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Introduction

Energy is essential for life while the industry development and 
the global economy actually run on energy. The application of 
fossil fuels as energy sources is unsustainable due to depleting 
limited resources and also due to the accumulation of greenhouse 
gases in the environment.1 The current consumption of crude oil 
is about 11.6 million tons per day, from which we can concluded 
that the entire resources will suffice for a rather short time period 
only.2,3 Without appropriate alternatives to crude oil, the global 
economy will suffer a dramatic collapse by reason of explod-
ing oil prices as the demand will continuously rise.4 It is inevi-
table to resolve the dependence to crude oil and the increasing 
impairment of the environment by establishing a sustainable and 
competitive alternative which is based on renewable and abun-
dant feedstock like biomass5,6 or on other regenerative sources. 
Environmental concerns and the depletion of oil reserves have 
resulted in research promotion on environmentally friendly and 
sustainable biofuels.7

Among all the biofuels, biodiesel has been receiving per-
haps the most attention, due to the similarity with conven-
tional diesel in terms of chemical structure and energy content. 
Additionally, no modification of the diesel engine is required, as 
biodiesel is compatible with existing engine models and has been 
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Biodiesel, as one type of renewable energy, is an ideal 
substitute for petroleum-based diesel fuel and is usually made 
from triacylglycerides by transesterification with alcohols. 
Biodiesel production based on microbial fermentation aiming 
to establish more efficient, less-cost and sustainable biodiesel 
production strategies is under current investigation by various 
start-up biotechnology companies and research centers. 
Genetic engineering plays a key role in the transformation of 
microbes into the desired cell factories with high efficiency 
of biodiesel production. Here, we present an overview of 
principal microorganisms used in the microbial biodiesel 
production and recent advances in metabolic engineering 
for the modification required. Overexpression or deletion 
of the related enzymes for de novo synthesis of biodiesel is 
highlighted with relevant examples.

commercially blended with diesel as a transportation fuel in a 
number of countries including Germany, Italy and Malaysia.8 
Biodiesel is mainly obtained by the transesterification of fat and 
vegetable oils in the presence of a catalyst by an alcohol lead-
ing to a fatty acid methyl esters (FAMEs) or a fatty acid ethyl 
ester (FAEEs).9 Unlike petroleum diesel, biodiesel is biodegrad-
able and non-toxic, and it significantly reduces toxicant and other 
emissions when burned as a fuel.10

The traditional methods of biodiesel production include 
chemical catalysis and enzymatic catalysis. Chemical catalysis is 
of prime importance for the current industrial production of bio-
diesel,11 while enzymatic catalysis is also an attractive approach 
for its mild reaction conditions, easy product separation and so 
on.12,13 However, the current biodiesel production faces several 
problems: deficiency of a stable, sufficient feedstock supply sys-
tem, inconsistent performance, and challenging economics.14 The 
microbial production has the potential to overcome these chal-
lenges due to some advantages such as short producing period, 
little labor required, easy to scale up, and regardless of venue, 
season, climate change and other factors.15 Making full use of 
microorganism for biodiesel production has a very large poten-
tial. Here, we present a simple overview of principle microorgan-
isms used in the biodiesel production, important metabolism 
pathways related with biodiesel synthesis and potential routes for 
construction efficient and less-cost biodiesel production systems.

Principal Microorganisms for Biodiesel Production

Microorganisms, usually one-celled organisms, could not only 
provide the biodiesel synthesis with the substrates such as fatty 
acids sources and alcohols, but also be used as a catalyst in this 
process.

Grease microorganisms to supply fatty acid sources. Grease 
microorganisms, also called oleaginous microorganisms, is fre-
quently applied and studied in the current biodiesel production 
to supply fatty acids source for transesterification. Grease micro-
organisms, coming from a rich microorganism resource, can 
utilize or convert various agro-industrial materials (e.g., plant 
biomass) to cellular lipids.16 The fatty acid composition of the 
lipids extracted from grease microorganisms is generally similar 
to vegetable oils, which can be converted into biodiesel.17 Grease 
strains could be found in the species of bacteria, yeasts, molds 
and algae.17 The key characteristics could be summarized as fol-
lows: (1) more than 50% of lipids should be accumulated in the 
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De novo biosynthesis of biodiesel has been realized in some 
reports by metabolic engineering.31-34 Figure 1 illustrates a com-
mon de novo biosynthetic pathway of biodiesel like FAEEs in the 
microbes. Several specific pathways such as ethanol production, 
fatty acid metabolism and transesterification are involved in this 
pathway.

E. coli is an excellent host for genetic engineering to produce 
high-value chemicals given its plethora of sophisticated genetic 
tools as well as the wealth of information available on its metabo-
lism.35,36 The world’s first report of de novo biosynthetic pathway 
of biodiesel is showed in E. coli by the simultaneous overexpres-
sion of the ethanol production genes from Z. mobilis and the 
wax ester synthase/acyl-CoA-diacylglycerol acyltransferase (WS/
DGAT) gene from the Acinetobacter baylyi strain ADP1.37 By 
this approach, ethanol production in the cells was combined 
with subsequent esterification when they were cultivated under 
aerobic conditions in the presence of glucose and oleic acid. It is 
notable that biosynthesis of FAEEs in Kalscheuer’s work37 relied 
on the supplementation of exogenous fatty acids. The uptake of 
exogenous fatty acids from the medium and their activation to 
the corresponding acyl-CoA thioesters becomes a factor limiting 
FAEEs accumulation in the report of Kalscheuer. Yangkai Duan 
and his group members32 further modified the fatty acids path-
way of E. coli to increase the content of endogenous fatty acids, 
which supplied as acyl moieties of coenzyme A thioesters of fatty 
acids for transesterification. To decrease the process cost, Steen  
et al.33 engineered the substrate metabolism pathway of the E. coli 
with FAEEs producing capability. This newly engineered strain 
was able to accumulate FAEEs utilizing hemicellulose as raw 
materials. Figure 2 illustrated the detailed genetic manipulations 
sucessfully used in E. coli to produce FAEEs directly from lig-
nocellulose biomass without the addition of expensive enzymes.

