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For decades, computer scientists have 
looked to nature for biologically 

inspired solutions to computational 
problems; ranging from robotic control to 
scheduling optimization. Paradoxically, 
as we move deeper into the post-
genomics era, the reverse is occurring, 
as biologists and bioinformaticians look 
to computational techniques, to solve 
a variety of biological problems. One of 
the most common biologically inspired 
techniques are genetic algorithms 
(GAs), which take the Darwinian 
concept of natural selection as the 
driving force behind systems for solving 
real world problems, including those 
in the bioinformatics domain. Herein, 
we provide an overview of genetic 
algorithms and survey some of the most 
recent applications of this approach to 
bioinformatics based problems.

Introduction

First introduced by JH Holland in 1975,1 
GAs represent a biologically inspired field 
of evolutionary computation and, as such, 
characterizes a form of machine learning 
that has been applied to an array of 
bioinformatics based problems. As outlined 
in Figure 1, which plots the distribution of 
150 papers referencing genetic algorithms 
since 1995, as indexed in the PubMed 
database, interest in GAs has grown 
significantly over the past 15 years.2

An analysis of the subject matter of this 
set of 150 peer-reviewed publications shows 
that the majority (88%) are concerned with 
the application of GAs to nucleic acid and 
protein based sequence analysis (Fig. 1B). 
Against this backdrop, we provide a case 
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study of the recent application of GAs to 
the field of sequence analysis. To further 
demonstrate the flexibility of GAs, we also 
consider their application to the complex 
field of protein structure prediction (PSP).

Genetic Algorithms

A typical application of genetic algorithms 
is to efficiently search a large “space” of 
possible solutions to a problem for an opti-
mal solution, e.g., identifying an optimal 
order for a number of variables or finding 
an optimal set of weights and parameters 
for an experiment.3-5 GAs achieve this 
through an evolutionary search on a popu-
lation of randomly generated individu-
als over a number of generations (Fig. 2). 
Successive generations of the population 
are generated from the fittest members of 
the previous generation, mimicking the 
Darwinian concept of natural selection.6

GAs begin with an initial population 
of randomly generated candidate solu-
tions for a problem.7,8 In each generation, 
the fittest population members are iden-
tified, ranked, and used as “parents” to 
form the basis for the next population (or 
next “generation”), replacing the current 
population.9 Repeating this process propa-
gates elements of successful solutions and 
should produce increasingly capable solu-
tion populations.10 The genotypes of a new 
generation are created through the genetic 
operations of crossover (recombination) 
and mutation.11 The actual implementa-
tion of crossover and mutation is depen-
dent on the domain of application and the 
selected solution representation to produce 
valid solutions, as will be demonstrated in 
our examples.
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a potential itinerary of visiting the asso-
ciated cities. The phenotype conversion 
can include specific domain knowledge 
not encoded in the genotype, such as 
knowing that an additional connec-
tion is required between the last and  
first city.

The Fitness Function

A “fitness function” is used to evaluate 
phenotypes to identify the fittest popula-
tion members.23 The fitness evaluation is 
a key aspect of the search heuristic and is 
commonly based on an objective measure 
within the domain of interest. It is the per-
formance of the phenotypes on this fitness 
function that is optimized by the genetic 
algorithm.24

instructions which is processed in soft-
ware to produce an evaluable “pheno-
type.”13 The genotype is the solutions 
manipulable representation, while the 
phenotype is an evaluable solution to the 
problem.20 A genotype chromosome is rep-
resented by a software data structure such 
as a string of bits, characters, integers or 
real numbers.21 Each element in the struc-
ture represents a gene of the genotype. 
Depending on the problem domain and 
implementation technique, genotypes can 
be static or dynamic in terms of structure  
size.22

A possible genotype representa-
tion for the TSP is given as an example 
in Figure 3A. Here, each genotype is a 
permutation of the cities, whereas the 
phenotype, Figure 3B, is represented by 

The main components of a genetic 
algorithm are the genotype, phenotype, 
fitness function, selection algorithm, 
crossover operator and mutation opera-
tor.12 Each of these topics will be discussed 
over the following sections, and an exam-
ple provided of how the concepts can be 
combined to solve the traveling salesman 
problem (TSP)13 using a genetic algorithm 
which follows the flowchart of Figure 2.

The goal of the TSP is to identify 
the most efficient path for a traveling 
salesman (perhaps selling sequencing 
machines) which visits a list of speci-
fied cities each exactly once and finishes 
at the starting point. The availability of 
a direct route between each pair of cit-
ies is assumed. A solution (good or bad) 
in the TSP is therefore a permutation of 
the set of cities in the order they must  
be visited.14,15

For a TSP with n cities, (n-1)!/2 pos-
sible solutions exist, meaning the com-
plexity of the problem and the number 
of possible solutions grows rapidly as the 
number of cities increases (n! possible 
solutions exist if equivalent solutions are 
considered unique where the starting cit-
ies and the direction in which the cities 
are traversed are different). For example, 
to plan an itinerary visiting every US state 
capital using brute force would require 
the selection of the best route among  
3.04 × 1062 alternatives. If a computer run-
ning since The Big Bang was able to evalu-
ate a path every nanosecond, 13.7 billion 
years later it would still have evaluated less 
than 1% of all possible routes.

