
©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

Bioengineered 4:5, 266–278; September/October 2013; © 2013 Landes Bioscience

 Commentary

266	 Bioengineered	 Volume 4 Issue 5

Keywords: genetic algorithm, optimiza-
tion, multiple sequence alignment,
protein structure prediction

Abbreviations: GA, genetic algorithm;
TSP, travelling salesman problem;
MSA, multiple sequence alignment;
PSP, protein structure prediction; SOP,
sum of pairs; PDT, pareto domination
tournament; HP, hydrophobic-polar;
SOGA, self-organizing genetic algorithm

Submitted: 10/16/12

Revised: 11/26/12

Accepted: 11/28/12

http://dx.doi.org/10.4161/bioe.23041

*Correspondence to: Roy D Sleator;
Email: roy.sleator@cit.ie

For decades, computer scientists have
looked to nature for biologically

inspired solutions to computational
problems; ranging from robotic control to
scheduling optimization. Paradoxically,
as we move deeper into the post-
genomics era, the reverse is occurring,
as biologists and bioinformaticians look
to computational techniques, to solve
a variety of biological problems. One of
the most common biologically inspired
techniques are genetic algorithms
(GAs), which take the Darwinian
concept of natural selection as the
driving force behind systems for solving
real world problems, including those
in the bioinformatics domain. Herein,
we provide an overview of genetic
algorithms and survey some of the most
recent applications of this approach to
bioinformatics based problems.

Introduction

First introduced by JH Holland in 1975,1
GAs represent a biologically inspired field
of evolutionary computation and, as such,
characterizes a form of machine learning
that has been applied to an array of
bioinformatics based problems. As outlined
in Figure 1, which plots the distribution of
150 papers referencing genetic algorithms
since 1995, as indexed in the PubMed
database, interest in GAs has grown
significantly over the past 15 years.2

An analysis of the subject matter of this
set of 150 peer-reviewed publications shows
that the majority (88%) are concerned with
the application of GAs to nucleic acid and
protein based sequence analysis (Fig. 1B).
Against this backdrop, we provide a case

Naturally selecting solutions
The use of genetic algorithms in bioinformatics

Timmy Manning,1 Roy D Sleator2,* and Paul Walsh1

1Department of Computer Science; Cork Institute of Technology; Cork, Ireland; 2Department of Biological Sciences; Cork Institute of Technology; Cork, Ireland

study of the recent application of GAs to
the field of sequence analysis. To further
demonstrate the flexibility of GAs, we also
consider their application to the complex
field of protein structure prediction (PSP).

Genetic Algorithms

A typical application of genetic algorithms
is to efficiently search a large “space” of
possible solutions to a problem for an opti-
mal solution, e.g., identifying an optimal
order for a number of variables or finding
an optimal set of weights and parameters
for an experiment.3-5 GAs achieve this
through an evolutionary search on a popu-
lation of randomly generated individu-
als over a number of generations (Fig. 2).
Successive generations of the population
are generated from the fittest members of
the previous generation, mimicking the
Darwinian concept of natural selection.6

GAs begin with an initial population
of randomly generated candidate solu-
tions for a problem.7,8 In each generation,
the fittest population members are iden-
tified, ranked, and used as “parents” to
form the basis for the next population (or
next “generation”), replacing the current
population.9 Repeating this process propa-
gates elements of successful solutions and
should produce increasingly capable solu-
tion populations.10 The genotypes of a new
generation are created through the genetic
operations of crossover (recombination)
and mutation.11 The actual implementa-
tion of crossover and mutation is depen-
dent on the domain of application and the
selected solution representation to produce
valid solutions, as will be demonstrated in
our examples.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

www.landesbioscience.com	 Bioengineered	 267

 Commentary Commentary

a potential itinerary of visiting the asso-
ciated cities. The phenotype conversion
can include specific domain knowledge
not encoded in the genotype, such as
knowing that an additional connec-
tion is required between the last and
first city.

The Fitness Function

A “fitness function” is used to evaluate
phenotypes to identify the fittest popula-
tion members.23 The fitness evaluation is
a key aspect of the search heuristic and is
commonly based on an objective measure
within the domain of interest. It is the per-
formance of the phenotypes on this fitness
function that is optimized by the genetic
algorithm.24

instructions which is processed in soft-
ware to produce an evaluable “pheno-
type.”13 The genotype is the solutions
manipulable representation, while the
phenotype is an evaluable solution to the
problem.20 A genotype chromosome is rep-
resented by a software data structure such
as a string of bits, characters, integers or
real numbers.21 Each element in the struc-
ture represents a gene of the genotype.
Depending on the problem domain and
implementation technique, genotypes can
be static or dynamic in terms of structure
size.22

A possible genotype representa-
tion for the TSP is given as an example
in Figure 3A. Here, each genotype is a
permutation of the cities, whereas the
phenotype, Figure 3B, is represented by

The main components of a genetic
algorithm are the genotype, phenotype,
fitness function, selection algorithm,
crossover operator and mutation opera-
tor.12 Each of these topics will be discussed
over the following sections, and an exam-
ple provided of how the concepts can be
combined to solve the traveling salesman
problem (TSP)13 using a genetic algorithm
which follows the flowchart of Figure 2.

The goal of the TSP is to identify
the most efficient path for a traveling
salesman (perhaps selling sequencing
machines) which visits a list of speci-
fied cities each exactly once and finishes
at the starting point. The availability of
a direct route between each pair of cit-
ies is assumed. A solution (good or bad)
in the TSP is therefore a permutation of
the set of cities in the order they must
be visited.14,15

For a TSP with n cities, (n-1)!/2 pos-
sible solutions exist, meaning the com-
plexity of the problem and the number
of possible solutions grows rapidly as the
number of cities increases (n! possible
solutions exist if equivalent solutions are
considered unique where the starting cit-
ies and the direction in which the cities
are traversed are different). For example,
to plan an itinerary visiting every US state
capital using brute force would require
the selection of the best route among
3.04 × 1062 alternatives. If a computer run-
ning since The Big Bang was able to evalu-
ate a path every nanosecond, 13.7 billion
years later it would still have evaluated less
than 1% of all possible routes.

The most efficient known approach to
identifying an exact solution for the gen-
eral TSP is the dynamic programming
algorithm,16,17 which can identify the opti-
mal solution in O(n22n) time.18 However,
heuristic approaches, such as GAs, can be
employed to efficiently search the space of
potential solution routes for good, if not
optimal, solutions. A number of alternate
exact and heuristic approaches are out-
lined and discussed in the paper “TSP–
infrastructure for the traveling salesperson
problem.”19

The Genotype and Phenotype

Individual solutions are represented
by a “genotype,” a blueprint or set of

Figure 1. An analysis of 150 bioinformatics papers referencing GAs. (A) A plot of the distribution
of the sampled papers (y-axis) plotted against the year of publication (x-axis), and (B) A
breakdown of the subject matter addressed by the papers.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

268	 Bioengineered	 Volume 4 Issue 5

second child comprises the first four genes
of parent 2 (P2[a]) with the last three
genes of parent 1 (P1[b]).

In “two-point crossover,” two gene
indexes are randomly selected in the par-
ent genotypes.33 The genes between these
two points in both parents are switched in
the parent genotypes to produce two new
offspring, as shown in Figure 5. In this
example, a contiguous string of genes are
selected in each parent between the third
and fifth genes inclusively. The selected
sections are then switched between the
parents to produce two new solutions.
This approach can be extended to k-point
(multi-point) crossover.

