.95 .0830

Rimcazole 1 gefitinib Rimcazole 1 gefitinib

U3005MG 0.71 .9636 U3005MG 1.11 .0041

U3013MG 0.24 .8431 U3013MG 1.03 .0584

U3024MG 0.72 .9996 U3024MG 1.09 .0009

U3034MG 0.81 .9868 U3034MG 1.12 .0021

U3068MG 0.18 .8610 U3068MG 1.03 .0130

Pterostilbene 1 sertraline Pterostilbene 1 sertraline

U3005MG 0.26 .6946 U3005MG 1.23 .9761

U3013MG 20.58 .0000 U3013MG 0.90 .0003

U3024MG 21.29 .0056 U3024MG 0.82 .0080

U3034MG 21.38 .0000 U3034MG 0.79 .0001

U3068MG 21.27 .0000 U3068MG 0.80 .0000

Pterostilbene 1 gefitinib Pterostilbene 1 gefitinib

U3005MG 20.59 .0038 U3005MG 0.91 .0010

U3013MG 20.19 .1815 U3013MG 0.96 .0486

U3024MG 20.58 .2516 U3024MG 0.92 .1048

U3034MG 20.99 .0000 U3034MG 0.84 .0001

U3068MG 20.68 .0031 U3068MG 0.88 .0008
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Results

Drug-Drug Interaction Scores Across 5 GBM Cell Lines

We performed a screen of 465 drug combinations in the
GBM cell lines T98G, A172, U87MG, U343MG, and
U373MG (Supplementary Figure S1). The drug pairs ana-
lyzed represent all unique pairs formed from a set of 31 se-
lected drugs (Table 1). The key concept behind selecting
these drugs was to strike a reasonable balance between (i)
cytotoxic drugs and tyrosine kinase inhibitors with glio-
blastoma relevance and (ii) several noncancer drugs that
may be of interest for drug repurposing (Methods). The
screening protocol included measurement of viability
(% of control) after 48 h of compound exposure, using
both single and combination treatments, followed by cal-
culation of interaction scores. Following estimation of in-
teraction scores from triplicate measurements (Methods),
the interaction score data were organized as 5 matrices of
dimension31 × 31, each containing 465 drugpair interac-
tion scores (¼2325 interaction measurements) used for
downstream statistical analysis (Fig. 1).

Distribution and Within-Pathway Correlations
of Interaction Scores

The empirical distribution of interaction scores for the
465 drug pairs in the 5 GBM cell lines is bell shaped,
with extended tails (Fig. 2A, arrow). A similar distribu-
tion has been both predictedand observed inother biolog-
ical systems and appears to be a generic property of
pairwise functional interactions.25,27 In addition to
showing these characteristic statistical trends, our data

were consistent with the biological expectation that
drugs targeting the same pathway produce correlating in-
teraction scores in relation to other drugs (Supplementary
Fig. S2), a trend that was observed in reported genetic and
pharmacological interaction data,25,28 which we here
demonstrate for the first time in GBM.

Interaction Scores Reveal Robust and Variable Synergies

Unlike interaction screens in single cell lines or experi-
mental systems,13,25,28 the comparative experimental
design used here made it possible to characterize the inter-
action scores between the 465 drug pairs across 5 cell
lines. For this, we plotted the mean vs the standard devia-
tion of the cell-specific interaction score. The resulting
graph (Fig. 2B) thus separated the drug pairs along 2
dimensions: pairs that on average had a synergistic inter-
action score vs a positive one (x-axis) and pairs whose
interaction was robust (consistent) across cell lines vs var-
iable (y-axis). The graph thus reveals drug pairs with
robust synergy (blue, t test P , .05), robust antagonism
(red, t test P , .05), and more variable interaction behav-
ior (yellow, bootstrapping simulation test P , .05). We
conclude that the tested drug pairs vary in interaction
scores across the cell lines, but a subset of drug pairs
have consistently synergistic interaction scores, potential-
ly indicating a synergy that is robust to cellular context. In
the following experiments, we therefore sought to (i) val-
idate the initial screening data in the same and additional
cell lines, (ii) characterize interactions with a complemen-
tary interaction analysis model, and (iii) apply molecular
profiling to define biomarkerspredicting interaction score
variability in GBM.