The most efficient known approach to 
identifying an exact solution for the gen-
eral TSP is the dynamic programming 
algorithm,16,17 which can identify the opti-
mal solution in O(n22n) time.18 However, 
heuristic approaches, such as GAs, can be 
employed to efficiently search the space of 
potential solution routes for good, if not 
optimal, solutions. A number of alternate 
exact and heuristic approaches are out-
lined and discussed in the paper “TSP–
infrastructure for the traveling salesperson 
problem.”19

The Genotype and Phenotype

Individual solutions are represented 
by a “genotype,” a blueprint or set of 

Figure 1. An analysis of 150 bioinformatics papers referencing GAs. (A) A plot of the distribution 
of the sampled papers (y-axis) plotted against the year of publication (x-axis), and (B) A 
breakdown of the subject matter addressed by the papers.
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second child comprises the first four genes 
of parent 2 (P2[a]) with the last three 
genes of parent 1 (P1[b]).

In “two-point crossover,” two gene 
indexes are randomly selected in the par-
ent genotypes.33 The genes between these 
two points in both parents are switched in 
the parent genotypes to produce two new 
offspring, as shown in Figure 5. In this 
example, a contiguous string of genes are 
selected in each parent between the third 
and fifth genes inclusively. The selected 
sections are then switched between the 
parents to produce two new solutions. 
This approach can be extended to k-point 
(multi-point) crossover.

Two common forms of crossover spe-
cific to binary genotypes are uniform 
crossover and three-parent crossover. 
Uniform crossover uses a binary mask to 
decide how the parent genes will be com-
bined. The mask is overlaid on both par-
ents.34 If the mask has a 1 value for gene n, 
gene n from the first parent is copied to the 
first offspring, and gene n from the second 
parent is copied to the second offspring. If 
the mask has a value of 0 for gene n, gene n 
from the first parent is copied to the second 
offspring, and gene n from the second par-
ent is copied to the first offspring. In this 
way, two complete and complimentary 
offspring should be created by combin-
ing the genes of the parents. Three-parent 
crossover uses a third parent genotype to 
act as an arbiter, and produces a single off-
spring. Each gene which matches between 
the first two parent genotypes is copied 
into the offspring. If a gene value is dif-
ferent in the first two parents, the value 
of the gene from the third parent is used 
(forming a majority decision).35

the tournament with the highest fitness. 
A tournament with s = 1 is equivalent 
to random selection. As the size of the 
tournament increases, the chance that 
the low ranked solutions will be selected 
decreases. Variations of this approach rank 
the members of the tournament and select 
solutions with a probability biased toward 
the fittest solutions.

The stochastic nature of the selec-
tion process (and the mutation operator, 
which will be discussed later) results in 
the potential for good solutions to be lost. 
“Elitism” allows the best performing solu-
tion (or solutions) identified thus far to be 
copied unmodified into each new genera-
tion.29 This can prevent the loss of useful 
solutions found and speed up the progress 
of the algorithm. An alternate form of elit-
ism is “steady-state” selection.30 Instead of 
creating an entirely new population each 
generation, a segment of the unfit solu-
tions are purged and replaced by new off-
spring spawned from the fit members.

Crossover

In crossover, segments of two parent gen-
otypes are combined to form new geno-
types. A well-designed crossover operator 
can increase the efficiency of the search.31 
Figure 4 provides an example of a “one-
point crossover” operation on two binary 
genotypes, creating two novel offspring.32 
In this example, an offset is selected 
between the fourth and fifth gene in 
both parent genotypes, dividing the par-
ent genotypes each into two sections. The 
first child is created by combining the first 
four genes of parent 1 (P1[a]) with the 
last three genes of parent 2 (P2[b]). The 

Selection

Once a population of solutions has been 
evaluated (using the fitness function), var-
ious algorithms exist for selecting which 
solutions will form the parents of the 
next generation of solutions. The selec-
tion algorithms should favor the selec-
tion of solutions with higher fitness and 
allow solutions to be the basis for several 
offspring (selection with replacement).25 
A common approach is the roulette algo-
rithm, where each solution is apportioned 
an area of a (metaphorical) roulette wheel 
directly proportional to its fitness in the 
population. Selection is implemented by 
randomly selecting a point on the roulette 
wheel and accepting the associated solu-
tion.26 With the roulette selection method, 
typically even the least fit solutions have a 
chance (albeit small) of forming the basis 
of a new solution in the proceeding popu-
lation. This random selection ensures that 
some level of genetic diversity is main-
tained in the system, and allows poten-
tially promising avenues of evolution to be 
further examined even if their potential 
is not immediately reflected in their fit-
ness evaluation.27 Some GA approaches 
implement a survival rate, which specify 
a percentage of the fittest solutions which 
are used exclusively to generate the next 
generation.28