Two common forms of crossover spe-
cific to binary genotypes are uniform
crossover and three-parent crossover.
Uniform crossover uses a binary mask to
decide how the parent genes will be com-
bined. The mask is overlaid on both par-
ents.34 If the mask has a 1 value for gene n,
gene n from the first parent is copied to the
first offspring, and gene n from the second
parent is copied to the second offspring. If
the mask has a value of 0 for gene n, gene n
from the first parent is copied to the second
offspring, and gene n from the second par-
ent is copied to the first offspring. In this
way, two complete and complimentary
offspring should be created by combin-
ing the genes of the parents. Three-parent
crossover uses a third parent genotype to
act as an arbiter, and produces a single off-
spring. Each gene which matches between
the first two parent genotypes is copied
into the offspring. If a gene value is dif-
ferent in the first two parents, the value
of the gene from the third parent is used
(forming a majority decision).35

the tournament with the highest fitness.
A tournament with s = 1 is equivalent
to random selection. As the size of the
tournament increases, the chance that
the low ranked solutions will be selected
decreases. Variations of this approach rank
the members of the tournament and select
solutions with a probability biased toward
the fittest solutions.

The stochastic nature of the selec-
tion process (and the mutation operator,
which will be discussed later) results in
the potential for good solutions to be lost.
“Elitism” allows the best performing solu-
tion (or solutions) identified thus far to be
copied unmodified into each new genera-
tion.29 This can prevent the loss of useful
solutions found and speed up the progress
of the algorithm. An alternate form of elit-
ism is “steady-state” selection.30 Instead of
creating an entirely new population each
generation, a segment of the unfit solu-
tions are purged and replaced by new off-
spring spawned from the fit members.

Crossover

In crossover, segments of two parent gen-
otypes are combined to form new geno-
types. A well-designed crossover operator
can increase the efficiency of the search.31
Figure 4 provides an example of a “one-
point crossover” operation on two binary
genotypes, creating two novel offspring.32
In this example, an offset is selected
between the fourth and fifth gene in
both parent genotypes, dividing the par-
ent genotypes each into two sections. The
first child is created by combining the first
four genes of parent 1 (P1[a]) with the
last three genes of parent 2 (P2[b]). The

Selection

Once a population of solutions has been
evaluated (using the fitness function), var-
ious algorithms exist for selecting which
solutions will form the parents of the
next generation of solutions. The selec-
tion algorithms should favor the selec-
tion of solutions with higher fitness and
allow solutions to be the basis for several
offspring (selection with replacement).25
A common approach is the roulette algo-
rithm, where each solution is apportioned
an area of a (metaphorical) roulette wheel
directly proportional to its fitness in the
population. Selection is implemented by
randomly selecting a point on the roulette
wheel and accepting the associated solu-
tion.26 With the roulette selection method,
typically even the least fit solutions have a
chance (albeit small) of forming the basis
of a new solution in the proceeding popu-
lation. This random selection ensures that
some level of genetic diversity is main-
tained in the system, and allows poten-
tially promising avenues of evolution to be
further examined even if their potential
is not immediately reflected in their fit-
ness evaluation.27 Some GA approaches
implement a survival rate, which specify
a percentage of the fittest solutions which
are used exclusively to generate the next
generation.28

An alternative approach is tournament
selection.23 A predefined value s, referred
to as the tournament size, is selected
which is less than the population size.
To select a solution from the population,
s solutions are first selected randomly
from the current population. The sim-
plest approach is to select the member of

Figure 2. Flowchart for the execution of a genetic algorithm.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

www.landesbioscience.com	 Bioengineered	 269

such as the crossover rate and the muta-
tion rate may require tailoring to extract
the best performance.47 The crossover
rate represents the percentage of offspring
which will be produced using the cross-
over operator. The remaining offspring
are copies of solutions from the previ-
ous generation.48 With the exception of
offspring produced through elitism, all
offspring produced through crossover
or otherwise are subjected to mutation.
Typically a value in the range 60–90% is
used for the crossover rate.49-51

Mutation rate refers to the probabil-
ity with which each gene in a genotype
should be mutated.52 This should be low
(typically about 1–5%), to allow the solu-
tions being produced to examine their
local areas for improvements and slowly
move toward optimizing the solutions.53
A mutation rate of 100% reduces the
genetic algorithm to the equivalent of a
random search. A mutation rate that is
too low means the search of the potential
solutions will be slow. The crossover and
mutation rates are problem dependent
and require trial and error for the identifi-
cation of optimal values.54,55

Genetic algorithms are categorized
as a “weak” method, as they carry out a
blind search of a space of solutions with-
out using prior domain knowledge.56 As
a result, although genetic algorithms are
more efficient than a brute force search,
they tend to be less efficient than “direct”
methods which incorporate domain

decrease its fitness. As such, the genetic
algorithm can become “trapped” on these
local optima, and unlikely to improve.
The results achieved can also be incon-
sistent, even when rerunning a GA with
the same parameters, due to the stochastic
nature of the process.43

A similar phenomenon is observed
in the biological sciences in the form of
the protein folding problem—more spe-
cifically, the folding funnel hypothesis
for protein folding, representing a specific
version of the energy landscape theory
of protein folding, which assumes that
a protein’s native state corresponds to its
free energy minimum under the solution
conditions usually encountered in cells.
Although the folding funnel hypothesis
assumes that the native state is a deep free
energy minimum with steep walls, corre-
sponding to a single well-defined tertiary
structure, energy landscapes are usually
“rough,” with many non-native local min-
ima in which partially folded proteins can
become trapped.44

The use of a well-designed coarse
mutation operator (perhaps at a low usage
rate) can help the algorithm to escape
these local minima.45 Running the GA
several times with different initial solution
configurations and increasing the popula-
tion size are simple approaches to increas-
ing the coverage of the search space, thus
reducing the impact of this problem.46

In addition to the population size,
other parameters of the genetic algorithm

Mutation

Once a new population has been cre-
ated through selection and crossover, it
is modified through mutation. Mutation
refers to the modification of a genotype
by some random process.36 Not all muta-
tions will result in increased fitness. For a
binary genotype, the mutation operation
can be as simple as inverting the value
of one of the genes (flipping) or switch-
ing two adjacent values.37 For genes rep-
resented by real numbers, the mutation
could involve perturbing the value by a
random amount under a Gaussian dis-
tribution.38 New mutations which have
a positive impact will increase the phe-
notype fitness and therefore increase its
likelihood to be chosen for reproduction,
meaning this positive mutation is more
likely to be propagated across several
solutions in future generations.39 A com-
mon approach is to allow different levels
of mutation; coarse-grained mutation
to produce significantly new population
members, providing increased coverage
of the problem space, and fine-grained
mutation to slowly edge good performing
solutions toward optimality.40 A number
of the examples given in this paper also
integrate local search optimizations with
the mutation operator to increase the like-
lihood that superior offspring will be pro-
duced through mutation to increase the
efficiency of the evolution.