In addition to E. coli, S. cerevisiae may also be a potential can-
didate for genetic manipulation. S. cerevisiae is a good ethanol 
producer and is able to accumulate fatty acids with a chain length 
of mainly 16 or 18 carbon atoms.38 In S. cerevisiae, ethanol is 
accumulated at a high concentration and hence biodiesel produc-
tion is not limited by ethanol supply.39,40 The FAEEs synthesis 
in the S. cerevisiae would initiated only when acyltransferase is 
introduced, which synthesize fatty acid esters from alcohols and 
fatty acyl coenzyme A thioesters. On the other hand, comprehen-
sive modifications in more and more functional microorganisms 
to produce less-cost biofuel will also be possible with advances 
in genetic transformation methods and increased knowledge 
regarding expression systems. For example, genes for microbial 
biodiesel production could be expressed in some of the oleagi-
nous microorganisms independent from fatty acid or lipid feed-
ing, since the fatty acyl-CoA supply in such microorganisms is 
sufficient.34 The more and more fundamental understanding on 
the metabolism pathways and genetic manipulation technolo-
gies provided in oleaginous microorganisms, such as Rhodococcus 
opacus41 and Yarrowia lipolytica,42 suggests their potential appli-
cation in microbial biodiesel production. Another promising 
functional microorganisms as the candidate for engineering is 
cellulosic microorganisms, which have multiple cellulase enzyme 
systems for complete biomass digest. Establishing the plasmid 

cells; (2) the strains can be used in industrialization culture with 
simple apparatus; (3) the strains should have fast growth speed 
and anti-pollution ability; and (4) the oil is easy to be extracted.

In recent years, microalgae are attracting considerable interest 
as an economically viable oil feedstock due to its obvious superior-
ity of easily culture, big group, diverse metabolic capabilities and 
high fatty acid content.18 Many autotrophic microalgaes capable 
of oil accumulation have been found, such as Chlorella vulgaris, 
Botryococcus braunii, Navicula pelliculosa, Scenedsmus acutus, 
Crypthecodinium cohnii, Dunaliella primolecta, Monallanthus 
salina, Neochloris oleoabundans, Phaeodactylum tricornutum and 
Tetraselmis sueica.19 The average oil content of microalgae varies 
from 1 to 70% and would significantly affected by the cultivation 
conditions and algae species.20 Khozin-Goldberg and Cohen21 
observed that TAG content increased in Monodus subterraneus 
under phosphate limitation conditions. Xin et al.22 showed that 
microalga Scenedesmus sp LX1 yielded the highest amount of 
lipid with a content of 35.7% when only the cultivation tempera-
ture was 20°C. Microalgae have been considered to be the inevi-
table development trend of future biodiesel. However, several 
barriers, such as low growth rate, strict breeding condition and 
large upfront investment, need to be overcome before microalgae 
can be used as an economically viable biofuel feedstock.18

Ethanol producers to supply alcohol sources. Alcohol is 
another substrate in the transesterification reaction to generate 
the corresponding fatty acid ester. Methanol or ethanol is the 
most frequently used acyl acceptor, while FAMEs is cheaper, 
more reactive and volatile than FAEEs. However, ethanol is less 
toxic and is considered more renewable. Ethanol can be easily 
produced from renewable sources by microbial fermentation,10 
which has been demonstrated by many reports and reviews.23,24 
Owning to so much effort from many researchers, the yield of 
ethanol can even reach the theoretical value.25,26 The most com-
monly used microbe for ethanol production is yeast, among 
which, Saccharomyces cerevisiae is the preferred one producing 
ethanol to give concentration as high as 18% of the fermentation 
broth.23 S. cerevisiae has been widely used as a key cell factory 
platform for future biorefineries.27 Zymomonas mobilis is another 
well studied ethanol-producing strain with published genome 
sequence.28 Z. mobilis has higher ethanol yields and faster spe-
cific rates compared with yeast, although it has a limited carbon 
substrate range of simple C6 sugars glucose, fructose and sucrose. 
The genetic manipulation systems in Z. mobilis have been well 
established, while many researches have been performed on its 
metabolic engineering focused on extending its substrate range 
for ethanol production.29 In the study of Hideshi Yanase et al.25 
Z. mobilis was engineered to convert the wood hydrolysate con-
taining glucose, mannose and xylose as major sugar components 
to ethanol by introducing genes encoding mannose and xylose 
catabolic enzymes. The yield of ethanol reached 89.8% of the 
theoretical yield within 72 h. Ethanol production could also be 
achieved by genetic engineering of E. coli strains, which was one 
of the early successful applications of metabolic engineering.30