An alternative approach is tournament 
selection.23 A predefined value s, referred 
to as the tournament size, is selected 
which is less than the population size. 
To select a solution from the population, 
s solutions are first selected randomly 
from the current population. The sim-
plest approach is to select the member of 

Figure 2. Flowchart for the execution of a genetic algorithm.
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such as the crossover rate and the muta-
tion rate may require tailoring to extract 
the best performance.47 The crossover 
rate represents the percentage of offspring 
which will be produced using the cross-
over operator. The remaining offspring 
are copies of solutions from the previ-
ous generation.48 With the exception of 
offspring produced through elitism, all 
offspring produced through crossover 
or otherwise are subjected to mutation. 
Typically a value in the range 60–90% is 
used for the crossover rate.49-51

Mutation rate refers to the probabil-
ity with which each gene in a genotype 
should be mutated.52 This should be low 
(typically about 1–5%), to allow the solu-
tions being produced to examine their 
local areas for improvements and slowly 
move toward optimizing the solutions.53 
A mutation rate of 100% reduces the 
genetic algorithm to the equivalent of a 
random search. A mutation rate that is 
too low means the search of the potential 
solutions will be slow. The crossover and 
mutation rates are problem dependent 
and require trial and error for the identifi-
cation of optimal values.54,55

Genetic algorithms are categorized 
as a “weak” method, as they carry out a 
blind search of a space of solutions with-
out using prior domain knowledge.56 As 
a result, although genetic algorithms are 
more efficient than a brute force search, 
they tend to be less efficient than “direct” 
methods which incorporate domain 

decrease its fitness. As such, the genetic 
algorithm can become “trapped” on these 
local optima, and unlikely to improve. 
The results achieved can also be incon-
sistent, even when rerunning a GA with 
the same parameters, due to the stochastic 
nature of the process.43

A similar phenomenon is observed 
in the biological sciences in the form of 
the protein folding problem—more spe-
cifically, the folding funnel hypothesis 
for protein folding, representing a specific 
version of the energy landscape theory 
of protein folding, which assumes that 
a protein’s native state corresponds to its 
free energy minimum under the solution 
conditions usually encountered in cells. 
Although the folding funnel hypothesis 
assumes that the native state is a deep free 
energy minimum with steep walls, corre-
sponding to a single well-defined tertiary 
structure, energy landscapes are usually 
“rough,” with many non-native local min-
ima in which partially folded proteins can 
become trapped.44

The use of a well-designed coarse 
mutation operator (perhaps at a low usage 
rate) can help the algorithm to escape 
these local minima.45 Running the GA 
several times with different initial solution 
configurations and increasing the popula-
tion size are simple approaches to increas-
ing the coverage of the search space, thus 
reducing the impact of this problem.46

In addition to the population size, 
other parameters of the genetic algorithm 

Mutation

Once a new population has been cre-
ated through selection and crossover, it 
is modified through mutation. Mutation 
refers to the modification of a genotype 
by some random process.36 Not all muta-
tions will result in increased fitness. For a 
binary genotype, the mutation operation 
can be as simple as inverting the value 
of one of the genes (flipping) or switch-
ing two adjacent values.37 For genes rep-
resented by real numbers, the mutation 
could involve perturbing the value by a 
random amount under a Gaussian dis-
tribution.38 New mutations which have 
a positive impact will increase the phe-
notype fitness and therefore increase its 
likelihood to be chosen for reproduction, 
meaning this positive mutation is more 
likely to be propagated across several 
solutions in future generations.39 A com-
mon approach is to allow different levels 
of mutation; coarse-grained mutation 
to produce significantly new population 
members, providing increased coverage 
of the problem space, and fine-grained 
mutation to slowly edge good performing 
solutions toward optimality.40 A number 
of the examples given in this paper also 
integrate local search optimizations with 
the mutation operator to increase the like-
lihood that superior offspring will be pro-
duced through mutation to increase the 
efficiency of the evolution.

Limitations of GAs

There are however caveats with the use of 
GAs. GAs are an approach to efficiently 
searching a space of possible solutions, 
but the final solutions produced may not 
be the optimal configuration as GAs can 
become trapped in “local optima” of the 
search space.41 These locally optimal solu-
tions may be significantly different from 
the optimal solution in terms of genotype, 
with a number of intermediate crossover 
and/or mutation operations required to 
convert any member of the current popu-
lation to the optimal configuration.42 As 
these locally optimal solutions are some-
what optimized, it is possible that a single 
mutation or crossover operator which 
makes the solution more similar to the 
globally optimal solution can actually 

Figure 3. (A) A possible genotype representation for the TSP, describing a permutation of a list  
of cities. (B) A phenotype (the itinerary) generated from the genotype.
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in Figure 8A. Figure 8B gives a potential 
solution path generated using a genetic 
algorithm after 100 generations. The 
stopping criterion can be a maximum 
number of generations (100 in this case), 
or reaching a fitness threshold. Figure 9 
shows a typical GA learning curve plot-
ting the fitness of the best performing 
solution identified in each generation 
against the generation number. Note that 
the graph may be bumpy due to the sto-
chastic nature of the algorithm where a 
potentially worse solution could be gener-
ated due to the mutation operator. If an 
elitist strategy is used, the fitness would 
be unable to decrease and consecutive 
generations without improvement would 
appear as horizontal lines in the fitness 
plot.60