Limitations of GAs

There are however caveats with the use of
GAs. GAs are an approach to efficiently
searching a space of possible solutions,
but the final solutions produced may not
be the optimal configuration as GAs can
become trapped in “local optima” of the
search space.41 These locally optimal solu-
tions may be significantly different from
the optimal solution in terms of genotype,
with a number of intermediate crossover
and/or mutation operations required to
convert any member of the current popu-
lation to the optimal configuration.42 As
these locally optimal solutions are some-
what optimized, it is possible that a single
mutation or crossover operator which
makes the solution more similar to the
globally optimal solution can actually

Figure 3. (A) A possible genotype representation for the TSP, describing a permutation of a list
of cities. (B) A phenotype (the itinerary) generated from the genotype.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

270	 Bioengineered	 Volume 4 Issue 5

in Figure 8A. Figure 8B gives a potential
solution path generated using a genetic
algorithm after 100 generations. The
stopping criterion can be a maximum
number of generations (100 in this case),
or reaching a fitness threshold. Figure 9
shows a typical GA learning curve plot-
ting the fitness of the best performing
solution identified in each generation
against the generation number. Note that
the graph may be bumpy due to the sto-
chastic nature of the algorithm where a
potentially worse solution could be gener-
ated due to the mutation operator. If an
elitist strategy is used, the fitness would
be unable to decrease and consecutive
generations without improvement would
appear as horizontal lines in the fitness
plot.60

Sequence Alignment Using
a Genetic Algorithm

As for the genetic algorithms described,
mutations can occur in natural evolu-
tion to the DNA, RNA or protein of a
species in the form of insertions, dele-
tions and substitutions. This results in
variation between equivalent sequences
with underlying similarities (conserved
sequences) from different species with a
divergent origin.61 Sequence alignment
is a key technique in bioinformatics that
processes sequences of DNA, RNA or pro-
tein to identify regions of similarity that
may be evidence of evolutionary relation-
ships between the sequences. For a novel
sequence, if a well understood homolo-
gous sequence can be identified, the fea-
tures, function, structure or evolution of

40% (disregarding the worst performing
60% of each generation). The Euclidean
distance which must be traveled when
visiting the cities in a specified order (the
length of the red line in Figure 3) is used
as the fitness function. Here, lower values
(shorter distances) are considered to be
the more fit solutions.

A crossover algorithm for the TSP
must ensure that the children produced
are valid, in that they include each city
exactly once. Crossover, in this exam-
ple, is implemented by taking the cities
(genes) up to a randomly selected offset
in the first parent and combining them
with the remaining cities taken in order
from a second parent, as described in
Figure 6.

The TSP requires a custom mutation
algorithm to produce valid genotypes
which fit the constraints of the problem
domain (i.e., all cities listed exactly once).
Three mutation operators are imple-
mented for our example. The first is a sim-
ple fine grained mutation which involves
switching the order of two adjacent genes,
as demonstrated in Figure 7. The second
mutation operator moves a randomly
selected gene to a new offset in the gen-
otype. The final mutation operator is a
coarse grained approach which switches
the order of 2 randomly selected genes.
The coarse operator will typically have a
large impact on the phenotypes produced,
but facilitates an increased coverage of the
search space.59

Once these parameters are chosen,
the GA follows the flowchart shown in
Figure 2. A typical TSP problem com-
prising 20 distributed cities is presented

knowledge, where available. The incor-
poration of domain knowledge can result
in a more “intelligent” search of the
solution space. GAs should therefore be
applied where the problem space is suffi-
ciently large to make a brute force search
impractical or intractable, and where no
method exists to infer an optimal solution
using domain knowledge. Further to this,
Melanie Mitchell has described prob-
lems appropriate for the use of genetic
algorithms as those where “the space to
be searched is large, is known not to be
perfectly smooth and unimodal, or is not
well understood, or if the fitness function
is noisy, and if the task does not require
a global optimum to be found—i.e., if
quickly finding a sufficiently good solu-
tion is enough.”57

Linking the Concepts Together:
A GA Strategy for Solving the TSP

Problem

There are many possible valid approaches
and variations on how a GA can be applied
to solve the TSP.58 In this section we pro-
vide an example of a typical approach
which can be taken, discussed in terms
of the previously defined concepts. To
solve the TSP using a GA, one must first
decide on a population size, survival rate,
genotype representation and how the fit-
ness function, crossover operator and
mutation operator will be implemented.
In this example, the genotype and phe-
notype are implemented as described in
Figure 3, and the population size is set
to 40. A roulette algorithm for selecting
parents is used, with a survival rate of

Figure 4. One-point crossover on two binary parent genotypes, creating two new offspring.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

www.landesbioscience.com	 Bioengineered	 271

pair. For example, with three sequences
being aligned, alignment scores for the
sequence pairs (1,2), (1,3) and (2,3) must
be individually generated and combined.
A simple cost function might place a one
point penalty on each mismatched amino
acid and a two point penalty for each
amino acid aligned with a gap. The sum
of pairs approach used in PNPAlineaGA
utilizes the PAM35068 scoring matrix to
weight the cost of each mismatch based on
the likelihood of the sequence mutation
naturally occurring, with a penalty for
alignments of amino acids with gaps. The
ID score is a simple count of the number
of columns in a multiple sequence align-
ment which contain the same value.

Previous work by da Silva, Sánchez-
Pérez, Gómez-Pulido and Vega-Rodríguez
used an SOP based fitness function.69,70
The alignments produced indeed opti-
mized the SOP score, but produced solu-
tions showed low ID scores. Low ID scores
limit the plausibility of the proposed align-
ments. PNPAlineaGA employs “Pareto
optimality”, an approach to multi-objec-
tive optimization, to optimize both the ID
score and the SOP score simultaneously.

based approach to multiple sequence
alignment for proteins.67 PNPAlineaGA
will be discussed in terms of its genotype
representation, fitness function, selection,
mutation operator, crossover operator,
implementation and results achieved.

Genotype and phenotype. Every gene
in this approach has 21 possible values,
comprising 20 unique single character
codes, each representing a different com-
mon amino acid, and the dash punctua-
tion mark corresponding to gaps in the
alignment from the loss or gain of amino
acids in the sequences. The genotypes
comprise a string of characters and gaps
for each sequence in the alignment. The
phenotype is represented in a two-dimen-
sional array format with a row for each
individual sequence in the alignment and
a column for each gene of the sequence, as
shown in Figure 10.

Fitness and selection. The fitness func-
tion employed here combines the sum-
of-pairs (SOP) or identity (ID) scores to
gauge the quality of alignments. In the
SOP cost function, each pair of sequences
is aligned and the “cost” of the current
alignment is generated for each sequence

the nucleic acid or encoded protein may
be inferred.62,63

In pairwise alignment, one sequence is
placed above the other. Gaps are inserted
between the residues in either sequence
such that the maximum numbers of iden-
tical or similar characters are aligned in
successive columns.64 Multiple-sequence
alignment works in a similar way to pair-
wise alignment, but considers three or
more sequences simultaneously.65 Aligned
sequences of nucleotide or amino acid
residues are represented as rows within a
matrix, as demonstrated in Figure 10. The
use of multiple sequences limits the impact
of coincidental alignments between two
sequences and increases the impact of
alignments observed across multiple
sequences.66 Multiple sequence alignment
is however a complex and computationally
expensive problem.

Example: Parallel Niche Pareto
AlineaGA (PNPAlineaGA)

PNPAlineaGA by da Silva, Sánchez-Pérez,
Gómez-Pulido and Vega-Rodríguez, is an
example of an efficient genetic algorithm

Figure 5. Two-point crossover. The parent genotypes are each divided into three segments, and the offspring are produced by combining alternate
segments of the parents.

Figure 6. A possible crossover implementation for the TSP problem. (A) Two parents are chosen using a selection algorithm. A crossover point is ran-
domly selected in the first parent. (B and C) The genes from one side of the crossover point are selected and are combined with the alternate genes in
the order which they appear in the second parent to form a new child genotype.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

272	 Bioengineered	 Volume 4 Issue 5

detail in the paper “optimizing multiple
sequence alignment by improving muta-
tion operators of a genetic algorithm.”72

Crossover. Three crossover operators
are used in PNPAlineaGA. The first two
operators work in a manner similar to the
one-point crossover operator already dis-
cussed. The first operator vertically splits
the first parent at a specific column. The
sequences of the second parent are then
split such that the each subsequence con-
tains the same amino acids to the equiva-
lent sequence in the first parent. This
divides the parents into complimentary
parts which if combined could produce
two new offspring, each containing all the
sequences and amino acids in the correct
order. An example of how two parents may
be equivalently cut is given in Figure 12.

