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Abstract

Driver mutations are somatic mutations that provide growth advantage to tumor cells, while passenger mutations are those
not functionally related to oncogenesis. Distinguishing drivers from passengers is challenging because drivers occur much
less frequently than passengers, they tend to have low prevalence, their functions are multifactorial and not intuitively
obvious. Missense mutations are excellent candidates as drivers, as they occur more frequently and are potentially easier to
identify than other types of mutations. Although several methods have been developed for predicting the functional impact
of missense mutations, only a few have been specifically designed for identifying driver mutations. As more mutations are
being discovered, more accurate predictive models can be developed using machine learning approaches that
systematically characterize the commonality and peculiarity of missense mutations under the background of specific
cancer types. Here, we present a cancer driver annotation (CanDrA) tool that predicts missense driver mutations based on a
set of 95 structural and evolutionary features computed by over 10 functional prediction algorithms such as CHASM, SIFT,
and MutationAssessor. Through feature optimization and supervised training, CanDrA outperforms existing tools in
analyzing the glioblastoma multiforme and ovarian carcinoma data sets in The Cancer Genome Atlas and the Cancer Cell
Line Encyclopedia project.
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Introduction

Cancer is a complex genetic disease. The occurrence and

progression of most cancers can be attributed to accumulated

mutations in the cancer genome [1]. At different stages of

oncogenesis, a group of key mutations, called drivers, significantly

alter the normal cellular system [2,3] and confer growth and

survival advantages to tumor cells [4]. However, due to the

inherent genomic instability present in tumors, driver mutations

occur on the background of a large number of mutations, called

passengers, that are not functionally related to oncogenesis. The

identification of driver mutations is a critical mission of cancer

genomics. A few drivers have been identified and are widely used

as diagnostic and/or prognostic biomarkers, or as drug targets for

cancer treatment [5,6]. Research that interrogate specific driver

mutations and their clinical implications are being widely

conducted for multiple types of cancer [7,8], however, more

efforts are demanded for systematic genome-wide characterization

of driver mutations and their functional implications.

The majority of mutations detected in cancer are point

mutations. When occurring in coding regions of genes, they may

alter protein-coding sequences, affect protein structure and

expression, or disrupt protein-protein interactions [9]. Mutations

that alter amino acid sequences are called non-synonymous

mutations, among which the majority are missense mutations that

substitute amino acid residues. Unlike frame-shift or nonsense

mutations, which usually lead to truncated proteins, the function

of missense mutations is less obvious. Nonetheless, a large number

of missense mutations have been demonstrated as drivers, such as

the BRAF V600E mutation in melanoma [10], and KRAS G12D

and G12V mutations in colorectal cancer [11].

The rarity and low prevalence of driver mutations make them

extremely difficult to predict using conventional statistical methods

that require moderate sample sizes [1,12–14]. Much of the data

sparseness can be attributed to a high degree of genetic

heterogeneity underlying clinically defined cancer types. More-

over, the function of a missense mutation may be dependent on

many other factors that are variable under different conditions,

such as genetic predisposition, presence of other somatic

mutations, cell lineage, and stage of malignancy.

In recent years, multiple computational methods have been

proposed for evaluating the functional impact of missense

mutations. Collectively, these methods have computed more than

90 relevant quantities or features that describe the properties of a

mutation and its associated site from the aspects of (a) evolutionary

conservation, (b) physicochemical properties of the proteins, (c)

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e77945



protein domains, and (d) sequence context. Different methods may

utilize these four types of features individually or in combination.

In particular, MutationAssessor [9] and SIFT [15] use type (a)

features, SNPs3D uses types (a) and (b), CanPredict [16] uses types

(a) and (c), MutationTaster [17] and SNAP [18] use types (a), (b),

and (c), and CHASM [19] and PolyPhen 2 [20] use all four types

of features.

Most of these methods were designed to solve a general genetic

problem, i.e., discriminating deleterious mutations from non-

deleterious ones. However, most of the algorithms do not consider

the specific genetic or disease context in which a mutation occurs.

Although they can be applied to assess somatic missense

mutations, the results clearly lack specificity [13,14,19]. Since

driver mutations are defined under a specific disease context, a

driver mutation prediction method would not be accurate without

taking into consideration disease-specific factors such as cancer

type, disease stage, mutation prevalence, mutation spectrum, and

other clinical characteristics.

Among the published methods, CHASM is the only one that

explicitly considers cancer-type-specific factors [19]. In CHASM,

86 different features from all four feature types are used to

characterize each missense mutation, and the classification models

are trained in a cancer-type-specific fashion using a random forest

algorithm. The training data for a cancer type include a set of

curated driver mutations as positive examples and a nearly equal

number of synthetic passenger mutations (SPMs) as negative

examples.