Sequence Alignment Using  
a Genetic Algorithm

As for the genetic algorithms described, 
mutations can occur in natural evolu-
tion to the DNA, RNA or protein of a 
species in the form of insertions, dele-
tions and substitutions. This results in 
variation between equivalent sequences 
with underlying similarities (conserved 
sequences) from different species with a 
divergent origin.61 Sequence alignment 
is a key technique in bioinformatics that 
processes sequences of DNA, RNA or pro-
tein to identify regions of similarity that 
may be evidence of evolutionary relation-
ships between the sequences. For a novel 
sequence, if a well understood homolo-
gous sequence can be identified, the fea-
tures, function, structure or evolution of 

40% (disregarding the worst performing 
60% of each generation). The Euclidean 
distance which must be traveled when 
visiting the cities in a specified order (the 
length of the red line in Figure 3) is used 
as the fitness function. Here, lower values 
(shorter distances) are considered to be 
the more fit solutions.

A crossover algorithm for the TSP 
must ensure that the children produced 
are valid, in that they include each city 
exactly once. Crossover, in this exam-
ple, is implemented by taking the cities 
(genes) up to a randomly selected offset 
in the first parent and combining them 
with the remaining cities taken in order 
from a second parent, as described in 
Figure 6.

The TSP requires a custom mutation 
algorithm to produce valid genotypes 
which fit the constraints of the problem 
domain (i.e., all cities listed exactly once). 
Three mutation operators are imple-
mented for our example. The first is a sim-
ple fine grained mutation which involves 
switching the order of two adjacent genes, 
as demonstrated in Figure 7. The second 
mutation operator moves a randomly 
selected gene to a new offset in the gen-
otype. The final mutation operator is a 
coarse grained approach which switches 
the order of 2 randomly selected genes. 
The coarse operator will typically have a 
large impact on the phenotypes produced, 
but facilitates an increased coverage of the 
search space.59

Once these parameters are chosen, 
the GA follows the flowchart shown in 
Figure  2. A typical TSP problem com-
prising 20 distributed cities is presented 

knowledge, where available. The incor-
poration of domain knowledge can result 
in a more “intelligent” search of the 
solution space. GAs should therefore be 
applied where the problem space is suffi-
ciently large to make a brute force search 
impractical or intractable, and where no 
method exists to infer an optimal solution 
using domain knowledge. Further to this, 
Melanie Mitchell has described prob-
lems appropriate for the use of genetic 
algorithms as those where “the space to 
be searched is large, is known not to be 
perfectly smooth and unimodal, or is not 
well understood, or if the fitness function 
is noisy, and if the task does not require 
a global optimum to be found—i.e., if 
quickly finding a sufficiently good solu-
tion is enough.”57

Linking the Concepts Together:  
A GA Strategy for Solving the TSP 

Problem

There are many possible valid approaches 
and variations on how a GA can be applied 
to solve the TSP.58 In this section we pro-
vide an example of a typical approach 
which can be taken, discussed in terms 
of the previously defined concepts. To 
solve the TSP using a GA, one must first 
decide on a population size, survival rate, 
genotype representation and how the fit-
ness function, crossover operator and 
mutation operator will be implemented. 
In this example, the genotype and phe-
notype are implemented as described in 
Figure 3, and the population size is set 
to 40. A roulette algorithm for selecting 
parents is used, with a survival rate of 

Figure 4. One-point crossover on two binary parent genotypes, creating two new offspring.
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pair. For example, with three sequences 
being aligned, alignment scores for the 
sequence pairs (1,2), (1,3) and (2,3) must 
be individually generated and combined. 
A simple cost function might place a one 
point penalty on each mismatched amino 
acid and a two point penalty for each 
amino acid aligned with a gap. The sum 
of pairs approach used in PNPAlineaGA 
utilizes the PAM35068 scoring matrix to 
weight the cost of each mismatch based on 
the likelihood of the sequence mutation 
naturally occurring, with a penalty for 
alignments of amino acids with gaps. The 
ID score is a simple count of the number 
of columns in a multiple sequence align-
ment which contain the same value.

Previous work by da Silva, Sánchez-
Pérez, Gómez-Pulido and Vega-Rodríguez 
used an SOP based fitness function.69,70 
The alignments produced indeed opti-
mized the SOP score, but produced solu-
tions showed low ID scores. Low ID scores 
limit the plausibility of the proposed align-
ments. PNPAlineaGA employs “Pareto 
optimality”, an approach to multi-objec-
tive optimization, to optimize both the ID 
score and the SOP score simultaneously. 

based approach to multiple sequence 
alignment for proteins.67 PNPAlineaGA 
will be discussed in terms of its genotype 
representation, fitness function, selection, 
mutation operator, crossover operator, 
implementation and results achieved.