The second operator horizontally splits
both parent genotypes into 2 sections
along a specific row, for example as shown
in Figure 13.

The third crossover operator, called
RecombineMatchedCol, selects a column
in the first parent in which all the amino
acids match, but which are not aligned in
the second parent. Gaps are inserted into
the second parent as required to reproduce
the column alignment of the first parent.
In all 3 crossover operations gaps may be
inserted at the ends of the child sequences
as required to ensure they are kept the
same length.

Implementation. PNPAlineaGA is
implemented using an “island model” to
increase the amount of genetic variation in
the population. The population is divided
into four or eight distinct subpopula-
tions with a single centrally located mas-
ter population. The use of more islands
increases the coverage of the search space,
but increases the execution time. Each
sub-population evolves independently in
parallel. After a prescribed number of gen-
erations (the migration rate), each slave
population will send copies of its fittest

(10% suggested) of the remaining solu-
tions. If one of the solutions dominates the
sampling it wins the tournament. If there
is no winner for the tournament (both
dominate the sampling, or members of the
sampling dominate both candidates) an
approach that favors solutions deemed to
be less represented is used as a tie-breaker.
The niching based selection mechanism is
employed to keep a diverse range of solu-
tions which avoids convergence of solu-
tions to a single point on the front. The
PDT approach is explained in more detail
in “a niched Pareto genetic algorithm for
multiobjective optimization.”71

Mutation. The mutation operators
must maintain the order of the amino
acids in each sequence and all sequences
must be kept the same length. The six
mutation operators implemented for
PNPAlineaGA therefore manipulate only
the gap positions in a very controlled man-
ner. The first three mutation operators are
stochastic in nature:

• Gap insertion: insert a gap character
in a random location in a sequence. Insert
a gap at the beginning or end of every
other sequence in the alignment;

• Gap shifting: move a gap character to
a new point in the same sequence;

• Merge space: merges two or three
gap characters (possibly with intermediate
charecters), and shifts them to a new loca-
tion in the sequence.

The remaining three mutation opera-
tors are “greedy” versions of those already
described, which undo mutations which
do not improve fitness, and retry with a
new mutation. If the mutation is undone,
the smart operators allow a new mutation
to be attempted up to a maximum of 3
times. The smart operators also maintain
a “direction probability,” which uses its
experience in each generation to decide
which end of the alignments new gap
insertions and shifts should be applied.
The smart operators are discussed in more

Pareto optimality looks for the “Pareto
front” of optimal solutions, which repre-
sent optimal solutions with varying trade-
offs between the values being optimized,
in this case the SOP and ID scores. A
theoretical Pareto front is represented by
the line in Figure 11. Solutions which lie
under the front are said to be “dominated”
(suboptimal) to those on the front. For
any solution to be under the Pareto front
means that its performance on at least one
of the objectives can be increased without
reducing the performance on the other
objective.

PNPAlineaGA uses a “Pareto domina-
tion tournament” (PDT) for its selection
mechanism. Two candidate solutions are
selected and compared against a sampling

Figure 7. A possible mutation operator for the TSP. An offset in the genotype is selected. The genes either side of the offset are then switched to
produce the new valid genotype.

Figure 8. (A) An example distribution of 20
cities and (B) a path linking the cities found
using a genetic algorithm.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

www.landesbioscience.com	 Bioengineered	 273

Protein Structure Prediction
Using a Genetic Algorithm

The sequence of the amino acids com-
prising a protein is referred to as its pri-
mary structure. The properties of the
amino acids in the chain cause the chain
to twist and turn, settling on the confor-
mation with the lowest free energy.75 It is
this arrangement, referred to as the ter-
tiary structure, which gives the protein its
function.76

Su, Lin and Ting describe a GA based
approach to determining the tertiary
structure of a protein given its primary
sequence.77 The solutions produced in the
GA are possible structures for the peptide
represented as self-avoiding walks through
a 2D triangular lattice structure. One
such walk is given in Figure 17A. Edges
representing the backbone of the protein
join the amino acids to form a walk fol-
lowing the primary sequence of the pro-
tein. For a walk to be valid: (1) All nodes
must be linked in the order of the primary
sequence; (2) Edges must be connected to
two amino acids; (3) Edges must not cross
(the walk is a self-avoiding); (4) Only two
edges can be connected to an amino acid;
and (5) Edges can only connect adjacent
intersect points on the lattice.

This approach uses the hydrophobic-
polar (HP) model78 for evaluating the fit-
ness of each potential solution. Modeling

based on how well the application is per-
forming. The actual implementation
begins with low parameter values for the
crossover and mutation rate. The param-
eter values increase as changes in the fit-
ness values produced each generation
stagnate.

A restricted form of single point cross-
over is employed which is equivalent to the
horizontal crossover of the PNPAlineaGA
approach. Valid crossover points are
between the genes corresponding to dif-
ferent sequences. The crossover rate is
used to select the crossover point, such
that the points become progressively offset
from the start of the genotype as the cross-
over rate increases.

For the mutation operator, a specific
offset in the genotype is selected rela-
tive to the size of the mutation rate. The
binary digits up to the offset are grouped
by sequence. Each group is then inde-
pendently considered for mutation at the
specified mutation rate. The mutation
is a “binary shuffling,” which random-
izes the order of the bits but maintains
the number of 0s and 1’s in each group,
thus ensuring the correct number of gaps
per sequence. Figure 16 gives an example
of two binary shuffle operations used
to create a new child genotype. In this
example, the mutation operator creates
three groups. The first group receives a
binary shuffle, while the second is car-
ried forward unchanged. The third
group corresponds to only a segment of
the third sequence and receives a binary
shuffle. The remainder of the genotype
beyond the mutation point remains
unchanged.

In a small scale evaluation presented by
the authors, the CGA-MSA approach was
demonstrated to be able to produce bet-
ter ID scores in considerably less execution
time relative to a standard genetic algo-
rithm approach.

members to replace the weakest mem-
bers of the master population. The master
population sends copies of its fittest solu-
tions to each slave. There is no direct con-
nection between the slave populations. A
sample representation of an island topol-
ogy is given in Figure 14.

Results. While initial results reported
for PNPAlineaGA indicate that GA based
approaches to multiple sequence align-
ment may be able to produce results that
can be compared with T-Coffee73 (one of
the leading multiple sequence alignment
algorithms available), GA techniques
would benefit from further research and
evaluation in this area.

Example: Cyclic Genetic
Algorithm for Multiple Sequence

Alignment (CGA-MSA)

Proposed in a recent paper by Nizam,
Ravi and Subbaraya, CGA-MAS takes
a different approach to MSA in terms
of both representation and implementa-
tion.74 The genotype used here is fixed
length, and specifies only the locations
of the gaps in each sequence. The geno-
type comprises a binary string for each
sequence. For each sequence in the align-
ment, the number of gaps is specified a
priori such that all sequences are of the
same length once the gaps are included.
The phenotype is the sequences aligned
when gaps are inserted at offsets accord-
ing to the genotype (as in Fig. 10). Figure
15 presents an example alignment with
the gap offsets highlighted, and the cor-
responding genotype.