Recombinant microorganisms capable of de novo biosyn-
thesis of biodiesel. Pathway manipulation by genetic engineer-
ing allows the transformation of microbes into “cell factories”.16  
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acetyl-CoA carboxylase (ACC), which is the important commit-
ting step of the fatty acid synthetic pathway.47 In E. coli, ACC is 
a protein containing four subunits with a biotin carboxyl carrier 
protein, a biotin-carboxylase subunit and a carboxyl-transferase 
subunit joined together into a heterotrimeric complex.38 In con-
trast, the ACC in the eukaryotic cells is a multi-domain single 
polypeptide, having all the functions of the ACC.38,47 Once 
malonyl-CoA is synthesized, it is condensed with acetyl-CoA 
catalyzed by the fatty acid synthetase (FAS) for fatty acid elonga-
tion. This resulting compound is transformed via three successive 
reactions, i.e., reduction, dehydration and reduction, and then 
condensed with another malonyl-CoA. This cycle is repeated 
until the saturated chain of a palmitic (16:0) or a stearic acid 
(18:0) is formed. Type II FAS, a multi-subunit protein in which 
each individual peptide is dissociable and can catalyze an enzy-
matic transacetylation reaction, is the major enzyme responsible 
for this process in bacteria and plant.48,49 In yeast, this enzyme 
is found to be the type I FAS, a multifunctional protein.45 To 
obtain longer or unsaturated chains, elongases and desaturases 
are required, which are usually located in endoplasmic reticulum 
membrane and mitochondria. During the fatty acids biosynthe-
sis, NADPH is one of the important substrates required for two 
reduction steps in the fatty acid elongation cycle, which is mainly 
produced by malic enzyme (ME) and the pentose phosphate 
pathway.50 Fatty acid produced in the cell will then be trans-
formed to various fatty acid esters or be degraded. β-oxidation is 
the principal metabolic pathway responsible for the degradation 
of fatty acids, which is taking place in the peroxisome,51 although 
the transport mechanism remains unclear.45

for FAEEs production in cellulosic microorganisms used as an 
expression host, such as cellulose-degrading or hemicellulose 
degrading strains, may help to decrease the cost from both raw 
materials and production process. In addition, microalgal is also 
recognized as a good model for biodiesel production though 
manipulation, although the application of genetic engineering in 
eukaryotic microalgae is still in its infancy.43

Genetic Engineering in Fatty Acids Pathway

Understanding microbial fatty acid metabolism is of great inter-
est for biodiesel production. Both the quantity and the quality 
of biodiesel precursors from a specific strain are closely linked to 
how fatty acid metabolism is controlled.

Overview of fatty acids pathway. Cellular fatty acids are 
derived from three different sources: external supply, endogenous 
lipid (protein) turnover, and de novo synthesis and elongation.38 
The major supply of fatty acids during cellular growth depends on 
de novo synthesis. Figure 3 illustrates the biochemical reactions 
involved in fatty acid metabolism. In essence, the fatty acids bio-
synthesis of microbes is similar with that of animals and plants, 
both of which are performed by the fatty acid synthetase (FAS) 
and requires the constant supply of acetyl-CoA and malonyl-
CoA.44 In non-oleaginous microbes, acetyl-CoA is usually pro-
duced from the glycolysis pathway by breaking down pyruvate 
and from the cytosolic pyruvate-acetaldehyde-acetate pathway.45 
Additional acetyl-CoA could be provided from the cleavage of 
citrate by ATP citrate lyase (ACL) in oleaginous microorgan-
isms.46 Acetyl-CoA is then catalyzed to form malonyl-CoA by 

Figure 1. Representative pathways in microorganisms could be engineered for de novo biosynthetic process of biodiesel (e.g., fatty acid ethyl esters).
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in a significant increase of the assimilation of acetate from the 
medium and contributed to an increase in the rate of fatty acid 
synthesis. ME, an enzyme catalyzes the conversion of malate 
into pyruvate and simultaneously reduces a NADP+ molecule 
into NADPH, is suggested to be a reducing power supplier for 
lipogenic enzymes such as ACC, FAS and ACL.63 Overexpressing 
ME has been demonstrated as an effective method to enhance 
lipid accumulation in some strains, such as Mucor circinelloides59 
and S. cerevisiae.50 Thioesterases is responsible for the release of 
fatty acid chains from the acyl carrier protein and the production 
of free fatty acids. Overexpression of thioesterases is also able to 
increase fatty acid production substantially in many strains such 
as E. coli and cyanobacteria.64-67

Blocking the lipid degradation pathway and other meta-
bolic pathways would also lead to the accumulation of fatty 
acid sources. For example, starchless mutant of Chlorella pyre-
noidosa has been shown to have elevated polyunsaturated fatty 
acid content.68 Besides, β-oxidation is one of the major pathways 
responsible for metabolizing fatty acids, which consists of a set of 
four reactions operating at the carbons 2 or 3 of acyl-CoA esters 

Improving the fatty acids biosynthesis. 
The biochemical approach refers to the strat-
egy of enhancing fatty acids accumulation by 
controlling the nutritional or cultivation con-
ditions to channel metabolic flux into lipid 
biosynthesis.43 There is apparently a dilemma 
in the biochemical strategy, i.e., the conditions 
that stimulates fatty acids esters accumulation 
in cells may result in severely impeded cell 
growth and hence lowered overall lipid pro-
ductivity.52 It is likely that the dilemma could 
be solved by employing metabolic engineering 
approaches aiming at enhancing the metabolic 
flux into fatty acids biosynthesis. Numerous 
studies have been carried using the genetic 
strategy to enhance the lipid accumulation in 
different species.