Fig. 1. Schematic representation of comparative drug pair screening in multiple glioblastoma cell lines. We conducted a 5 × 465 drug pair screen

to find novel anticancer drug pairs for GBM. Following initial screening in standard cell lines (heatmaps, left), we validated selected drug-drug

interactions in GICs and develop biomarker predictors for cell line differences in drug-drug interactions (right).
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Robust Synergistic Effects Against GBM Growth in a
Subnetwork of Approved Drugs

In thenext set of experiments, andasa secondary screenof
hits found in the primary screen, we retested all drug pairs
that met combined criteria of (i) a synergistic interaction
score (less than 20.1975, corresponding to2standardde-
viations from the interaction score distribution for all cell
lines), (ii) significant inhibition of viability (P , .01), and
(iii) a sufficient magnitude of the inhibition (viability ratio
,0.8). In this secondary screen, we retested a total of 45
pairs that met these criteria to obtain a stringent
network of 11 interacting drug pairs for which a synergis-
tic interaction score, here defined as an interaction score
less than 20.1975, was reproduced across multiple ex-
perimental replicates in GBM cell lines (Fig. 3A–B).

The 11 reproduced combinations involved several
known cancer drugs, including kinase inhibitors gefitinib
and imatinib, mitotic inhibitor paclitaxel, and doxorubi-
cin (Fig. 3A). We also noted a number of synergistic inter-
actions between/among noncancer drugs—for example,
among PP2 (an Src inhibitor), rimcazole (a sigma receptor
ligand), sertraline (a selective serotonin reuptake inhibi-
tor [SSRI]), and pterostilbene (an antioxidant) (Fig. 3A).
The most interaction-prone drugs were gefitinib, sertra-
line, rimcazole, and pterostilbene (6–9 synergistic inter-
actions; Fig. 3B). Of these, rimcazole and sertraline
were recently shown to exhibit single drug activity
against GBM-derived stem cells at 10 mM,19 and a func-
tion of sertraline as an inhibitor of translation initiation
in cancer cells has been demonstrated.29 Taken together,
the results demonstrate numerous pairwise interactions
between noncancer drugs in the 5 tested GBM cell lines.

As a point of comparison, we tested 4 combinations on
a normal fibroblast panel, consisting of 3 human

fibroblast cell lines. In contrast to the GBM cells, the fibro-
blasts showed variable responses to the top 4 combina-
tions (Supplementary Table S3).

Drug Pair Interactions Were Consistently Reproduced in
a Set of Glioblastoma-Initiating Cell Cultures

To address the generality of our findings, we chose to
further characterize drug pairs (Fig. 3C) from the 11 hits
in the GIC cultures U3005MG, U3013MG, U3024MG,
U3034MG, and U3068MG. The GICs were originally
derived from serum-free tumor samples and maintained
as adherent cultures using the protocol developed by
Pollard et al.19 Previous analyses have shown that GICs
more closely reflect the genotype and phenotype of the
primary tumor cells,30 which makes them highly relevant
and valid in vitro models of GBM. In our experiments, we
could reproduce the synergistic interaction scores seen in
theoriginal 5 cell lines; forexample, gefitinib + rimcazole
and rimcazole + sertraline were found to interact with
synergistic interaction scores also in the GICs (Fig. 3C
and D). Of note, the more “variable” combination
PP2 + gefitinib (strong synergy in T98G only) was
found to have synergistic interaction scores in only 2 of
the GICs (U3024MG and U3034MG), which supports
that this particular drug pair would produce a synergistic
interaction only in a particular subset of GBM. The drug
pair doxorubicin + wortmannin, which produced a syn-
ergistic interaction score in the cell lines, was not replicat-
ed in any of the GICs (Fig. 3C and D), indicating that this
pair is an unlikely candidate for synergistic combination
targeting of GBM. Thus, the synergistic interaction
scores seen in the original 5 cell lines broadly generalize
to GICs.

Fig. 2. Distribution of interaction scores for screened drug pairs. (A) Distribution of drug-drug interaction scores, pooled for all 5 cell lines.