CGA-MSA employs a “self-organiz-
ing” genetic algorithm (SOGA) to reduce
premature convergence to local minima
and improve performance. A self-orga-
nizing genetic algorithm dynamically
adjusts parameter values during execution
without the need for operator interaction,

Figure 9. A typical learning curve for a
genetic algorithm.

Figure 10. An example 4-sequence alignment. Individual sequences are represented on separate lines. Columns represent aligned amino acids.
Adapted from reference 67.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

274	 Bioengineered	 Volume 4 Issue 5

the folding of a protein is a difficult prob-
lem affected by a number of attributes of
the peptide chain. The HP model simpli-
fies the problem by considering only the
principle mechanism, hydrophobicity, in
controlling the folding of a protein. The
identities of the amino acids in the chain
are reduced to either hydrophobic (H) or
polar (P). “Good” solutions are identified
as those which have the highest number
of H-H contacts, which should represent
the lowest free energy conformation of the
protein under the simplified model. The
plausibility of a conformation of a protein
on a lattice can be evaluated using the HP
model, where a contact is defined as two
topological neighboring amino acids not
connected by an edge.

For a protein n amino acids in length,
the genotype of a solution consists of a
list of n-1 directions from the list “L, R,

Figure 11. An example distribution of a set
of solutions in a Pareto Optimality. Each box
represents the fitness of a solution in terms
of ID score plotted against its fitness in terms
of the SOP score. The gray line represents the
Pareto front. In this example the Pareto front
shows optimal trade-offs between the ID and
SOP scores.

Figure 12. Example dissection of two parents for a vertical one-point crossover operation.

Figure 13. Example dissection of two parents for a horizontal one-point crossover operation.

LU, RU, LD, RD” representing “left,”
“right,” “left up,” “right up,” “left down”
and “right down” respectively. For exam-
ple, the genotype for the walk given in
Figure 17 (A) would be “RU, RD, R, RD,
L, L, RD, L, LD, LU, RU, L, RU, L, L,
RU, R, RU, RD,” if starting at the circled
hydrophobic amino acid. The phenotype
is the actual walk through the lattice pro-
duced by the genotype and the fitness of
each solution is defined using the number
of H-H contacts.

Half of the population is generated
using a tournament selection on the previ-
ous generation, with two point-crossover
implemented at a rate of 0.8. Three muta-
tion steps are performed on each offspring:
(1) random gene mutations are performed
and accepted only if they improve the fit-
ness of the solution; (2) a standard uni-
form gene mutation at a rate of 0.4; and

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

www.landesbioscience.com	 Bioengineered	 275

The genes in this implementation are
single character codes representing the six
possible steps which can be taken while
traversing the 3D lattice; up, down, left,
right, backward, and forward, represented

Figure 15. (A) A sequence alignment for four sequence, and two equivalent encodings for the alignment. (B) The CGA-MSA genotype representing an
alignment solution.

Figure 16. The CGA-MSA mutation operator. The binary digits up to the mutation point are grouped by sequence and considered for mutation indi-
vidually.

Figure 14. Graphical depiction of the flow
of solution exchanges in 4-island model
comprising three slave populations and a
centrally located master population.

(3) a segment of the genotype is rotated
through all 6 angles allowed by the lattice
(0°, 60°, 120°, 180°, 240° and 300°) and
the best performing selected.

The first and third steps act as greedy
local search optimizations to speed the
convergence toward an optimal solution.
Walks generated through crossover and
mutation which violate the “no crossing”
constraint of the lattice model are simply
discarded and new instances generated.
The second half of the new population is
generated using an elite based reproduc-
tion where half the population is made
up of a direct copy of the fittest solutions
from the previous generation.

In evaluations, the use of a hybrid
hill climbing (the greedy local search
optimizations) and genetic algorithm
combined with the elite based reproduc-
tion is shown to increase performance
relative to a standard genetic algorithm
approach. In evaluations, this approach

achieved similar levels of performance to
the “Tabu Search” approach79 on a num-
ber of small proteins.

Lin and Su apply a hybrid of a GA and
particle swarm optimization (HGA-PSO)
for fitting proteins to a 3D cubic lattice,
which shares many similarities with the
2D lattice model.80 The 2D triangular lat-
tice is used for modeling short proteins as it
does not allow for overlapping structures.
A 3D cubic lattice, such as that shown in
Figure 17B, allows edges to overlap if they
are at different elevations in the lattice.
This allows the walks to form representa-
tions of secondary structures and complex
3D protein conformations resulting in
more biologically plausible forms for large
proteins than a 2D model can produce.
The disadvantage of the cubic lattice rela-
tive to the triangular lattice is that amino
acids in the primary sequence can only be
topological neighbors if they are an odd
number of amino acids apart.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

276	 Bioengineered	 Volume 4 Issue 5

every protein after 50 runs is presented in
Table 1. In each experiment, HGA-PSO
is able to identify an optimal conforma-
tion for the protein which maximizes the
number of H-H contacts, achieving con-
sistently equal or superior performance
in comparison with the other approaches
evaluated. Lower standard deviations in
performance of the HGA-PSO approach
compared with ClonalgI, the next best
performing approach evaluated, are also
reported.

Conclusion

This paper has presented a review of the
application of GAs to computation prob-
lems in biology. While research efforts in
this domain are encouraging, there are
many remaining challenges if GAs are to
fulfill the potential of harnessing evolu-
tionary principles in silico. When deciding
if a GA is suitable for producing a solution
to a task at hand, it is important to bear in
mind that any approach which does not
evaluate all potential solutions cannot be
guaranteed to identify the optimal solu-
tion. GAs are applicable if evaluating all
potential solutions is infeasible in a reason-
able amount of time, and “quickly finding
a sufficiently good solution is enough.”57

The examples given is this paper dem-
onstrate two current efforts to address the
inherent weaknesses of GAs; (1) optimiza-
tions of the genetic algorithm itself and (2)
exploiting the strengths of GAs in combina-
tion with other disciplines. Optimizations
of the genetic algorithm were demonstrated
by the use of greedy mutation opera-
tors67,77,80 and self-organizing parameters.74
Similarly, it has already been mentioned
that domain knowledge can be incorpo-
rated into the search operation to form
an intelligent search, but this approach is
domain specific. In this paper, the hybrid-
ization of GAs is demonstrated with PSO80
and a Pareto Front,67 but other recent
interesting GA research includes topics
such as the use of an Artificial Bee Colony
(ABC) for protein structure prediction85
and an Ant Colony Optimization algo-
rithm for multiple sequence alignment,86
for example.

In addition to the increasingly smart
algorithms leveraging search coverage and
execution time, the inherently parallel

is used as the fitness of the corresponding
genotype.

The HGA-PSO algorithm was evalu-
ated against Backtracking-EA,81 Aging-
AIS82 and ClonalgI83 on seven standard
benchmark sequences taken from “protein
folding simulations of the hydrophobic–
hydrophilic model by combining tabu
search with genetic algorithms.”84 The
best found result of each approach for

by “U, D, L, R, B, F” respectively. For a
protein with primary sequence of length n,
the genotype is an n-1 sequence of genes.
The phenotype is the 3D walk produced
when the directions specified by a geno-
type are fit to the lattice. For example, the
genotype for the walk in Figure 17B is “F,
D, L, D, R, D, R, U, R, U, L, B, L, D,
B, D, F, R, U”. As for the 2D lattice, the
number of H-H contacts in the phenotype

Figure 17. A protein with the format HPHPPHHPHPPHPHHPPHPH fitted to (A) a 2D triangular lat-
tice, and (B) a 3D cubic lattice. The hydrophobic amino acids are represented as black dots and the
polar amino acids as white circles. Both conformations are optimal under the HP model. Adapted
from references 77 and 80, respectively.