As an important enzyme catalyzing the 
first committed step in fatty acid biosynthe-
sis in many organisms, ACC has tradition-
ally been thought to exert a strong control 
on the metabolic flux of fatty acid synthesis. 
Overexpression of ACC did enhance the fatty 
acid synthesis in various organisms, including 
plant, bacteria, yeast, and so on.53-55 Ruenwai  
et al.55 isolated a multi-domain ACC 
from an oleaginous fungus Mucor rouxii. 
Overexpressing the M. rouxii ACC in a 
non-oleaginous yeast Hansenula polymorpha 
resulted in a 40% increase in the total fatty 
acid content. By the overproduction of ACC 
in E. coli, 100-fold increase in the malonyl-
CoA pool was obtained accompanying by 
a 6-fold increase in fatty acid production.53 
Similarly, Klaus et al.56 achieved a 30% 
increase in total fatty acid content in Solanum 
tuberosum (potato) by overexpressing the ACC from Arabidopsis. 
Nevertheless, the low increase ratios in the above-mentioned 
reports indicate that overexpression of ACC alone may not be 
adequate to affect the whole fatty acids biosynthesis significantly. 
Actually, ACC was also successfully overexpressed in the diatoms 
C. cryptica and N. saprophila. However, no significant increase of 
lipid accumulation was observed in the transgenic diatoms.57,58

Subsequent steps in fatty acid biosynthesis can also limit fatty 
acid flux. There are also other enzymes presenting a strong cor-
relation with the fatty acid biosynthesis.50,59 The ATP: citrate 
lyase (ACL) catalyzes the conversion of citrate into acetyl-CoA 
and oxaloacetate, and represents a source of acetyl-CoA for fatty 
acid biosynthesis. An increased amount of fatty acids by 16% 
was obtained in tobacco by overexpression of a rat ACL gene 
leading to a 4-fold increase in the total ACL activity.60 Similar 
enhancement in the fatty acid synthesis could also be achieved 
by overexpression of acyl-CoA synthetases (ACSs), a family of 
enzymes that catalyze the thioesterification of fatty acids with 
coenzymeA to form activated intermediates.61 It was observed by 
Lin et al.62 that overexpressing the acs gene in E. coli resulted 

Figure 2. The successfully engineered pathways in E. coli for de novo biosynthesis of 
biodiesel. An endoxylanase catalytic domain (Xyn10B) from Clostridium stercorarium and a 
xylanase (Xsa) from Bacteroides ovatus were introduced to hydrolyse the hemicellulose to 
xylose. Ethanol-forming pathway was introduced by overexpression of pdc gene and adhB 
gene, coding pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH), respectively. 
Flux through the E. coli fatty acid pathway was increased to improve production of free fatty 
acids and acyl-CoAs by knockout of the fadE gene coding acyl-CoA dehydrogenase (FadE), 
by overexpression of acetyl-CoA carboxylase (ACCase), thioesterases (TE) and fatty acyl-CoA 
synthase (FadD). The atfA gene from A. baylyi coding the wax ester synthase/acyl-coenzyme 
A: diacylglycerol acyltransferase (WS/DGAT) were introduced for fatty acid ethyl esters 
formation.
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in oil content, which suggests that reduced PEPC activity 
enhanced the fatty acid esters accumulation.

Recently, more and more researchers present a compre-
hensive modification suggestion of engineering more than 
one enzyme relevant to the fatty acids accumulation.43 One 
example of the comprehensive modification is shown in  
E. coli, which resulted in a 20-fold increase in free fatty acid 
production.66 Genetic engineering of the transcription factor, 
which affects up or downregulation of genes responsible for 
the global fatty acid pathways, would also be a potentially 
promising strategy among various comprehensive modifi-
cations.78-80 Reik et al.80 overexpressed a zinc-finger protein 
transcription factors that binds a DNA sequence within 
the promoter in microalgae and led to an enhanced lipid 
synthesis.

Modifying the fatty acids profiles. In addition to engi-
neering microorganisms for the increased production of fatty 
acid esters, it is also reasonable to attempt to improve the 
quality of the fatty acid esters, with regard to suitability as 
a diesel fuel feedstock. The carbon chain length and degree 
of unsaturation of the fatty acids can affect the cold flow 
and oxidative stability properties of a biodiesel fuel which is 
derived from this feedstock.18

The chain lengths of fatty acids are mainly determined 
by acyl-ACP thioesterases, which can release the fatty acid 
chain from the FAS. There are several acyl-ACP thioester-
ases from a variety of organisms that are specific for certain 
fatty acid chain lengths. Transgenic overexpression of thioes-
terases are able to change fatty acid chain length.81,82 As in 
most other organisms, the major end products of the plant 
and E. coli FAS are usually 16- or 18-carbon fatty acids.83,84 
However, certain plant species synthesize in developing seeds 
large amounts of predominantly medium-chain (C8 to C14) 
fatty acids, which are deposited in TAGs for long-term car-

bon storage.85 It is proposed that transgenically overexpression 
of shorter chain length specific acyl-ACP thioesterases would 
lead to the enhancement of shorter chain fatty acids. Actually, 
transformation and expression of a 12:0-biased thioesterase from 
Umbellularia californica in E. coli changed its lipid profiles dras-
tically, with a great increase in the production of lauric acid.65 
Besides, the production of myristic acid was found to be greatly 
increased by the expression of a 14:0-biased thioesterase from 
Cinnamomum camphorum.86 The similar phenomenon has also 
been shown in microalgae87 that the heterologous expression of 
two thioesterases, biased toward the production of lauric (C12:0) 
and myristic acid (C14:0), led to a increased accumulation of 
shorter chain length fatty acids in the eukaryotic microalgae 
Phaeodactylum tricornutum.