Histogram of the interaction score distribution where tails on both sides are visible, indicating negative (arrow) and positive interactions. (B)

Characterization of interaction score mean vs interaction score variance of all 465 screened drug pairs. The mean interaction scores across the

5 cell lines (x-axis) vs the SD of interaction scores across the 5 cell lines (y-axis). The graph reveals the significant (P , .05) most variable pairs

(yellow) (both synergistic and antagonistic), most robust synergistic pairs (blue), and most robust antagonistic pairs (red).
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Validation of Interaction Scores Using Isobole Analysis

While the initial, high-throughput tests were performed
using a well-established metric of effect-based interac-
tion,13 we went on to characterize a selected set of combi-
nations using dose-based interaction criteria (combination
index14 and a-values25). For this, we selected 4 of the top
robust combinations with negative interaction scores
from previous experiments (Fig. 3C and D) for isobole-
based experimental follow-up (rimcazole + sertraline,
rimcazole + gefitinib, pterostilbene + sertraline, and
pterostilbene + gefitinib). For each of these pairs, we mea-
sured the response to each of 7 × 7 dose combinations of
the 2 drugs. Based on the data, we obtained isoboles
(Methods) from which we estimated the combination
index and a-values (Table 2). We generally observed
several negative a-values and low combination indices
(suggesting a synergy) for pterostilbene + sertraline and

pterostilbene + gefitinib in most GICs (Table 2).
However, some additive or even antagonistic trends were
seen in a few GICs for rimcazole + sertraline and
rimcazole + gefitinib. These results suggest that this type
of analysis can capture more subtle interaction effects not
seen in the initial screen.

GBM Drug-Drug Interactions Predicted From mRNA
Biomarkers

In a final analysis, we asked whether the drug-drug interac-
tionsofeachGBMcell linecouldbepredicted fromits tran-
scriptional profile (Fig. 4 and Supplementary Table S2).
For this, we used the sCCA. This is a multivariate
method that can be used to simultaneously select and asso-
ciate sets of variables in 2 data sets,26 here applied to select
mRNA features that correlated with drug-drug

Fig. 3. Core set of retested drug-drug interactions in standard GBM cell lines and GIC cultures. (A) Chart of 11 combination responses in 5 GBM

cell lines. Interaction scores+95% estimated confidence intervals. Values highlighted in gray indicate an interaction score , 20.1 (P , .05). (B)

Subnetwork of validated pairs; edges indicate synergistic interactions in specific cell lines. Note that rimcazole + sertraline stands out as the most

robust acting combination with 4 connections, followedby pterostilbene + sertraline, pterostilbene + gefitinib, and doxorubicin + wortmannin

with 3 connections. EGFR inhibitorgefitinib stands out as the most connected drug (C and D). Six selected combinations were further validated in

a panel of GICs. This demonstrated that the synergistic interaction scores, thus indicating a synergy, seen in the cell lines could be reproduced,

resulting in a similar network around gefitinib, rimcazole, sertraline, and pterostilbene. (Pacli ¼ paclitaxel, Gefi ¼ gefitinib, Doxo ¼ doxorubicin,

Wort ¼ wortmannin, Imat ¼ imatinib, Sert ¼ sertraline, Ptero ¼ pterostilbene, Rim ¼ rimcazole, LY ¼ LY294002).
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interactions across the GBM cell lines. Applied to our data,
we obtained a good model fit for 6 selected interactions
(R2 ¼ 0.93) using a subset of 82 mRNAs selected by the
sCCA algorithm (Fig. 4A, all mRNAs in Supplementary
Table S2) and a reasonable fit (R2 ¼ 0.50) for the full set
of 11 interactions (Fig. 4B). The 82 selected mRNAs com-
prised the differentiation markers of glial fibrillary acidic
protein and sex determining region Y-box (Sox)21
(Supplementary Table S2). Further, we identified cell-cell
interaction and cell adhesion markers such as myelin
protein zero-like 3, integrin beta 4 (ITGB4), protocadherin
beta 5, cadherin (CDH)1, CDH6, and markers involved in
the Wnt signaling pathway, including prickle homolog 1
and secreted frizzled-related protein (SFRP)1. We could
also identify glycoprotein markers such as peripheral
myelin protein 22, fibulin-1, microfibrillar associated
protein 5, fibronectin 1, and markers previously reported
to be associated with oncogenesis, including ITGB4,31

LIM domain only protein 3,32 Sox2, Sox21,33 and
SFRP1.34 Of note, our method selected carboxyl esterase
1, for which mutations are associated with altered metab-
olism of this enzyme’s substrates, such as certain drugs.35

The data taken together, sCCA is a promising tool to
definemRNAbiomarkers forGBMdrug-drug interactions
in extended studies; however, a larger data set would most
likely increase the power of this method, something that is
reserved for future work.