Although CHASM represents a considerable advance in

predicting driver mutations, a few caveats exist. First, it is not

clear whether the SPMs are sufficient of modelling the broad

spectrum of passenger mutations that occur. Further, recent

evidence has indicated that the occurrence of passenger mutations

is affected by definable factors, e.g., sequence context, replication

timing, and gene expression, that are likely not sufficiently

represented by the set of random SPMs [21,22]. Second, recent

methods have generated new predictive features [9,23–26] that

were not considered in the development of the CHASM

algorithm. Third, it is unclear whether the random forest

algorithm is optimal given the relatively small size of the training

set and the high-dimensionality of the data sets to be analyzed.

Fourth, the large amount of mutation data accumulated from

recent large-scale cancer genome sequencing projects and

community based projects including clinical sequencing have not

been sufficiently integrated into CHASM to improve the

predictive power.

Due to these considerations, we aimed to assess whether more

accurate driver mutation predictions can be achieved by

systematically integrating the large amount of newly available

data and existing algorithms. We started by performing a

comprehensive analysis of mutation data in the COSMIC

database [27], The Cancer Genome Atlas (TCGA), and the

Cancer Cell Line Encyclopedia (CCLE) project [28] and derived

sets of training and test data for supervised model training and

evaluation. We performed a thorough analysis of the existing tools

to compare and select the most effective features. Our efforts

resulted in a new cancer driver annotation tool, CanDrA, that

integrates our curated data and features to compute a driver score

for each possible missense mutation in a specific human cancer

type. We demonstrated that CanDrA achieved better sensitivity

and specificity than other tools in predicting driver mutations in

glioblastoma multiforme (GBM) and ovarian carcinoma (OVC).

CanDrA and the associated datasets for major cancer types (e.g.,

breast, colorectal, malignant melanoma, and squamous cell skin

cancer) are available at http://bioinformatics.mdanderson.org/

main/CanDrA.

Materials and Methods

Data Curation
The stringent set (S). Two missense mutation datasets,

GBM and OVC, were curated from those reported in COSMIC

(V58), TCGA, and the CCLE project. TCGA data contained a

total of 727 mutations from 142 GBM samples and 11,005

mutations from 316 OVC samples [13,14]. The COSMIC data

contained 640 mutations from 351 GBM primary tumor samples

and 237 from 212 OVC primary tumor samples. We defined a

driver mutation as one that was observed in at least two different

samples, from either TCGA or COSMIC. To be stringent, we

excluded recurrent mutations that coincided with other putative

functional mutations such as indels, nonsense mutations, nonstop

mutations, splice site mutations, and translation start site

mutations in the same gene of the same sample. Those overlapping

with dbSNP sites were also excluded. This process resulted in 67

driver mutations for GBM and 61 for OVC, most (92.5% and

80.3%, respectively) of which had been regarded as drivers in

previous studies [19].

We selected passenger mutations from hyper-mutated samples,

which have deficiency in DNA damage repairing and have much

higher fractions of passenger mutations than non-hyper-mutated

samples [14]. Three GBM samples were identified from TCGA,

each with over 55 missense mutations, and two OVC samples

were identified, each with over 130 mutations. A candidate was

excluded if it was located in any cancer gene (as defined by the

COSMIC cancer census or by the CHASM study), or overlapped

with dbSNP. Finally, 95 and 246 mutations were respectively

selected for GBM and OVC. We also curated a second set of

passenger mutations from the CCLE project, which contains

mutations from 27 GBM cell lines and 19 OVC cell lines. After

applying the same criteria, 490 mutations for GBM and 462

mutations for OVC were selected.

In summary, four stringent sets were formed: GBM.S1,

GBM.S2, OVC.S1 and OVC.S2 (Table 1 and Tables S1–S4 in

File S1). These sets were used as independent test sets to measure

CanDrA’s performance against those of other tools.

The expanded set (E). Many mutations occur recurrently in

close proximity (hotspots) in different types of cancer. For example,

the BRAF V600 mutation occurs in papillary thyroid carcinoma,

colorectal cancer, melanoma and non-small-cell lung cancer, as do

BRAF N580S, E585K, D593V, F594L, G595R, L596V, T598I,

Table 1. Datasets used for training and testing CanDrA.