There are other enzymes having significant effect on the fatty 
acid modification reaction. Overexpression of the FabH protein, 
which is one of three β-ketoacyl-ACP synthases (KAS) in E. coli 
that catalyze the elongations necessary for fatty acid biosynthesis, 
influenced the cell by producing more shorter-chain fatty acids.88 
Blocking the degradation of fatty acyl-CoA in E. coli through 
the deletion of the fadE gene encoding acyl-CoA dehydrogenase 
caused significant changes in the FAEEs composition and major 

and shortening of the acyl-chain.69 It is found that knocking 
out genes involved in β-oxidation not only can lead to increased 
amounts of intracellular free fatty acids but also result in extra-
cellular fatty acid secretion in some cases.70-72 For example, dele-
tion of the fadD gene (encoding the fatty acyl-CoA synthetase) in  
E. coli could result in an enhanced fatty acids accumulation.32 
The same positive effect on the fatty acids accumulation achieved 
by knocking out of the fadE gene coding acyl-CoA dehydroge-
nase in E. coli.32 However, cells would rely on the β-oxidation of 
fatty acids for cellular energy under certain physiological condi-
tions. As a result, knocking out lipid catabolism genes may have 
deleterious effects on cellular growth and proliferation.73 Cao  
et al.74 demonstrated that using an indirect method, i.e., inhibit-
ing the acetyl-CoA transportation system required for coupling 
the β-oxidization in peroxisome and the TCA cycle in mitochon-
dria but not any enzyme of the β-oxidation, is capable of inhibit-
ing the β-oxidization of Candida tropicali. The third competitive 
pathway is the conversion of phosphoenolpyruvate to oxaloac-
etate, which is catalyzed by the phosphoenolpyruvate carboxylase 
(PEPC). Significantly enhanced lipid contents could be obtained 
by breaking the PEPC activity.75,76 By expressing antisense PEPC 
in Brassica napus, Chen et al.77 achieved a 6.4–18% increase 

Figure 3. Simplified overview of fatty acid metabolism in microbes. ACL, 
ATP citrate lyase; ACS, acyl-CoA synthetases; ACC, acetyl-CoA carboxylase; 
ME, malic enzymes; PEPC, phosphoenolpyruvate carboxylase; FAS, fatty 
acid synthetase.
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the study of Liu et al.,98 an engineered E. coli was obtained with 
enhanced extracellular fatty acids production through the cyto-
solic expression of an engineered E. coli thioesterase (a “leadless” 
version of thioesterase without the NH2-terminal 26 amino acid 
residues). The similar phenomenon was also found in the cyano-
bacterium Synechocystis sp PCC 6803. By introducing acyl-acyl 
carrier protein thioesterases, the cyanobacterium Synechocystis 
sp PCC 6803 were able to overproduce fatty acids (C10-C18) 
and secrete them into the medium at an efficiency of up to 133 
± 12 mg L-1 of culture per day at a cell density of 1.5 × 108 cells 
mL-1 (0.23 g of dry weight per liter). Transportation with the 
help of carrier proteins is proposed to be another type for fatty 
acid export out of cells. The process for fatty acid transport is 
inducible and commensurate with the expression of specific sets 
of proteins thought to participate in the secretion.99,100 FadL is 
outer membrane protein in E. coli, which has been found to 
be specifically involved in the binding and translocation of the 
long-chain fatty acids across the outer membrane of the cell. A 
tight linkage exists between FadL and fatty acyl CoA synthe-
tase, indicating that these two proteins must act in concert in 
the facilitated transport and activation of these hydrophobic 
compounds.96,98,101,102 As another recently discovered lipid trans-
porter, MsbA is the ATP-binding cassette (ABC) transporter and 
is implicated in the export of lipopolysaccharides and phospho-
lipids in E. coli.103,104 The fatty acid transport apparatus in yeast 
is quite distinct from that defined in E. coli but may emulate 
that being defined in higher eukaryotic cells. In S. cerevisiae, a 
protein Fat1p (encoded within the fat1 gene) was identified as 
a plasma membrane-bound long-chain fatty acid transporter,105 
which acted with other two proteins (i.e., Faa1p and Faa4p) to 
facilitate the transport and activation of exogenous long-chain 
fatty acids.93,105,106 Besides, the secretion yields of fatty acid or 
lipid could also be increased by weakening the S-layer and pepti-
doglycan layers to facilitate fatty acids secretion.98,107

Genetic Engineering for Intracellular 
Transesterification

Enzymatic transesterification by lipases is a method extensively 
used for FAMEs or FAEEs production.9 Fatty acids sources and 
short chain alcohols are essential substrates in the transesterifica-
tion processes with lipases as biocatalyst, while most of the cata-
lyzed processes are performed in organic solvents in the absence of 
water.12 Over the past few years, much effort has been devoted to 
constructing intracellular transesterification systems for micro-
bial biodiesel production. Acyltransferases, a class of enzymes 
which are responsible for wax ester or TAG biosynthesis in vivo 
(Fig. 4), present the potentiality to be used as an alternative for 
lipase-catalyzed acylation in the biodiesel production.108-111 Long-
chain fatty alcohols or diacylglycerols and fatty acid coenzyme A 
thioesters (acyl-CoA) is used as substrates for the transesterifica-
tion of acyltransferases for wax ester or TAG biosynthesis.112 The 
biotechnologically relevant synthesis reactions are performed in 
aqueous systems, while the enzymes are only active with CoA-
activated fatty acids.113 The dependence of acyltransferases on 
CoA esters suggests that the acyltransferase-catalyzed acylation 

products were ethyl palmitate (16:0) and ethyl oleate (18:1) 
rather than ethyl myristate (14:0) after its deletion.32

Genetic Engineering for Extracellular Secretion  
of Lipophilic Compounds

Prior to the use in the biodiesel industry, fatty acid esters or TAGs 
have to be separated from cells through a series of energy-intensive 
steps such as cell harvest, drying and solvent extraction. The cost 
of the energy-intensive processes usually accounts for more than 
80% of total cost of biofuel production.89 Secretion of such lipo-
philic products into the culture medium rather than intracellular 
accumulation can significantly reduce the costs of product recov-
ery by skipping these separation processes. Besides, extracellular 
production of lipophilic compounds would not be directly lim-
ited by cell density or cell volume. Indeed, the localization of neu-
tral lipids in organisms is not restricted to the cell cytoplasm, as 
extracellular lipid deposition has been shown in various strains. 
There are many strains of bacteria presenting the ability of extra-
cellular TAGs production, like Alcanivorax,90 Acinetobacter,91 
Alcaligenes and Pseudomonas.92 It was also reported that similar 
secretion of fatty acids or TAGs can be achieved by metabolic 
engineering and mutagenesis, not only in bacterium E. coli, but 
also in some yeast strains and microalgae.71,93,94