Table 1. Performance of HGA-PSO, backtracking-EA, aging-AIS and ClonalgI on a set of 7 proteins

Sequence Optimal Free Energy HGA-PSO Backtracking EA Aging-AIS Clonal gI

1 -11 -11 -11 -11 -11

2 -13 -13 -13 -13 -13

3 -9 -9 -9 -9 -9

4 -18 -18 -18 -18 -18

5 -29 -29 -25 -29 -29

6 -26 -26 -23 -23 -26

7 -49 -49 -39 -41 -48

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

www.landesbioscience.com	 Bioengineered	 277

25.	 Xie H, Zhang M. Parent Selection Pressure Auto-
tuning for Tournament Selection in Genetic
Programming. IEEE Transaction on Evolutionary
Computation 2013; 17:1-19; http://dx.doi.
org/10.1109/TEVC.2011.2182652

26.	 Fernandez M, Caballero J, Fernandez L, Sarai A.
Genetic algorithm optimization in drug design
QSAR: Bayesian-regularized genetic neural net-
works (BRGNN) and genetic algorithm-optimized
support vectors machines (GA-SVM). Mol Divers
2011; 15:269-89; PMID:20306130; http://dx.doi.
org/10.1007/s11030-010-9234-9.

27.	 Kwak NS, Lee J. An implementation of new selec-
tion strategies in a genetic algorithm–population
recombination and elitist refinement. Eng Optim
2011; 43:1367-84; http://dx.doi.org/10.1080/03052
15X.2011.558577.

28.	 Lucas AW, Michelle DM. Cross-pollinating parallel
genetic algorithms for multi-objective search and
optimization. Int J Found Comput Sci 2005; 16:261-
80; http://dx.doi.org/10.1142/S012905410500298X.

29.	 Jerin Leno I, Saravana Sankar S, Victor Raj M,
Ponnambalam S. An elitist strategy genetic algorithm
for integrated layout design. Int J Adv Manuf Technol
2012:1-17.

30.	 Whitley D. The GENITOR algorithm and selection
pressure: Why rank-based allocation of reproductive
trials is best. Proceedings of the third international
conference on Genetic algorithms, 1989:116-21.

31.	 Sudholt D. Crossover speeds up building-block
assembly. Proceedings of the fourteenth international
conference on Genetic and evolutionary computation
conference: ACM, 2012:689-702.

32.	 Wong M, Pao WKS. A genetic algorithm for optimiz-
ing gravity die casting’s heat transfer coefficients.
Expert Syst Appl 2011; 38:7076-80; http://dx.doi.
org/10.1016/j.eswa.2010.12.063.

33.	 Chen SH, Chang PC, Cheng T, Zhang Q. A Self-
guided Genetic Algorithm for permutation flow-
shop scheduling problems. Comput Oper Res
2012; 39:1450-7; http://dx.doi.org/10.1016/j.
cor.2011.08.016.

34. Yang CH, Cheng YH, Chuang LY, Changi HW.
Confronting two-pair primer design for enzyme-free
SNP genotyping based on a genetic algorithm. BMC
Bioinformatics 2010; 11:509.

35. Eiben A, Raué P, Ruttkay Z. Genetic algorithms
with multi-parent recombination. Parallel Problem
Solving from Nature—PPSN III 1994:78-87.

36.	 Ramezanian R, Rahmani D, Barzinpour F. An
aggregate production planning model for two phase
production systems: Solving with genetic algorithm
and tabu search. Expert Syst Appl 2012; 39:1256-63;
http://dx.doi.org/10.1016/j.eswa.2011.07.134.

13.	 Larranaga P, Kuijpers CMH, Murga RH, Inza I,
Dizdarevic S. Genetic algorithms for the travelling
salesman problem: A review of representations and
operators. Artif Intell Rev 1999; 13:129-70; http://
dx.doi.org/10.1023/A:1006529012972.

14.	 Acuña DE, Parada V. People efficiently explore the
solution space of the computationally intractable
traveling salesman problem to find near-optimal
tours. PLoS One 2010; 5:e11685; PMID:20686597;
http://dx.doi.org/10.1371/journal.pone.0011685.

15. Urquhart N, Scott C, Hart E. Using an evolution-
ary algorithm to discover low CO 2 tours with-
in a travelling salesman problem. Applications of
Evolutionary Computation 2010:421-30; http://
dx.doi.org/10.1007/978-3-642-12242-2_43.

16.	 Bellman R. Dynamic programming treatment of the
travelling salesman problem. [JACM]. J ACM 1962;
9:61-3; http://dx.doi.org/10.1145/321105.321111.

17.	 Held M, Karp RM. A dynamic program-
ming approach to sequencing problems. J Soc
Ind Appl Math 1962; 10:196-210; http://dx.doi.
org/10.1137/0110015.

18.	 Deineko VG, Woeginger GJ. A study of expo-
nential neighborhoods for the travelling salesman
problem and for the quadratic assignment prob-
lem. Math Program 2000; 87:519-42; http://dx.doi.
org/10.1007/s101070050010.

19.	 Hahsler M, Hornik K. TSP–Infrastructure for the
traveling salesperson problem. Journal of Statistical
Software 2007; 23.

20.	 Hu T, Payne JL, Banzhaf W, Moore JH. Evolutionary
dynamics on multiple scales: a quantitative analysis of
the interplay between genotype, phenotype, and fit-
ness in linear genetic programming. Genet Program
Evolvable Mach 2012:1-33.

21.	 Raffe WL, Zambetta F, Li X. A survey of procedural
terrain generation techniques using evolutionary
algorithms. Evolutionary Computation (CEC), 2012
IEEE Congress on: IEEE, 2012:1-8.

22.	 Qodmanan HR, Nasiri M, Minaei-Bidgoli B. Multi
objective association rule mining with genetic algo-
rithm without specifying minimum support and min-
imum confidence. Expert Syst Appl 2011; 38:288-
98; http://dx.doi.org/10.1016/j.eswa.2010.06.060.

23.	 Bakırlı G, Birant D, Kut A. An incremental genetic
algorithm for classification and sensitivity analysis of
its parameters. Expert Syst Appl 2011; 38:2609-20;
http://dx.doi.org/10.1016/j.eswa.2010.08.051.

24.	 Lehman J, Stanley KO. Abandoning objectives:
evolution through the search for novelty alone.
Evol Comput 2011; 19:189-223; PMID:20868264;
http://dx.doi.org/10.1162/EVCO_a_00025.

nature of genetic algorithms means they
have benefitted greatly from the recent
surge of interest in distributed process-
ing. In recent years, the availability of
low cost multi-processor computers and
cloud computing platforms have made the
use of GAs more appealing as the popu-
lation based approach of GAs can easily
be adapted to take advantage of parallel
environments.

There is also growing interest in other
innovative techniques such as harnessing
human interaction. The Foldit project is
a successful example of such an approach,
which presents the difficult problem of
protein folding as a competitive computer

game.87 Foldit employs computer game
psychology to encourage players to vol-
untarily download and replay a game
which solves a real world problem. This
approach harnesses the ingenuity, spatial
reasoning and long-term vision of human
players as well as their local processing
power, with the competitive, collabora-
tive and social aspects of Foldit acting
as motivators. Foldit does not employ
genetic algorithms, but it can be seen as
harnessing human directed computing to
perform a type of coarse search, suggest-
ing the approach should work as part of
a well-designed genetic algorithm. Given
Foldit’s success (on a number of problems,

References
1.	 Holland JH. Adaptation in natural and artificial sys-

tems. Ann Arbor: University of Michigan Press 1975;
2.