Datasets Cancer Type #Drivers #Passengers Used for

GBM.Ex GBM 1529 (COSMIC) 1259 (COSMIC) Training

GBM.S1 GBM 67 (TCGA+COSMIC) 95 (TCGA) Test

GBM.S2 GBM 67 (TCGA+COSMIC) 490 (CCLE) Test

OVC.Ex OVC 1768 (COSMIC) 8075 (COSMIC) Training

OVC.S1 OVC 61 (TCGA+COSMIC) 246 (TCGA) Test

OVC.S2 OVC 61 (TCGA+COSMIC) 462 (CCLE) Test

Listed are the numbers of driver and passenger mutations for glioblastoma
multiforme (GBM) and ovarian carcinoma (OVC) curated from the Catalogue of
Somatic Mutations in Cancer (COSMIC), The Cancer Genome Atlas (TCGA), and
the Cancer Cell Line Encyclopedia (CCLE).
doi:10.1371/journal.pone.0077945.t001
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V599D, V599E, V599K, V599R, K600E, and A727V mutations.

Most of these mutations are clustered in two hotspot regions: the

glycine-rich P loop of the N lobe and the activation segment and

flanking regions [29]. Many similar hotspot mutations are

observed in TP53, PIK3CA, KRAS, amongst others [30,31]. These

mutations have similar properties and likely have similar functions

in different cancer types. To represent such commonality across

cancer types, we constructed a cancer-type-specific but expanded

set of drivers and passengers using the following empirical rules.

For a given cancer type, we call a missense mutation a driver

mutation if it occurs in a gene mutated in this cancer type and 1) it

is observed in at least 3 primary tumor samples (regardless of

cancer type), or 2) its site intersects at least 4 mutations (including

indels, dinucleotide or trinucleotide mutations), or 3) it is centered

in a 25 bp region that intersects at least 5 mutations in the

COSMIC database. We subtracted driver mutations in set S from

this set to ensure their mutual independence. This process resulted

in 1529 and 1768 putative drivers for GBM and OVC,

respectively.

Passenger mutations of a cancer type were chosen as those that

occur only once in primary tumor samples of this cancer type, not

in any COSMIC cancer census gene, and do not coincide with any

other mutations within a 31-bp window in the entire COSMIC

database. We also subtracted passenger mutations in set S from

this set. This process resulted in 1259 and 8075 passengers for

GBM and OVC, respectively (Table 1).

By combining these putative drivers and passengers for each

cancer type, two expanded datasets were formed: GBM.Ex and

OVC.Ex. They were used as our training sets for feature selection

and supervised training.

Descriptive Features
For each missense mutation, 95 features (Table S5 in File S1)

were acquired from four data portals: CHASM’s SNVBOX [19],

ENSEMBL Variant Effect Predictor [32], Mutation Assessor [9]

and ANNOVAR [33]. Among them are UniProtKB annotations,

evolutionary conservation scores, protein physicochemical prop-

erties, sequence context indices, and functional impact scores

computed by algorithms such as SIFT [15], PolyPhen-2 [20],

CONDEL [25], Mutation Assessor [9], PhyloP [26], GERP++
[24] and LRT [23].

Feature Selection and Evaluation
A small fraction around 6.0% of data was not available from

these data portals. SNVBOX missed about 13.3% data in 29

features because there is no related Uniprot protein domain

information for some mutation sites. ANNOVAR missed around

15% data in features such as Phylop, Gerp++ and LRT scores due

to unknown reasons. To facilitate our investigation, we substituted

the missing features with those of the nearest mutations in the

same gene using a k-nearest neighbor algorithm. Our evaluation

was minimally affected by this operation because our selected test

sets were almost free of missing features.

We evaluated the predictive performance of each feature based

on the Mann–Whitney U test and the area under the curve (AUC)

of the receiver operating characteristic curve. Features with non-

significant p values after Bonferroni correction and AUCs below a

specified threshold were excluded from further analysis; as were a

few features that may introduce dataset (population)-specific biases

(e.g., AACOSMIC). We then assessed feature combinations using

a hybrid feature selection algorithm. First, all possible combina-

tions with fewer than 4 selected features were enumerated and

evaluated based on the average AUCs from 10-fold cross-

validation (repeated 5 times) on the training dataset. Second, the

best feature combination was further expanded using a hill-

climbing search strategy [34], which iteratively included the

remaining features into the current combination. The feature set

that achieved the maximum AUC in cross-validation was selected

as the optimal set.

Classification Results and Scores
We use a weighted support vector machine (SVM) [35] as our

classifier in order to address the imbalanced numbers of drivers

and passengers in the training set. CanDrA classifies a mutation

into 3 categories: driver, no-call, and passenger, based on scores

computed by the SVM (Figure S1 in File S1) [36]. According to

the score distributions, a mutation is classified as a driver if its

score is greater than the 90th percentile of those of the passenger

mutations in the training set, as a passenger if its score is less than

the 10th percentile of those of the driver mutations, or as a no-call

otherwise. In addition, CanDrA computes a confidence score for

each prediction, defined as the fraction of mutations that have

more extreme scores in the same class in the training data (Figure

S1 in File S1). For example, if a mutation is classified as a driver

and its score is greater than those of 95% of the drivers in the

training set, its confidence score is equal to 0.05. These confidence

scores are thus de facto significance P values estimated from the

empirical class-wise score distribution in the training dataset.