Diffusion by concentration gradient and transportation 
by carrier proteins are the two ways for lipophilic compounds 
exporting.95-97 It is suggested that manipulation that allows yeast 
cells to accumulate high levels of intracellular fatty acids or that 
allows yeast to change the fatty acids length may be favorable for 
extracellular secretion of free fatty acids.18,98 Inactivation of genes 
involved in β-oxidation is one of the important manipulations 
that performed for enhancing fatty acid secretion. ACSs has been 
recognized as an intensively used gene in such cases.93 As a fam-
ily of enzymes that catalyze the thioesterification of fatty acids 
with coenzyme A to form activated intermediates, ACSs plays a 
fundamental role in lipid metabolism, which are also necessary 
for fatty acid import into cells through the process of vectorial 
acylation.61 ACSs increases the concentration gradient between 
extracellular and intracellular fatty acid by converting fatty 
acid into acyl-CoA and contributes to the uptake of fatty acid.95 
Thus, the deletion of ACSs gene might increase the concentra-
tion of free fatty acid in the cytosol and enhance fatty acid export 
out of cells. Scharnewski et al.93 demonstrated that in a mutant 
strain of S. cerevisiae deficient in ACSs, which could secrete fatty 
acid out of cells with a maximum titer of 200 μmol L-1. There 
is also ample evidence in E. coli proving fatty acid export out 
of cells is relevant with ACSs.95,98 Nevertheless, it was recently 
suggested that the deletion of ACSs genes is unable to improve 
the extracellular fatty acid production when the cell associated 
fatty acid titer was high. It is clear that fatty acid secretion was 
not only determined by the concentration gradient, but also 
related with other carrier proteins or some undetermined mecha-
nisms.65,98 Thioesterase is also known to influence the fatty acids 
secretion. For instance, expression of acyl‑ACP thioesterase from 
Umbellularia californica in the fatty acid-degradation mutant  
E. coli led to the secretion of free fatty acid into medium.65 In 
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enzyme is low with ethanol as substrate,110,113 
since the WS/DGAT from A. baylyi ADP1 
displayed a general preference for long-chain 
alcohols and a lower activity for short-chain 
alcohols. Luckily, WS/DGAT homologs 
are frequently found in many organism 
genomes.112 All the acyltransferase from A. 
baylyi ADP1, Marinobacter hydrocarbonoclas-
ticus DSM 8798, Rhodococcus opacus PD630, 
M. musculus C57BL/6 and Psychrobacter arct-
icus 273–4 can responsible for the formation 
of biodiesel.39 It is very likely that more effec-
tive candidates for biodiesel synthesis can be 
found among the acyltransferases from dif-
ferent organisms with various substrate and 
product chain-length preferences. Indeed, an 
acyltransferase from M. hydrocarbonoclasticus 
DSM 8798 without DGAT activity was found 
to be more suitable for producing biodiesel 
since it avoids direction of fatty acyl-CoAs 
toward TAG biosynthesis.117 Additionally, 
directed evolution of acyltransferases may 
result in selection of enzymes with higher 
specificity toward ethanol. Furthermore, the 
substrate specificities of WSs vary with the 
different expression hosts,109,114 indicating the 
importance of exploring suitable hosts for the 
biodiesel synthesis. The WS/DGAT from 
A. baylyi strain ADP1 is active in different 
microbial hosts, such as E. coli, Pseudomonas 
citronellolis and S. cerevisiae.109,118,119 Active 

expression of the WS/DGAT homolog from M. smegmatis 
could also be achieved in E. coli and Rhodococcus opacus.118,120

Genetic Engineering in Substrates Metabolism

Fermentation economics depend on a variety of factors, includ-
ing investment costs for the fermentation equipment, raw materi-
als and maintenance plus costs for upstream and downstream 
processes as well as the process yield and throughput.121 In partic-
ular, it may be highly desirable and perhaps necessary to incorpo-
rate the feature of naturally utilization of agro-industrial wastes 
into these cell factories to decrease the investment costs when 
developing recombinant biodiesel producers. Utilization of agro-
industrial residues to make biofuel has become one of the hottest 
points in current researches.122-125

Lignocellulosic biomass. De novo biosynthesis of FAEEs from 
lignocellulosic biomass has been achieved by genetic manipula-
tion in the study of Duan et al.32 As inexpensive materials for bio-
technology production, lignocellulosic plant biomass represents 
the largest source of renewable carbon and consists of 40–55% 
cellulose, 25–50% hemicellulose and 10–40% lignin. The social 
and economic benefits of producing biofuel from lignocellulosic 
biomass instead of crops are widely appreciated.126 To do so, lig-
nocellulosic plant biomass must be broken down and hydrolyzed 
into fermentable sugars.127 Large quantities of glycoside hydrolase 

is the native reaction under physiological conditions. Thus, the 
acyltransferanse mediated biodiesel synthesis would preferably 
be performed in vivo. In vitro applications using acyltransfer-
anse as biocatalyst in biotechnological processes will not be eco-
nomic in analogy to lipase catalyzed esterifications. However, 
the acyltransferanse mediated biodiesel production is the pos-
sible development of processes that can utilize bulk materials, 
such as sugars, or better starch, cellulose, and hemicellulose as 
substrates, which are not dependant on oilseed crops. This will 
not only significantly extend the substrate range that can be 
used for fuel production, but will also use resources that do not 
compete with food and feed production.113