2.	 Jiang W, Baker ML, Ludtke SJ, Chiu W. Bridging the
information gap: computational tools for intermedi-
ate resolution structure interpretation. J Mol Biol
2001; 308:1033-44; PMID:11352589; http://dx.doi.
org/10.1006/jmbi.2001.4633.

3.	 Kumar SN, Panneerselvam R. A Survey on the
Vehicle Routing Problem and Its Variants. Intelligent
Information Management 2012; 4:66-74; http://
dx.doi.org/10.4236/iim.2012.43010.

4.	 Gemperline P, Niazi A, Leardi R. Genetic algorithms
in chemometrics. J Chemometr 2012; 26:345-51;
http://dx.doi.org/10.1002/cem.2426.

5.	 Sharma RN, Pancholi SS. Optimization techniques
in pharmaceutical industry: A Review. Journal of
Current Pharmaceutical Research 2011; 7:21-8.

6.	 McDowell JJ, Popa A. Toward a mechanics of adap-
tive behavior: evolutionary dynamics and matching
theory statics. J Exp Anal Behav 2010; 94:241-
60; PMID:21451751; http://dx.doi.org/10.1901/
jeab.2010.94-241.

7.	 Álvarez D, Hornero R, Marcos JV, del Campo F.
Feature selection from nocturnal oximetry using
genetic algorithms to assist in obstructive sleep
apnoea diagnosis. Med Eng Phys 2012; 34:1049-57;
PMID:22154238.

8.	 Tian H, Liu C, Gao XD, Yao WB. Optimization
of auto-induction medium for G-CSF production
by Escherichia coli using artificial neural networks
coupled with genetic algorithm. World J Microbiol
Biotechnol 2012;1-9; PMID:23132252.

9.	 Naznin F, Sarker R, Essam D. Vertical decomposi-
tion with Genetic Algorithm for Multiple Sequence
Alignment. BMC Bioinformatics 2011; 12:353;
PMID:21867510; http://dx.doi.org/10.1186/1471-
2105-12-353.

10.	 Wongsarnpigoon A, Grill WM. Energy-efficient
waveform shapes for neural stimulation revealed with
a genetic algorithm. J Neural Eng 2010; 7:046009;
PMID:20571186; http://dx.doi.org/10.1088/1741-
2560/7/4/046009.

11.	 Zaki N, Bouktif S, Lazarova-Molnar S. A combina-
tion of compositional index and genetic algorithm
for predicting transmembrane helical segments.
PLoS One 2011; 6:e21821; PMID:21814556; http://
dx.doi.org/10.1371/journal.pone.0021821.

12.	 Agrawal D, Jaiswal HL, Singh I, Chandrasekaran
K. An Evolutionary Approach to Optimizing Cloud
Services. Computer Engineering and Intelligent
Systems 2012; 3:47-54.

solutions produced in Foldit surpassed the
state of the art Rosetta structure predic-
tion program), popularity and generality
of applicability to problems beyond pro-
tein folding, this approach is seen as a
promising possible future area of develop-
ment for interactive GAs.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were
disclosed.

Acknowledgments

This work was funded by a FP7-PEOPLE-
2012-IAPP grant ClouDx-i to RDS and
PW.

©
20

13
 L

an
de

s
B

io
sc

ie
nc

e.
 D

o
no

t d
is

tri
bu

te

278	 Bioengineered	 Volume 4 Issue 5

71.	 Horn J, Nafpliotis N, Goldberg DE. A niched Pareto
genetic algorithm for multiobjective optimization.
Ieee, 1994:82-7 vol. 1.

72.	 da Silva FJM, Sanchez Perez J, Gomez Pulido J,
Rodríguez MAV. Optimizing multiple sequence
alignment by improving mutation operators of a
genetic algorithm. IEEE, 2009:1257-62.

73.	 Notredame C, Higgins DG, Heringa J. T-Coffee:
A novel method for fast and accurate multiple
sequence alignment. J Mol Biol 2000; 302:205-
17; PMID:10964570; http://dx.doi.org/10.1006/
jmbi.2000.4042.

74.	 Nizam A. Cyclic Genetic Algorithm for Multiple
Sequence Alignment. International Journal of
Research and Reviews in Electrical and Computer
Engineering (IJRRECE) 2011; 1.

75.	 Wang RYR, Han Y, Krassovsky K, Sheffler W,
Tyka M, Baker D. Modeling disordered regions in
proteins using Rosetta. PLoS One 2011; 6:e22060;
PMID:21829444; http://dx.doi.org/10.1371/jour-
nal.pone.0022060.

76.	 Rodrigues JP, Levitt M, Chopra G. KoBaMIN: a
knowledge-based minimization web server for pro-
tein structure refinement. Nucleic Acids Res 2012;
40(Web Server issue):W323-8; PMID:22564897;
http://dx.doi.org/10.1093/nar/gks376.

77.	 Shih-Chieh S, Cheng-Jian L, Chuan-Kang T. An
effective hybrid of hill climbing and genetic algo-
rithm for 2D triangular protein structure prediction.
Proteome Science; 9.

78.	 Dill KA. Theory for the folding and stability of
globular proteins. Biochemistry 1985; 24:1501-
9; PMID:3986190; http://dx.doi.org/10.1021/
bi00327a032.

79.	 Böckenhauer HJ, Dayem Ullah A, Kapsokalivas
L, Steinhöfel K. A local move set for protein fold-
ing in triangular lattice models. Algorithms in
Bioinformatics 2008:369-81.

80.	 Lin CJ, Su SC. Protein 3D HP model folding simula-
tion using a hybrid of genetic algorithm and particle
swarm optimization. International Journal of Fuzzy
Systems 2011; 13:140-7.

81.	 Cotta C. Protein structure prediction using evolu-
tionary algorithms hybridized with backtracking.
Artificial Neural Nets Problem Solving Methods
2003:1044-.

82.	 Cutello V, Morelli G, Nicosia G, Pavone M.
Immune algorithms with aging operators for the
string folding problem and the protein folding prob-
lem. Evolutionary Computation in Combinatorial
Optimization 2005:80-90.

83.	 de Almeida C, Gonçalves R, Delgado M. A hybrid
immune-based system for the protein folding prob-
lem. Evolutionary Computation in Combinatorial
Optimization 2007:13-24.

84.	 Jiang T, Cui Q, Shi G, Ma S. Protein folding simu-
lations of the hydrophobic–hydrophilic model by
combining tabu search with genetic algorithms.
J Chem Phys 2003; 119:4592; http://dx.doi.
org/10.1063/1.1592796.

85.	 Benitez CMV, Parpinelli RS, Lopes HS. Parallelism,
hybridism and coevolution in a multi-level ABC-
GA approach for the protein structure prediction
problem. Concurr Comput 2012; http://dx.doi.
org/10.1002/cpe.1857.

86.	 Qu B, Wu Z. An efficient way of multiple sequence
alignment. IEEE, 2011:442-5.

87.	 Cooper S, Khatib F, Treuille A, Barbero J, Lee J,
Beenen M, et al. Predicting protein structures with
a multiplayer online game. Nature 2010; 466:756-
60; PMID:20686574; http://dx.doi.org/10.1038/
nature09304.

54.	 Nakamichi R, Ukai Y, Kishino H. Detection of
closely linked multiple quantitative trait loci using
a genetic algorithm. Genetics 2001; 158:463-75;
PMID:11333253.