Discussion

Weperformedafirst integrated investigationofdrug-drug
interactions across GBM cell lines and identified a core set
of reproducible drug pair interactions. The most striking

finding is that a subset of drug-drug interactions—such
as rimcazole + sertraline and pterostilbene + gefitinib—
produce synergistic interactions over many cell lines that
are also reproduced in the highly more clinically relevant
GICs. This class of robust interactions may be of interest
to the development of GBM therapies with consistent re-
sponse across broad subtypes of the disease, whereas the
more “variable” interactions, such as PP2 + gefitinib
(Fig. 3), showing synergistic interactions in only a few
cell lines, is an example of a combination that could act
more efficiently on subtypes of GBM. All single drugs in-
cluded in the validated combinations have previously
been shown to exhibit an anticancerous effect, including
the noncancer drugs pterostilbene,36 rimcazole,17,19 and
sertraline.19 These results indicate that drug repurposing
could pose an interesting alternative to GBM therapy.
Previous studies have identified the phosphatidylinositol-3
kinase inhibitorswortmanninandLY294002asenhancers
ofdoxorubicin-inducedapoptosis.37,38Apart fromthis,no
previous studies have to our knowledge shown the combi-
nation effects we present in this study.

Strikingly, some of the strongest synergies were
between noncancer drugs (eg, the SSRI sertraline, the
sigma receptor antagonist rimcazole, the antioxidative
phytoalexin pterostilbene), showing the possibility of
drug repurposing for treating GBM.

Similar to previous work in bacteria,13 yeast,25 and
cancer cell lines,8 our interaction data contain correlations
between functionally related targets (Supplementary
Fig. S2). These observations, together with the retesting
using the isobologram method, serve to validate our ap-
proach of a single dose first-pass screen.

The analysis of isobolograms resulting ina-values and
combination indices revealed dose dependencies not

Fig. 4. Transcriptional biomarkers can predict drug-drug interaction in GBM. We used sCCA to select subsets of interaction links (interaction

scores) that are well predicted by subsets of mRNAs. (A) Results for a single component model, where a subset of 6 interactions are predicted

by 82 transcripts (see main text), obtaining excellent model fit (R2 ¼ 0.93). (B) Results for a 3-component model where the full core network

of 11 interactions is predicted by 200 transcripts (R2 ¼ 0.50).
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captured by the interaction scores from the screen. For
example, rimcazole + sertraline and rimcazole + gefiti-
nib seemed toexhibit less synergyusinga-valuesandcom-
bination indices, while pterostilbene + sertraline and
pterostilbene + gefitinib were confirmed to be synergistic
using the same measurements. Nevertheless, both rimca-
zole and sertraline represent safe and tested psychiatric
drugs, which will penetrate the blood–brain barrier,
and thecombinationwill thereforebe interestingasa ther-
apeutic candidate for further study. Direct use of isoboles
and calculations from these in a primary screen are valu-
able interaction measurements. However, this needs to
be weighed against the experimental load accompanying
this approach in multi–cell line experiments. Although it
is beyond the scope of this study, to gain full insight into a
particular drug-drug interaction, one must analyze multi-
dose interactions by isobologram analysis, curve-shift
analysis, combination index, or universal surface re-
sponse analysis, all of which are derivatives from the
Loewe additivity model.15,22

The presented sCCA model shows promise as a new
approach to predict drug pair interactions based on the
transcriptional profile of a cell line. In the extension, this
type of approach may have applications in GBM research
(defining functional biomarker genes associated with
changes in drug-drug interactions) and GBM therapy
(personalizing therapystrategiesbasedonbiomarkerpro-
files). One limitation of the current sCCA analysis was
that the number of transcripts analyzed (the top 200
most variable transcripts) and the number of unique
drug pairs (11) were relatively high in comparison with
the number of cell lines (5). Todeal with this “underdeter-
mined” statistical setting, the version of sCCA that we
applied used stringent variable selection, which rendered
the method robust against small samples (Methods). In
addition, we restricted the selection of mRNAs to the
first sCCA component only, to avoid overinterpretation.
In the future, a larger set of cell lines, derived from differ-
ent molecular subtypes of GBM,39,40 could reveal mRNA

biomarkers predicting the interactions of individual pairs
with even better accuracy.

Taken together, the results provide 3 main implications
for the future development of anti-GBM combination
therapies. First, approved drugs not developed for cancer
therapy produce synergistic anti-GBM responses. Second,
consistent synergistic drug pairs may elicit responses
acrossabroader spectrumofpatients.Third, transcription-
al biomarkers of combination effects can be applicable to
stratification of GBM patients. Further studies will help
reveal additional robust targets for GBM and uncover
principles of robustness and variability.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology (http://neuro-oncology.oxfordjournals.org/).
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