There are three unrelated families of acyltransferases found 
in higher plants, mammals and bacteria, which might be suit-
able for biodiesel synthesis. The first identified acyltransferase 
of plants is jojoba embryo wax ester synthase, which did not 
show activity when heterologously expressed in S. cerevisiae.114 
The second group of identified acyltransferases was from bac-
teria, which is a bifunctional enzyme functioning as wax ester 
acyltransferases (WS) and as acyl-CoA:diacylglycerol acyl-
transferase (DGAT). The third group of acyltransferases is 
from mammals such as the acyltransferase from Mus musculus 
C57BL/6.115 The WS/DGAT from bacterium A. baylyi ADP1 is 
an acyltransferase extensively used for microbial biodiesel pro-
duction.33,108-111,116 However, the reaction rate of the WS/DGAT 

Figure 4. In vivo reaction catalyzed by acyltransferases for the synthesis of wax ester and 
triacylglycerol (TAGs). WS, Wax ester synthase; DGAT, diacylglycerol acyltransferase.
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in the biofuel production. Construction of recombinant E. coli 
with CBP capability is of great practical significance. However, 
the inferior capacity in E. coli for protein export has rendered 
it unable to extracellular produce cellulase or hemicellulase in 
quantities required for industrial-scale lignocellulose hydroly-
sis. Various techniques, developed over decades of research, can 
be applied to generate secreted yields from E. coli,132 although 
these concentrations are still too low for an industrial process. 
In 2010, Steen et al.33 constructed an FAEEs-producing E. coli 
with extracellular hemicellulase activity to use the xylan in the 
growth medium. Then, Bokinsky et al. engineered E. coli extra-
cellular expressing cellulase, xylanase, β-glucosidase, and xylo-
biosidase enzymes under control of native E. coli promoters by 
the fusion with export related protein (e.g., protein OsmY). The 
engineered E. coli grew well and produced fuel substitutes using 
either the cellulose or hemicellulose components of ionic liquid-
pretreated switchgrass or on both components when combined as 
a coculture.133 Removal of soluble inhibitors in the hydrolysates 

(GH) enzymes are demand for the efficiently con-
version of lignocellulose into fermentable sugars. 
Actually, the substantial capital and material expense 
occurred in the enzymes preparation has become the 
second highest contribution to raw material cost 
after the feedstock itself.127 Combination of lignocel-
lulose-utilization and product formation properties 
in one single microorganism, also called consoli-
dated bioprocess (CBP), might be a potential break-
through. Hydrolyze the cellulose and hemicelluloses 
in biomass and produce a valuable product cur-
rently accomplished in different reactors or different 
organisms, are combined in CBP.128 The key point 
of CBP for biodiesel production is the engineering of 
a microorganism that can efficiently de-polymerize 
biomass polysaccharides to fermentable sugars and 
efficiently convert this mixed-sugar hydrolysate into 
FAEEs (Fig. 5).

Two strategies can be used to develop CBP organ-
isms: (1) engineering naturally cellulolytic microor-
ganisms to improve product-related properties; and 
(2) engineering non-cellulolytic organisms with high 
product yields to become cellulolytic.129 Selection 
of suitable and efficient cellulolytic enzymes is a key 
factor in the process of engineering non-cellulolytic 
organisms with high product yields. Full enzymatic 
hydrolysis of crystalline cellulose usually requires 
synergistic action of three major types of enzymatic 
activity: (1) endoglucanases (EGs) (1,4-β-D-glucan 
4-glucanohydrolases; EC 3.2.1.4); (2) exogluca-
nases, including cellodextrinases (1,4-β-d-glucan 
glucanohydrolases; EC  3.2.1.74), and cellobiohy-
drolases (CBHs) (1,4-β-d‑glucan cellobiohydro-
lases; EC 3.2.1.91); and (3) β-glucosidases (BGLs) 
(β-glucoside glucohydrolases; EC 3.2.1.21).130 
Endoglucanases are active on the amorphous regions 
of cellulose and yield cellobiose and cello-oligosac-
charides as hydrolysis products, while cellobiohydro-
lases are active on the crystalline regions of cellulose and yield 
almost exclusively cellobiose as their main hydrolysis product. 
Furthermore, β-glucosidases convert cellobiose and some cel-
looligosaccharides to glucose and then taken up by organ-
isms. Likewise, the synergistic action of a plethora of enzymes 
is required for the hydrolysis of hemicellulose, another fraction 
contained in the lignocellulosic biomass with high content. 
Over the past decade, a lot of efficient lignocellulose degrading 
enzymes have been exploited and functionally active expressed 
in non-cellulolytic or weak-cellulolytic microorganisms (Table 
1). Directly into ethanol or other fuels from some model cel-
lulosic and hemicellulosic substrates has been achieved in several 
non-cellulolytic microorganisms after the introduction of ligno-
cellulose degrading enzyme genes. For example, introduction of 
cellulase genes enabled the yeast S. cerevisiae123 and the bacterium 
Klebsiella oxytoca131 directly convert phosphoric acid swollen cel-
lulose (PASC) to ethanol without the addition of exogenous cel-
lulase and hemicellulase. E. coli is a popular host for engineering 

Figure 5. Graphic illustration of a lignocellulose conversion to biodiesel in a single 
microbe by consolidated bioprocess (CBP). The enzymatic hydrolysis of the cellulose 
and hemicellulose fractions to fermentable hexoses and pentoses requires the 
production of both cellulases and hemicellulases (dashed lines). The subsequent 
conversion of the hexoses and pentoses to biodiesel initiated by the modifying 
fatty acids pathways, introducing ethanol producing pathway and overexpressing 
acyltransferase. FFA, fatty acid synthesis; WS/DGAT, acyltransferase for fatty acid 
esters synthesis; EtOH, ethanol producing pathway.
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crude glycerol becomes a challenge in low-grade crude glycerol 
fermentation.