Results

Feature Selection and Overall Classification Results
For GBM, we identified 28 features that individually passed the

AUC (|AUC-0.5|.0.08) and Mann-Whitney U test (P,0.05 with

Bonferroni correction) in the training dataset. These cut-offs were

selected to limit the computational burden in the following feature

selection. We further identified 3 core features (CONDEL,

UniprotDOM_PostModEnz, ExonSnpDensity) and an optimal

set of 21 features through our combinatorial feature selection

procedure (Materials and Methods, Figure 1, Table S6 in File S1).

Among the 3 core features, CONDEL [25], a method that

combines five features from SIFT, PolyPhen-2, MutationAssessor

and other sources based on a set of 20,000 non-synonymous

germline single nucleotide variants (SNVs) was shown to be the

single best predictor on the GBM.Ex dataset, with an AUC equal

to 0.703. UniprotDOM_PostModEnz (computed by SNVBOX)

indicates whether a mutation is located in any enzymatic domain

responsible for protein post-translational modification. ExonSnp-

Density indicates whether a mutation occurs in a variant-prone

exon. Inclusion of these two features further improved the AUC to

0.832 on the GBM.Ex set. This result demonstrated that although

general-purpose deleterious SNV prediction tools are applicable to

driver prediction, their accuracy could be further improved by

including features that are descriptive of the mutational back-

ground.

We trained CanDrA using the optimal set of 21 features, and

evaluated the performance on the two independent validation

datasets (GBM.S1 and GBM.S2). CanDrA achieved AUCs of

0.911 and 0.941, respectively, which compared favorably with

those obtained from either CHASM (0.890 and 0.923, respective-

ly) or MutationTastor (0.892 and 0.909, respectively; Table 2).

For OVC, we identified 30 features that individually passed the

AUC (|AUC-0.5|.0.05) and Mann-Whitney U test (P,0.05 with

Bonferroni correction) in the training set. We further identified 3

core features (MGAEntropy, UniprotREGIONS, UniprotDOM_

PostModEnz) and an optimal set of 22 features through our

combinatorial feature selection procedure (Materials and Meth-

ods, Figure 2, Table S7 in File S1). Among the 3 core features,

CanDrA: A Cancer Driver Mutation Annotation Tool
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MGAEntropy was the strongest predictor on the OVC.Ex set with

an AUC equal to 0.745. It indicates whether a mutation is located

in an evolutionarily conserved genomic region and calculates the

Shannon entropy from the alignment of homologous proteins in

46 different species [37,38]. UniprotREGIONS describes func-

tional regions related to protein-protein interaction, biological

process regulation, etc. UniprotDOM_PostModEnz for OVC was

also selected in the GBM case. These 3 features in combination

increased AUCs by .0.06 on the training dataset and .0.2 on the

validation datasets.

We trained CanDrA using the 22 features and evaluated its

performance on the two independent validation datasets (OVC.S1

and OVC.S2). On both sets, CanDrA achieved AUCs of 0.953,

which again compared favorably to those of either CHASM (0.936

and 0.940) or MutationTastor (0.910 on both test sets; Table 2).

Correlation between CanDrA Scores and Mutation
Prevalence

Mutation prevalence, i.e., the frequency of a mutation in a

specific cancer type, is a robust indicator of driver functionalities

[5,13,14,39–42]. If CanDrA is more accurate than other methods,

its scores should demonstrate stronger correlation with the

mutation prevalence. To test this hypothesis, we created 4 datasets

from several most frequently mutated cancer genes: TP53 and

PTEN in GBM, and TP53 and KRAS in OVC using data from

TCGA and COSMIC (Tables S8–S9 in File S1). We compared

the Pearson correlation coefficients between the observed muta-

tion prevalence and the mutation scores of 12 algorithms, in each

of the 4 datasets. CanDrA performed better in 47/48 of the

comparisons, performing worse only for the one with CHASM

using the KRAS mutations in OVC (Figure 3). This result clearly

indicates the improvement that CanDrA can achieve over the

existing methods.

Predicting Rare Driver Mutations
Of great interest is CanDrA’s capability in predicting drivers

that have very low prevalence (e.g., occur only once in a non-

hotspot region). The discovery of so-called rare (or tail) driver

mutations is a major challenge in current cancer genomics studies

but would be of great utility both theoretically and in patient

management. Performing a precise assessment of this question

requires functional validation data that are currently unavailable

for most genes. As a workaround, we used the ratio of driver

mutations in known cancer genes as our metric of interest,

grounded by the understanding that cancer genes are more likely

than non-cancer genes to carry driver mutations [13,14].