Genotype and phenotype. Every gene 
in this approach has 21 possible values, 
comprising 20 unique single character 
codes, each representing a different com-
mon amino acid, and the dash punctua-
tion mark corresponding to gaps in the 
alignment from the loss or gain of amino 
acids in the sequences. The genotypes 
comprise a string of characters and gaps 
for each sequence in the alignment. The 
phenotype is represented in a two-dimen-
sional array format with a row for each 
individual sequence in the alignment and 
a column for each gene of the sequence, as 
shown in Figure 10.

Fitness and selection. The fitness func-
tion employed here combines the sum-
of-pairs (SOP) or identity (ID) scores to 
gauge the quality of alignments. In the 
SOP cost function, each pair of sequences 
is aligned and the “cost” of the current 
alignment is generated for each sequence 

the nucleic acid or encoded protein may 
be inferred.62,63

In pairwise alignment, one sequence is 
placed above the other. Gaps are inserted 
between the residues in either sequence 
such that the maximum numbers of iden-
tical or similar characters are aligned in 
successive columns.64 Multiple-sequence 
alignment works in a similar way to pair-
wise alignment, but considers three or 
more sequences simultaneously.65 Aligned 
sequences of nucleotide or amino acid 
residues are represented as rows within a 
matrix, as demonstrated in Figure 10. The 
use of multiple sequences limits the impact 
of coincidental alignments between two 
sequences and increases the impact of 
alignments observed across multiple 
sequences.66 Multiple sequence alignment 
is however a complex and computationally 
expensive problem.

Example: Parallel Niche Pareto 
AlineaGA (PNPAlineaGA)

PNPAlineaGA by da Silva, Sánchez-Pérez, 
Gómez-Pulido and Vega-Rodríguez, is an 
example of an efficient genetic algorithm 

Figure 5. Two-point crossover. The parent genotypes are each divided into three segments, and the offspring are produced by combining alternate 
segments of the parents.

Figure 6. A possible crossover implementation for the TSP problem. (A) Two parents are chosen using a selection algorithm. A crossover point is ran-
domly selected in the first parent. (B and C) The genes from one side of the crossover point are selected and are combined with the alternate genes in 
the order which they appear in the second parent to form a new child genotype.
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detail in the paper “optimizing multiple 
sequence alignment by improving muta-
tion operators of a genetic algorithm.”72

Crossover. Three crossover operators 
are used in PNPAlineaGA. The first two 
operators work in a manner similar to the 
one-point crossover operator already dis-
cussed. The first operator vertically splits 
the first parent at a specific column. The 
sequences of the second parent are then 
split such that the each subsequence con-
tains the same amino acids to the equiva-
lent sequence in the first parent. This 
divides the parents into complimentary 
parts which if combined could produce 
two new offspring, each containing all the 
sequences and amino acids in the correct 
order. An example of how two parents may 
be equivalently cut is given in Figure 12.

The second operator horizontally splits 
both parent genotypes into 2 sections 
along a specific row, for example as shown 
in Figure 13.

The third crossover operator, called 
RecombineMatchedCol, selects a column 
in the first parent in which all the amino 
acids match, but which are not aligned in 
the second parent. Gaps are inserted into 
the second parent as required to reproduce 
the column alignment of the first parent. 
In all 3 crossover operations gaps may be 
inserted at the ends of the child sequences 
as required to ensure they are kept the 
same length.

Implementation. PNPAlineaGA is 
implemented using an “island model” to 
increase the amount of genetic variation in 
the population. The population is divided 
into four or eight distinct subpopula-
tions with a single centrally located mas-
ter population. The use of more islands 
increases the coverage of the search space, 
but increases the execution time. Each 
sub-population evolves independently in 
parallel. After a prescribed number of gen-
erations (the migration rate), each slave 
population will send copies of its fittest 

(10% suggested) of the remaining solu-
tions. If one of the solutions dominates the 
sampling it wins the tournament. If there 
is no winner for the tournament (both 
dominate the sampling, or members of the 
sampling dominate both candidates) an 
approach that favors solutions deemed to 
be less represented is used as a tie-breaker. 
The niching based selection mechanism is 
employed to keep a diverse range of solu-
tions which avoids convergence of solu-
tions to a single point on the front. The 
PDT approach is explained in more detail 
in “a niched Pareto genetic algorithm for 
multiobjective optimization.”71

Mutation. The mutation operators 
must maintain the order of the amino 
acids in each sequence and all sequences 
must be kept the same length. The six 
mutation operators implemented for 
PNPAlineaGA therefore manipulate only 
the gap positions in a very controlled man-
ner. The first three mutation operators are 
stochastic in nature:

• Gap insertion: insert a gap character 
in a random location in a sequence. Insert 
a gap at the beginning or end of every 
other sequence in the alignment;

• Gap shifting: move a gap character to 
a new point in the same sequence;

• Merge space: merges two or three 
gap characters (possibly with intermediate 
charecters), and shifts them to a new loca-
tion in the sequence.