Restaurant oil wastes. Restaurant oil wastes, rich in free fatty 
acids, have be utilized to provide fatty acid sources for FAEEs-
based biodiesel production in the report of Wang et al.31 The 
exploration of strategies to utilize restaurant oil wastes for bio-
diesel production offers significant advantages, such as enhanc-
ing the economic viability of biodiesel, not competing with the 
food market and maintaining the health of the environment.142 
However, it should be noted that the FAEEs yielded from the 
restaurant oil wastes is still extremely lower than that from the 
standard medium containing sodium oleate, which indicates that 
much more further investigations are needed before its industrial 
application.

Conclusion

Biodiesel is produced by transesterification of fatty acid sources 
(e.g., TAGs) with short-chain alcohols yielding monoalkyl esters 
of long-chain fatty acids such as FAMEs and FAEEs. To realize 
this process, microorganisms must be developed to have the abil-
ity to produce fatty acids and short-chain alcohols available for 
transesterfication and to possess acyltransferases with a higher 
activity for short-chain alcohols. Although all of these capabili-
ties are involved by known microorganisms, de novo synthesis 

may reduce the enzyme loading required for the industrial pro-
cess in the biomass hydrolysis.134,135 Therefore, even though the 
yields of secreted protein (<0.1 mg enzymes/g solids) in the study 
of Bokinsky et al.133 was low, the E. coli is capable of growing 
on the cellulose and hemicellulose fractions of the ionic liquid-
pretreated plant biomass.

Crude glycerol. The upsurge in biodiesel production has 
resulted in a market surplus of glycerol, a byproduct of the 
chemical transesterification process.14 Glycerol can be used as 
inexpensive and readily available raw material to produce fuels 
and chemicals in some industrial fermentation processes.136 
There have been intensive attempts to identify glycerol assimi-
lation pathway in bacterial or yeast strains.137-140 The possibil-
ity to recycle glycerol, which is the byproduct of FAEEs, for 
FAEEs production was demonstrated in the report of Yu et al.40 
and microbial biodiesel production from glycerol was success-
fully achieved in S. cerevisiae. The application of glycerol for 
biodiesel production was also demonstrated by Elbahloul and 
Steinbuchel34 by the pilot-scale cultivation of E. coli harboring 
a plasmid with ethanol producing enzymes and acyltransferases. 
Besides, crude glycerol contains water, salts and other organic 
materials including residual methanol and free fatty acids and 
each component varies widely in contents.141 Therefore, explo-
ration of microbial strains tolerant to undesirable inhibitory 
components such as salts and organic solvents that present in 

Table 1. Common lignocellulose degrading enzymes expressed in non-cellulolytic or weak-cellulolytic microorganisms

Enzyme or gene Source-species Receiver-species

Cellulose degradation: endoglucanase (EG)

EGI Trichoderma reesei Saccharomyces cerevisiae,143 Yarrowia lipolytica,144 Ashbya gossypii145

EGII T. reesei S. cerevisiae,124 Y. lipolytica,146 Pichia pastoris,147 Kluyveromyces marxianus148

EG(CelE) Clostridium thermocellum S. cerevisiae,149 Escherichia coli150

EG (CelA) C. thermocellum Bacillus subtilis,151 Lactobacillus gasseri,152 Lactobacillus johnsoni152

EG (Cel9A) Thermobifida fusca S. cerevisiae153

EGIII Trichoderma harzianum P. pastoris154

Cellobiohydrolase (CBH)

CBHI T. reesei S. cerevisiae,153 P. pastoris155

CBHII T. reesei S. cerevisiae,156 Y. lipolytica,146 P. pastoris,146 Aspergillus oryzae156

CBHII Magnaporthe oryzae A. oryzae156

CBHI Talaromyces emersonii S. cerevisiae157

CBH (Cel48) Clostridium phytofermentans E. col,158 B. subtilis158

β-Glucosidase (BGL)

BGL1 Saccharomycopsis fibuligera S. cerevisiae149

BGL1 Aspergillus aculeatus S. cerevisiae,148 K. marxianus,147 T. reesei,159 Issatchenkia orientalis160

BGL1 A. oryzae S. cerevisiae125

BGL Penicillium brasilianum A. oryzae161

Hemicellulose degradation:

β-Xylanase(Xyn2) T. reesei E. coli,162 P. pastoris,163 S. cerevisiae164

β-Xylanase (xynA) Penicillium citrinum P. pastoris165

β-Xylosidase T. reesei S. cerevisiae166

β-Mannanase A. aculeatus Y. lipolytica,167 S. cerevisiae,168 Aspergillus niger169

endo-β-1,4-Glucanase A. aculeatus A. oryzae170
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commercial applications. Furthermore, how robust the micro-
organism for a large-scale industrial process is another problem 
should be given adequate consideration.
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of fatty acid ester based biodiesel (FAEEs) has not been found 
in nature microorganisms to date. Experimental evidence and 
fundamental principles of the related pathways support the 
feasibility of de novo biosynthesis of biodiesel by one single 
microorganism after reasonable modification of potential host 
organisms. Strains of E.  coli are found to be the most popu-
lar host for this engineering. However, it is clear that biodiesel 
production in the current engineered strains is still far from 
industrial application. Developing microbes with both higher 
efficiency and capability of costless substrates is urgent in order 
to compete with the fossil fuel. It could be noted many pathways 
would influence the biodiesel synthesis. Overexpression of one 
or several specific enzyme genes may not cause dramatic facili-
tation. Systems metabolic engineering might be more suitable 
for the development of such microbial strains having potential 
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