Specifically, we tested whether rare driver mutations predicted

by CanDrA are enriched in the COSMIC census cancer genes.

We identified rare driver mutations from the COSMIC GBM and

OVC mutations that are reported only once, and which have no

other mutations in a vicinity of 3 base pairs and were not used as

Figure 1. Feature optimization for GBM. Plotted are the areas under the curves (AUCs) of the receiver operator characteristics
acquired through our incremental feature selection process. Three sets of AUCs are computed from the 10-fold cross-validation (CV) of the
training set GBM.Ex (dotted line) and the independent validation (IV) of 2 test sets, GBM.S1 and GBM.S2 (solid and dashed line). On the x-axis are
features that are incrementally selected. The dashed box marks the peaks of the cross-validation AUC, which corresponds to the optimal feature set
used for CanDrA.
doi:10.1371/journal.pone.0077945.g001

Table 2. Comparisons among 3 tools: CHASM,
MutationTastor, and CanDrA.

CHASM MutationTastor CanDrA

Datasets AUC Recall AUC Recall AUC Recall

GBM.S1 0.890 49/67 0.892 56/67 0.911 56/67

GBM.S2 0.923 44/67 0.909 48/67 0.941 48/67

OVC.S1 0.936 50/61 0.910 46/61 0.953 50/61

OVC.S2 0.940 50/61 0.910 40/61 0.953 47/61

Two metrics are compared: 1) The area under the receiver operator
characteristics curve (AUC) for classifying drivers and passengers and 2) the
number of drivers predicted by each of the tools vs. the total number of drivers
(recall) in each of the 4 test datasets.
doi:10.1371/journal.pone.0077945.t002

CanDrA: A Cancer Driver Mutation Annotation Tool
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Figure 2. Feature optimization for OVC. Plotted are the areas under the curves (AUCs) of the receiver operator characteristics
acquired through our incremental feature selection process. Three sets of AUCs are computed from the 10-fold cross-validation (CV) of the
training set OVC.Ex (dotted line) and the independent validation (IV) of 2 test sets, OVC.S1 and OVC.S2 (solid and dashed line). On the x-axis are
features that are incrementally selected. The dashed box marks the peaks of the cross-validation AUC, which corresponds to the optimal feature set
used for CanDrA.
doi:10.1371/journal.pone.0077945.g002

Figure 3. Correlation between mutation score and prevalence. Twelve algorithms (x-axis) were compared using 4 data sets: (a) GBM
mutations in TP53, (b) GBM mutations in PTEN, (c) OVC mutations in TP53, and (d) OVC mutations in KRAS.
doi:10.1371/journal.pone.0077945.g003

CanDrA: A Cancer Driver Mutation Annotation Tool
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drivers in our training and test sets (Table S10 in File S1). In the 8

known GBM-related genes (ATM, EGFR, MDM2, MDM4, NF1,

PDGFRA, PIK3CA and ROS1), there were 36 GBM mutations, 14

(38%) of which were predicted as drivers by CanDrA. This

percentage was significantly higher than the average (13.9%) of the

entire set of 1384 mutated genes (p = 3.3961025, hyper-geometric

test). It was also higher than those predicted by other algorithms,

except for the variant specificity score of MutationAssessor, which

predicted 15/36 (41.7%) drivers (Table S11 in File S1). Among 15

known OVC-related genes (AKT1, AKT2, ARID1A, BRCA1,

BRCA2, CCNE1, CDK12, ERBB2, MLH1, MSH2, MSH6, PIK3R1,

PMS2, PPP2R1A and STK11), there were 39 OVC mutations, 22

(56.4%) of which were predicted as drivers by CanDrA. This ratio

was significantly higher than the average (20.8%) of the entire set

of 5889 mutated genes (p = 2.2761027, hyper-geometric test). It

was also higher than those predicted by other algorithms,

including the 19/39 (48%) predicted by CHASM (Table S11 in

File S1).