The remaining three mutation opera-
tors are “greedy” versions of those already 
described, which undo mutations which 
do not improve fitness, and retry with a 
new mutation. If the mutation is undone, 
the smart operators allow a new mutation 
to be attempted up to a maximum of 3 
times. The smart operators also maintain 
a “direction probability,” which uses its 
experience in each generation to decide 
which end of the alignments new gap 
insertions and shifts should be applied. 
The smart operators are discussed in more 

Pareto optimality looks for the “Pareto 
front” of optimal solutions, which repre-
sent optimal solutions with varying trade-
offs between the values being optimized, 
in this case the SOP and ID scores. A 
theoretical Pareto front is represented by 
the line in Figure 11. Solutions which lie 
under the front are said to be “dominated” 
(suboptimal) to those on the front. For 
any solution to be under the Pareto front 
means that its performance on at least one 
of the objectives can be increased without 
reducing the performance on the other 
objective.

PNPAlineaGA uses a “Pareto domina-
tion tournament” (PDT) for its selection 
mechanism. Two candidate solutions are 
selected and compared against a sampling 

Figure 7. A possible mutation operator for the TSP. An offset in the genotype is selected. The genes either side of the offset are then switched to 
produce the new valid genotype.

Figure 8. (A) An example distribution of 20 
cities and (B) a path linking the cities found 
using a genetic algorithm.
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Protein Structure Prediction  
Using a Genetic Algorithm

The sequence of the amino acids com-
prising a protein is referred to as its pri-
mary structure. The properties of the 
amino acids in the chain cause the chain 
to twist and turn, settling on the confor-
mation with the lowest free energy.75 It is 
this arrangement, referred to as the ter-
tiary structure, which gives the protein its 
function.76

Su, Lin and Ting describe a GA based 
approach to determining the tertiary 
structure of a protein given its primary 
sequence.77 The solutions produced in the 
GA are possible structures for the peptide 
represented as self-avoiding walks through 
a 2D triangular lattice structure. One 
such walk is given in Figure 17A. Edges 
representing the backbone of the protein 
join the amino acids to form a walk fol-
lowing the primary sequence of the pro-
tein. For a walk to be valid: (1) All nodes 
must be linked in the order of the primary 
sequence; (2) Edges must be connected to 
two amino acids; (3) Edges must not cross 
(the walk is a self-avoiding); (4) Only two 
edges can be connected to an amino acid; 
and (5) Edges can only connect adjacent 
intersect points on the lattice.

This approach uses the hydrophobic-
polar (HP) model78 for evaluating the fit-
ness of each potential solution. Modeling 

based on how well the application is per-
forming. The actual implementation 
begins with low parameter values for the 
crossover and mutation rate. The param-
eter values increase as changes in the fit-
ness values produced each generation 
stagnate.

A restricted form of single point cross-
over is employed which is equivalent to the 
horizontal crossover of the PNPAlineaGA 
approach. Valid crossover points are 
between the genes corresponding to dif-
ferent sequences. The crossover rate is 
used to select the crossover point, such 
that the points become progressively offset 
from the start of the genotype as the cross-
over rate increases.

For the mutation operator, a specific 
offset in the genotype is selected rela-
tive to the size of the mutation rate. The 
binary digits up to the offset are grouped 
by sequence. Each group is then inde-
pendently considered for mutation at the 
specified mutation rate. The mutation 
is a “binary shuffling,” which random-
izes the order of the bits but maintains 
the number of 0s and 1’s in each group, 
thus ensuring the correct number of gaps 
per sequence. Figure 16 gives an example 
of two binary shuffle operations used 
to create a new child genotype. In this 
example, the mutation operator creates 
three groups. The first group receives a 
binary shuffle, while the second is car-
ried forward unchanged. The third 
group corresponds to only a segment of 
the third sequence and receives a binary 
shuffle. The remainder of the genotype 
beyond the mutation point remains  
unchanged.

In a small scale evaluation presented by 
the authors, the CGA-MSA approach was 
demonstrated to be able to produce bet-
ter ID scores in considerably less execution 
time relative to a standard genetic algo-
rithm approach.

members to replace the weakest mem-
bers of the master population. The master 
population sends copies of its fittest solu-
tions to each slave. There is no direct con-
nection between the slave populations. A 
sample representation of an island topol-
ogy is given in Figure 14.

Results. While initial results reported 
for PNPAlineaGA indicate that GA based 
approaches to multiple sequence align-
ment may be able to produce results that 
can be compared with T-Coffee73 (one of 
the leading multiple sequence alignment 
algorithms available), GA techniques 
would benefit from further research and 
evaluation in this area.