55.	 Gibbs MS, Maier HR, Dandy GC, Nixon JB.
Minimum number of generations required for
convergence of genetic algorithms. Evolutionary
Computation, 2006 CEC 2006 IEEE Congress on:
IEEE, 2006:565-72.

56.	 Michalewicz Z. Genetic algorithms+ data structures=
evolution programs. springer, 1998.

57.	 Melanie M. An introduction to genetic algorithms.
Cambridge, Massachusetts London, England, Fifth
printing 1999.

58.	 Liu C, Kroll A. On designing genetic algorithms for
solving small-and medium-scale traveling salesman
problems. Swarm and Evolutionary Computation
2012:283-91.

59.	 Li Y, Hu CJ. Aesthetic learning in an interactive
evolutionary art system. Applications of Evolutionary
Computation 2010:301-10.

60.	 Raychaudhuri A, Khandelwal S, Chhalani S,
Kakarania N. Image Binarization of Grey Level
Images using Elitist Genetic Algorithm. Int J
Comput Appl 2012:2012.

61.	 Nixon KC, Carpenter JM. On homology. Cladistics
2012; 28:160-9; http://dx.doi.org/10.1111/j.1096-
0031.2011.00371.x.

62.	 Kumar S, Filipski A. Multiple sequence alignment: in
pursuit of homologous DNA positions. Genome Res
2007; 17:127-35; PMID:17272647; http://dx.doi.
org/10.1101/gr.5232407.

63.	 Thompson JD, Higgins DG, Gibson TJ. CLUSTAL
W: improving the sensitivity of progressive mul-
tiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight
matrix choice. Nucleic Acids Res 1994; 22:4673-
80; PMID:7984417; http://dx.doi.org/10.1093/
nar/22.22.4673.

64.	 Blazewicz J, Frohmberg W, Kierzynka M, Pesch
E, Wojciechowski P. Protein alignment algorithms
with an efficient backtracking routine on mul-
tiple GPUs. BMC Bioinformatics 2011; 12:181;
PMID:21599912; http://dx.doi.org/10.1186/1471-
2105-12-181.

65.	 Zufall RA. Beyond Simple Homology Searches:
Multiple Sequence Alignments and Phylogenetic
Trees. Current Protocols Essential Laboratory
Techniques 2009:11.3. 1-.3. 7.

66.	 Marti-Renom MA, Madhusudhan MS, Sali A.
Alignment of protein sequences by their profiles.
Protein Sci 2004; 13:1071-87; PMID:15044736;
http://dx.doi.org/10.1110/ps.03379804.

67.	 da Silva FJM, Pérez JMS, Pulido JA, Rodríguez
MA. Parallel Niche Pareto AlineaGA--an evolu-
tionary multiobjective approach on multiple
sequence alignment. J Integr Bioinform 2011; 8:174;
PMID:21926437.

68.	 Dayhoff M, Schwartz R, Orcutt B. A Model of
Evolutionary Change in Proteins. Atlas of protein
sequence and structure 1972; 5:345-52.

69.	 da Silva FJM, Sánchez-Pérez JM, Gómez-Pulido
J, Vega-Rodríguez M. An evolutionary approach
for performing multiple sequence alignment. IEEE,
2010:1-7.

70.	 da Silva FJM, Pérez JMS, Pulido JAG, Rodríguez M.
Parallel AlineaGA: An island parallel evolutionary
algorithm for multiple sequence alignment. IEEE,
2010:279-84.

37.	 Aiello G, La Scalia G, Enea M. A multi objective
genetic algorithm for the facility layout problem based
upon slicing structure encoding. Expert Syst Appl
2012; http://dx.doi.org/10.1016/j.eswa.2012.01.125.

38.	 Abedini M, Nasseri M, Burn D. The use of a
genetic algorithm-based search strategy in geostatis-
tics: application to a set of anisotropic piezometric
head data. Comput Geosci 2012; 41:136-46; http://
dx.doi.org/10.1016/j.cageo.2011.08.024.

39.	 Taylor CM, Agah A. Data Mining and Hypothesis
Refinement using a Multi-Tiered Genetic Algorithm.
Journal of Intelligent Systems 2010; 19:191-226;
http://dx.doi.org/10.1515/JISYS.2010.19.3.191.

40.	 Nair SSK, Subba Reddy NV, Hareesha KS. Exploiting
heterogeneous features to improve in silico prediction
of peptide status - amyloidogenic or non-amyloido-
genic. BMC Bioinformatics 2011; 12(Suppl 13):S21;
PMID:22373069; http://dx.doi.org/10.1186/1471-
2105-12-S13-S21.

41.	 Kallel L, Naudts B, Rogers A. Theoretical aspects of
evolutionary computing. Springer, 2001.

42.	 Rowe W, Platt M, Wedge DC, Day PJ, Kell DB,
Knowles J. Analysis of a complete DNA-protein
affinity landscape. J R Soc Interface 2010; 7:397-
408; PMID:19625306; http://dx.doi.org/10.1098/
rsif.2009.0193.

43.	 Morris MK, Saez-Rodriguez J, Clarke DC, Sorger
PK, Lauffenburger DA. Training signaling pathway
maps to biochemical data with constrained fuzzy
logic: quantitative analysis of liver cell respons-
es to inflammatory stimuli. PLoS Comput Biol
2011; 7:e1001099; PMID:21408212; http://dx.doi.
org/10.1371/journal.pcbi.1001099.

44.	 Lei H, Chen C, Xiao Y, Duan Y. The protein
folding network indicates that the ultrafast fold-
ing mutant of villin headpiece subdomain
has a deeper folding funnel. J Chem Phys 2011;
134:205104; PMID:21639484; http://dx.doi.
org/10.1063/1.3596272.

45.	 Bäck T. Optimal Mutation Rates in Genetic Search.
Proceedings of the 5th International Conference on
Genetic Algorithms: Morgan Kaufmann Publishers
Inc., 1993:2-8.

46.	 Maaranen H, Miettinen K, Penttinen A. On initial
populations of a genetic algorithm for continuous
optimization problems. J Glob Optim 2007; 37:405-
36; http://dx.doi.org/10.1007/s10898-006-9056-6.

47.	 Huang M, Narayana VK, Bakhouya M, Gaber J,
El-Ghazawi T. Efficient Mapping of Task Graphs
onto Reconfigurable Hardware Using Architectural
Variants. Computers. IEEE Transactions on 2012;
61:1354-60.

48.	 Acampora G, Loia V, Salerno S, Vitiello A. A hybrid
evolutionary approach for solving the ontology align-
ment problem. Int J Intell Syst 2012; 27:189-216;
http://dx.doi.org/10.1002/int.20517.

49.	 Siregar MU. A New Approach to CPU Scheduling
Algorithm: Genetic Round Robin. Int J Comput
Appl 2012; 47:18-25.

50.	 González-García J, Cordero-Dávila A, Leal-Cabrera
I, Robledo-Sánchez CI, Santiago-Alvarado A.
Calculating petal tools by using genetic algorithms.
Appl Opt 2006; 45:6126-36; PMID:16892113.

51.	 Eiben AE, Smith JE. Introduction to evolutionary
computing. Springer, 2008.

52.	 Brain ZE, Addicoat MA. Optimization of a genetic
algorithm for searching molecular conformer space. J
Chem Phys 2011; 135:174106-10; PMID:22070291;
http://dx.doi.org/10.1063/1.3656323.

53.	 Bauerly M, Liu Y. Evaluation and Improvement
of Interface Aesthetics with an Interactive Genetic
Algorithm. Int J Hum Comput Interact 2009; 25:155-
66; http://dx.doi.org/10.1080/10447310802629801.