Discriminating Drivers for Different Cancer Types
A mutation may play different roles in different cancer types

(e.g., BRAF V600 in colon cancer and melanoma). We examined

whether CanDrA can correctly indicate such cancer-type speci-

ficity. By combining the 67 and 61 driver mutations from the

respective GBM.S1 and the OVC.S1 datasets, we obtained a total

of 115 mutations, 41 of which were unique in GBM and 40 in

OVC (Table S12 in File S1). For each of the 115 mutations, we

computed two scores using CanDrA’s GBM and OVC models,

respectively. We observed that mutations found in a specific

cancer type scored significantly higher using cancer-type matched

models than non-matched models (p = 0.0013 for GBM and

p = 0.0021 for OVC, by Mann-Whitney U test). In addition,

mutations unique to a cancer type achieved significantly higher

scores using the matched models (p = 0.0029 for the mutations

unique to GBM and p = 0.0138 for the mutations unique to OVC,

by Mann-Whitney U test). In all cases, CanDrA achieved more

significant discrimination than CHASM (Table 3). Many muta-

tions were associated with different functions in these two cancer

types (Table S12 in File S1). For example, the KRAS G12V

mutation was predicted as a driver in OVC, but as a no-call in

GBM. And the NCOA1 R562G mutation was predicted as a driver

in OVC, but as a passenger in GBM.

Comparison Using Real Data versus Synthetic Data
We suspected that CanDrA’s better performance over that of

CHASM could be partially attributed to its use of real passenger

mutations (RPMs) instead of SPMs in training the models. We

believed that although SPMs can reflect certain mutagenic

characteristics of a cancer type (e.g., exposure to environmental

mutagens), they are likely insufficient in representing other factors

such as evolutionary conservation, sequence context, and protein

domains. To gain deeper insight, we performed two experiments.

First, we compared the RPMs with the SPMs in terms of their

variant specificity scores (VSC), functional impact scores (FIS) and

variant conservation scores (VCS) computed by MutationAssessor.

These scores, especially VSC, were among the most predictive

features in our stringent validation (Figures S2–S3 in File S1). The

distributions of these scores indicated that the RPMs were

significantly more deleterious than SPMs for both GBM and

OVC, and therefore are likely better examples for distinguishing

real drivers from passengers. Using VSC, the differences among

the distributions of RPMs, SPMs and drivers were shown in

Figure 4. Similarly significant results were observed using VCS

and FIS. Second, we trained CHASM to classify identical number

of RPMs and SPMs from the same set of drivers. CHASM

performed considerably worse with RPMs (AUC = 0.907 for GBM

and 0.938 for OVC, on average) than with SPMs (AUC = 0.943

for GBM and 0.949 for OVC).

Discussion

Our investigation resulted in a new software tool, CanDrA,

which was demonstrably more accurate than other tools in

predicting cancer-type-specific driver mutations. We have pre-

computed CanDrA scores for almost all possible (around 77

million) missense mutations across whole genome in several

major cancer types and enabled users to perform very efficient

predictions using desktop computers or servers. Due to the vast

amount of missense mutations and the low throughput of

existing functional experiments, even small improvements in

prediction accuracy can lead to dramatically better efficiency

and cost savings in validating driver mutations.

One important distinction between CanDrA and other

methods is the inclusion of a very large set (95) of features,

collected from almost all available methods. Although this

ensures the comprehensiveness of CanDrA, it also increases the

difficulty of deriving an optimal model due to the ‘‘curse of

dimensionality’’ (COD), i.e., it requires exponentially more

samples to train a robust model with increased number of

features [43]. The SVM method used by CanDrA is more

robust against the COD than other classifiers, including the

random forest algorithm used by CHASM [44]. Moreover, the

two-step feature selection approach that we applied effectively

alleviated COD while maintaining the interpretability of the

results, which makes it more advantageous than other exhaus-

tive, filter-based, or transformational methods [45].

Our feature selection results shed some light on the similarity

and dissimilarity between GBM and OVC that may be driven

by different mutagenic mechanisms. For example, high grade

Table 3. Comparison of cancer type specificity between CHASM and CanDrA.

P value by Mann-Whitney U Test

Mutation score comparisons between CHASM CanDrA

75 GBM and 40 non-GBM mutations using GBM models 0.6093 0.0021

74 OVC and 41 non-OVC mutations using OVC models 0.0350 0.0013

GBM model and OVC model on 41 GBM-specific mutations 0.9114 0.0138

GBM model and OVC model on 40 OVC-specific mutations 0.8323 0.0029

Each row represents a comparison of 2 groups of scores computed from the mutations and the models listed in column 1.
doi:10.1371/journal.pone.0077945.t003
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serous ovarian cancer has almost universal mutation of TP53