Example: Cyclic Genetic  
Algorithm for Multiple Sequence 

Alignment (CGA-MSA)

Proposed in a recent paper by Nizam, 
Ravi and Subbaraya, CGA-MAS takes 
a different approach to MSA in terms 
of both representation and implementa-
tion.74 The genotype used here is fixed 
length, and specifies only the locations 
of the gaps in each sequence. The geno-
type comprises a binary string for each 
sequence. For each sequence in the align-
ment, the number of gaps is specified a 
priori such that all sequences are of the 
same length once the gaps are included. 
The phenotype is the sequences aligned 
when gaps are inserted at offsets accord-
ing to the genotype (as in Fig. 10). Figure 
15 presents an example alignment with 
the gap offsets highlighted, and the cor-
responding genotype.

CGA-MSA employs a “self-organiz-
ing” genetic algorithm (SOGA) to reduce 
premature convergence to local minima 
and improve performance. A self-orga-
nizing genetic algorithm dynamically 
adjusts parameter values during execution 
without the need for operator interaction, 

Figure 9. A typical learning curve for a 
genetic algorithm.

Figure 10. An example 4-sequence alignment. Individual sequences are represented on separate lines. Columns represent aligned amino acids. 
Adapted from reference 67.
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the folding of a protein is a difficult prob-
lem affected by a number of attributes of 
the peptide chain. The HP model simpli-
fies the problem by considering only the 
principle mechanism, hydrophobicity, in 
controlling the folding of a protein. The 
identities of the amino acids in the chain 
are reduced to either hydrophobic (H) or 
polar (P). “Good” solutions are identified 
as those which have the highest number 
of H-H contacts, which should represent 
the lowest free energy conformation of the 
protein under the simplified model. The 
plausibility of a conformation of a protein 
on a lattice can be evaluated using the HP 
model, where a contact is defined as two 
topological neighboring amino acids not 
connected by an edge.

For a protein n amino acids in length, 
the genotype of a solution consists of a 
list of n-1 directions from the list “L, R, 

Figure 11. An example distribution of a set 
of solutions in a Pareto Optimality. Each box 
represents the fitness of a solution in terms 
of ID score plotted against its fitness in terms 
of the SOP score. The gray line represents the 
Pareto front. In this example the Pareto front 
shows optimal trade-offs between the ID and 
SOP scores.

Figure 12. Example dissection of two parents for a vertical one-point crossover operation.

Figure 13. Example dissection of two parents for a horizontal one-point crossover operation.

LU, RU, LD, RD” representing “left,” 
“right,” “left up,” “right up,” “left down” 
and “right down” respectively. For exam-
ple, the genotype for the walk given in  
Figure 17 (A) would be “RU, RD, R, RD, 
L, L, RD, L, LD, LU, RU, L, RU, L, L, 
RU, R, RU, RD,” if starting at the circled 
hydrophobic amino acid. The phenotype 
is the actual walk through the lattice pro-
duced by the genotype and the fitness of 
each solution is defined using the number 
of H-H contacts.

Half of the population is generated 
using a tournament selection on the previ-
ous generation, with two point-crossover 
implemented at a rate of 0.8. Three muta-
tion steps are performed on each offspring: 
(1) random gene mutations are performed 
and accepted only if they improve the fit-
ness of the solution; (2) a standard uni-
form gene mutation at a rate of 0.4; and 
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The genes in this implementation are 
single character codes representing the six 
possible steps which can be taken while 
traversing the 3D lattice; up, down, left, 
right, backward, and forward, represented 

Figure 15. (A) A sequence alignment for four sequence, and two equivalent encodings for the alignment. (B) The CGA-MSA genotype representing an 
alignment solution.

Figure 16. The CGA-MSA mutation operator. The binary digits up to the mutation point are grouped by sequence and considered for mutation indi-
vidually.

Figure 14. Graphical depiction of the flow 
of solution exchanges in 4-island model 
comprising three slave populations and a 
centrally located master population.

(3) a segment of the genotype is rotated 
through all 6 angles allowed by the lattice 
(0°, 60°, 120°, 180°, 240° and 300°) and 
the best performing selected.

The first and third steps act as greedy 
local search optimizations to speed the 
convergence toward an optimal solution. 
Walks generated through crossover and 
mutation which violate the “no crossing” 
constraint of the lattice model are simply 
discarded and new instances generated. 
The second half of the new population is 
generated using an elite based reproduc-
tion where half the population is made 
up of a direct copy of the fittest solutions 
from the previous generation.

In evaluations, the use of a hybrid 
hill climbing (the greedy local search 
optimizations) and genetic algorithm 
combined with the elite based reproduc-
tion is shown to increase performance 
relative to a standard genetic algorithm 
approach. In evaluations, this approach 

achieved similar levels of performance to 
the “Tabu Search” approach79 on a num-
ber of small proteins.