and approximately 50% have aberrations predicted to alter

DNA repair through homologous recombination, as compared

to GBM that has much higher frequency of aberrations in

pathways related to cell signalling. For both cancer types, we

found that a mutation is more likely to be a driver if it occurs

on residues that are evolutionary conserved, have stiff

backbones, or have less solvent accessibility; although more

drivers occur in evolutionarily conserved residues in OVC than

in GBM (Figures S2–S3 in File S1). On the other hand, features

that represent protein domain knowledge, such as Uniprot-

DOM_PostModEnz and UniprotREGIONS, seem to convey

more specific information on cancer type. In our stringent sets,

a considerable portion (50%) of GBM drivers are located in

protein enzymatic domains responsible for post-translational

modification (indicated by UniprotDOM_PostModEnz), con-

trasted by around 7% of GBM passengers, 5% of OVC drivers,

and 6% of OVC passengers. Around 70% of OVC drivers are

located in protein domains that may mediate protein-protein

interactions or other biological processes (indicated by Unipro-

tREGIONS), contrasted by around 5% of OVC passengers,

24% of GBM drivers, and 6.3% of GBM passengers. These

results underscore the importance of performing cancer-type-

specific feature selection and modeling in achieving accuracy.

Constructing a representative training dataset is of ultimate

importance to approaches that depend on supervised training.

For this reason, we performed an exhaustive curation of cancer

mutation data from COSMIC, TCGA, and the CCLE project

and defined putative drivers and passengers based on their

observed frequency. The low prevalence of driver mutations

and the relatively small number of samples in a single cancer

type currently available has made it difficult to derive sufficient

numbers of examples for supervised training. We alleviated this

problem by utilizing data from other cancer types, as motivated

by CHASM and the knowledge that many driver mutations

occur in more than one type of cancer [46–49]. It is possible

that such expanded data curation processes may reduce cancer

type specificity, which is difficult to quantify without having

sufficient functional validation data. A similar argument may

apply to our selection of passenger mutations, which was based

on mutation prevalence and existing knowledge of cancer genes.

For some cancer types, such as melanoma, the mutation rate is

so high that it may be inaccurate to define drivers and

passengers based only on prevalence. Despite these potential

pitfalls, the consistency between the cross-validation and the

independent validation results and the superior performance of

CanDrA over other methods suggest that our strategy of

constructing the training dataset is beneficial overall. Clearly, as

more functionally validated driver mutation data become

available from large-scale functional assays such as those in

the Cancer Target Discovery and Development (CTD2)

Network, we will be able to refine our training set and further

improve the accuracy of CanDrA.

Supporting Information

File S1 Supplementary Tables and Figures. Figure S1.
Definition of CanDrA score, category and significance. Figure
S2. Evaluation of single descriptors by ROC AUC on GBM.S1

and GBM.S2. Shown are descriptors with |AUC-0.5|.0.1 and P

value (Bonferroni corrected) ,0.05. Figure S3. Evaluation of

single descriptors by ROC AUC on OVC.S1 and OVC.S2.

Shown are descriptors with |AUC-0.5|.0.1 and P value

(Bonferroni corrected) ,0.05. Table S1. Missense mutations in

set GBM.S1. Table S2. Missense mutations in set GBM.S2.

Table S3. Missense mutations in set OVC.S1. Table S4.
Missense mutations in set OVC.S2. Table S5. Ninety-five (95)

features involved in CanDrA modeling. Table S6. Feature

combination selected for GBM in CanDrA. Table S7. Feature

combination selected for OVC in CanDrA. Table S8. GBM

missense mutations for testing correlation between CanDrA scores

and mutation prevalence. Table S9. OVC missense mutations for

testing correlation between CanDrA scores and mutation

prevalence. Table S10. Rare missense mutations from GBM

and OVC related genes. Table S11. Comparison of algorithms

for predicting rare driver mutations. Table S12. Missense

mutations used for evaluating CanDrA and CHASM in predicting

cancer-type-specific drivers.

(XLS)

Acknowledgments

We thank Drs. Li Zhang and Kosuke Yoshihara from the Department of

Bioinformatics and Computational Biology, The University of Texas MD

Anderson Cancer Center, for helpful discussions. We thank Ms. LeeAnn

Figure 4. Comparison between synthetic passenger mutations (PMs) and real PMs. Plotted are the Mutation Assessor variant specificity
scores of sets of synthetic PMs (generated by CHASM), CCLE PMs, TCGA PMs and driver mutations from the 4 test sets in Table 1, for GBM (a) and OVC
(b), respectively. Significant differences (Mann-Whitney U test) between two score distributions are indicated with P values reported.
doi:10.1371/journal.pone.0077945.g004

CanDrA: A Cancer Driver Mutation Annotation Tool

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e77945



Chastain from the University of Texas MD Anderson Cancer Center for

proofreading the manuscript.
Author Contributions

Conceived and designed the experiments: KC HL FM GM. Analyzed the

data: YM HC KC. Contributed reagents/materials/analysis tools: YM HC

KC. Wrote the paper: YM HL FM GM KC.

References

1. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, et al. (2010) Accumulation of
driver and passenger mutations during tumor progression. Proc Natl Acad

Sci U S A 107: 18545–18550.
2. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis.