Lin and Su apply a hybrid of a GA and 
particle swarm optimization (HGA-PSO) 
for fitting proteins to a 3D cubic lattice, 
which shares many similarities with the 
2D lattice model.80 The 2D triangular lat-
tice is used for modeling short proteins as it 
does not allow for overlapping structures. 
A 3D cubic lattice, such as that shown in 
Figure 17B, allows edges to overlap if they 
are at different elevations in the lattice. 
This allows the walks to form representa-
tions of secondary structures and complex 
3D protein conformations resulting in 
more biologically plausible forms for large 
proteins than a 2D model can produce. 
The disadvantage of the cubic lattice rela-
tive to the triangular lattice is that amino 
acids in the primary sequence can only be 
topological neighbors if they are an odd 
number of amino acids apart.
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every protein after 50 runs is presented in 
Table 1. In each experiment, HGA-PSO 
is able to identify an optimal conforma-
tion for the protein which maximizes the 
number of H-H contacts, achieving con-
sistently equal or superior performance 
in comparison with the other approaches 
evaluated. Lower standard deviations in 
performance of the HGA-PSO approach 
compared with ClonalgI, the next best 
performing approach evaluated, are also 
reported.

Conclusion

This paper has presented a review of the 
application of GAs to computation prob-
lems in biology. While research efforts in 
this domain are encouraging, there are 
many remaining challenges if GAs are to 
fulfill the potential of harnessing evolu-
tionary principles in silico. When deciding 
if a GA is suitable for producing a solution 
to a task at hand, it is important to bear in 
mind that any approach which does not 
evaluate all potential solutions cannot be 
guaranteed to identify the optimal solu-
tion. GAs are applicable if evaluating all 
potential solutions is infeasible in a reason-
able amount of time, and “quickly finding 
a sufficiently good solution is enough.”57

The examples given is this paper dem-
onstrate two current efforts to address the 
inherent weaknesses of GAs; (1) optimiza-
tions of the genetic algorithm itself and (2) 
exploiting the strengths of GAs in combina-
tion with other disciplines. Optimizations 
of the genetic algorithm were demonstrated 
by the use of greedy mutation opera-
tors67,77,80 and self-organizing parameters.74 
Similarly, it has already been mentioned 
that domain knowledge can be incorpo-
rated into the search operation to form 
an intelligent search, but this approach is 
domain specific. In this paper, the hybrid-
ization of GAs is demonstrated with PSO80 
and a Pareto Front,67 but other recent 
interesting GA research includes topics 
such as the use of an Artificial Bee Colony 
(ABC) for protein structure prediction85 
and an Ant Colony Optimization algo-
rithm for multiple sequence alignment,86  
for example.

In addition to the increasingly smart 
algorithms leveraging search coverage and 
execution time, the inherently parallel 

is used as the fitness of the corresponding 
genotype.

The HGA-PSO algorithm was evalu-
ated against Backtracking-EA,81 Aging-
AIS82 and ClonalgI83 on seven standard 
benchmark sequences taken from “protein 
folding simulations of the hydrophobic–
hydrophilic model by combining tabu 
search with genetic algorithms.”84 The 
best found result of each approach for 

by “U, D, L, R, B, F” respectively. For a 
protein with primary sequence of length n, 
the genotype is an n-1 sequence of genes. 
The phenotype is the 3D walk produced 
when the directions specified by a geno-
type are fit to the lattice. For example, the 
genotype for the walk in Figure 17B is “F, 
D, L, D, R, D, R, U, R, U, L, B, L, D, 
B, D, F, R, U”. As for the 2D lattice, the 
number of H-H contacts in the phenotype 

Figure 17. A protein with the format HPHPPHHPHPPHPHHPPHPH fitted to (A) a 2D triangular lat-
tice, and (B) a 3D cubic lattice. The hydrophobic amino acids are represented as black dots and the 
polar amino acids as white circles. Both conformations are optimal under the HP model. Adapted 
from references 77 and 80, respectively.

Table 1. Performance of HGA-PSO, backtracking-EA, aging-AIS and ClonalgI on a set of 7 proteins

Sequence Optimal Free Energy HGA-PSO Backtracking EA Aging-AIS Clonal gI

1 -11 -11 -11 -11 -11

2 -13 -13 -13 -13 -13

3 -9 -9 -9 -9 -9

4 -18 -18 -18 -18 -18

5 -29 -29 -25 -29 -29

6 -26 -26 -23 -23 -26

7 -49 -49 -39 -41 -48
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nature of genetic algorithms means they 
have benefitted greatly from the recent 
surge of interest in distributed process-
ing. In recent years, the availability of 
low cost multi-processor computers and 
cloud computing platforms have made the 
use of GAs more appealing as the popu-
lation based approach of GAs can easily 
be adapted to take advantage of parallel 
environments.

There is also growing interest in other 
innovative techniques such as harnessing 
human interaction. The Foldit project is 
a successful example of such an approach, 
which presents the difficult problem of 
protein folding as a competitive computer 

game.87 Foldit employs computer game 
psychology to encourage players to vol-
untarily download and replay a game 
which solves a real world problem. This 
approach harnesses the ingenuity, spatial 
reasoning and long-term vision of human 
players as well as their local processing 
power, with the competitive, collabora-
tive and social aspects of Foldit acting 
as motivators. Foldit does not employ 
genetic algorithms, but it can be seen as 
harnessing human directed computing to 
perform a type of coarse search, suggest-
ing the approach should work as part of 
a well-designed genetic algorithm. Given 
Foldit’s success (on a number of problems, 
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