Cell 61: 759–767.

3. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, et al.
(1982) Mechanism of activation of a human oncogene. Nature 300: 143–149.

4. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, et al. (2007)
Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158.

5. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, et al. (2012) A

landscape of driver mutations in melanoma. Cell 150: 251–263.
6. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, et al. (2002) Mutations of

the BRAF gene in human cancer. Nature 417: 949–954.
7. Tao Y, Ruan J, Yeh SH, Lu X, Wang Y, et al. (2011) Rapid growth of a

hepatocellular carcinoma and the driving mutations revealed by cell-population
genetic analysis of whole-genome data. Proc Natl Acad Sci U S A 108: 12042–

12047.

8. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, et al. (2012)
Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric

glioblastoma. Nature 482: 226–231.
9. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein

mutations: application to cancer genomics. Nucleic Acids Res 39: e118.

10. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, et al. (2011)
Improved survival with vemurafenib in melanoma with BRAF V600E mutation.

N Engl J Med 364: 2507–2516.
11. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, et al.

(2008) K-ras mutations and benefit from cetuximab in advanced colorectal
cancer. N Engl J Med 359: 1757–1765.

12. Rubin AF, Green P (2009) Mutation patterns in cancer genomes. Proceedings of

the National Academy of Sciences of the United States of America, 106, 21766–
21770.

13. TCGA (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:
609–615.

14. TCGA (2008) Comprehensive genomic characterization defines human

glioblastoma genes and core pathways. Nature 455: 1061–1068.
15. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect

protein function. Nucleic Acids Res 31: 3812–3814.
16. Kaminker JS, Zhang Y, Watanabe C, Zhang Z (2007) CanPredict: a

computational tool for predicting cancer-associated missense mutations. Nucleic
Acids Res 35: W595–598.

17. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster

evaluates disease-causing potential of sequence alterations. Nat Methods 7: 575–
576.

18. Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous
polymorphisms on function. Nucleic Acids Res 35: 3823–3835.

19. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, et al. (2009) Cancer-

specific high-throughput annotation of somatic mutations: computational
prediction of driver missense mutations. Cancer Res 69: 6660–6667.

20. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010)
A method and server for predicting damaging missense mutations. Nat Methods

7: 248–249.

21. De S, Michor F (2011) DNA replication timing and long-range DNA
interactions predict mutational landscapes of cancer genomes. Nat Biotechnol

29: 1103–1108.
22. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades

of progress and surprises. Nature reviews Molecular cell biology 9: 958–970.
23. Chun S, Fay JC (2009) Identification of deleterious mutations within three

human genomes. Genome Res 19: 1553–1561.

24. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, et al. (2010)
Identifying a high fraction of the human genome to be under selective constraint

using GERP++. PLoS Comput Biol 6: e1001025.
25. Gonzalez-Perez A, Lopez-Bigas N (2011) Improving the assessment of the

outcome of nonsynonymous SNVs with a consensus deleteriousness score,

Condel. Am J Hum Genet 88: 440–449.

26. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of

nonneutral substitution rates on mammalian phylogenies. Genome Res 20: 110–

121.

27. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC:

mining complete cancer genomes in the Catalogue of Somatic Mutations in

Cancer. Nucleic Acids Res 39: D945–950.

28. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, et al. (2012)

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer

drug sensitivity. Nature 483: 603–607.

29. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, et al. (2004)

Mechanism of activation of the RAF-ERK signaling pathway by oncogenic

mutations of B-RAF. Cell 116: 855–867.

30. Bullock AN, Fersht AR (2001) Rescuing the function of mutant p53. Nature

reviews Cancer 1: 68–76.

31. Smith G, Bounds R, Wolf H, Steele RJ, Carey FA, et al. (2010) Activating K-Ras

mutations outwith ’hotspot’ codons in sporadic colorectal tumours - implications

for personalised cancer medicine. Br J Cancer 102: 693–703.

32. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, et al. (2010) Deriving the

consequences of genomic variants with the Ensembl API and SNP Effect

Predictor. Bioinformatics 26: 2069–2070.

33. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of

genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:

e164.

34. Richard OD, Peter EH, David GS (2000) Pattern Classification (2nd Edition):

Wiley-Interscience.

35. Lin C-F, Wang S-D (2002) Fuzzy support vector machines. IEEE Transactions

on Neural Networks 13: 464–471.

36. Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods: Cambridge University

Press.

37. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.

38. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The

human genome browser at UCSC. Genome Res 12: 996–1006.

39. Kris M, Johnson B, Kwiatkowski D, Iafrate A, Wistuba I, et al. (2011)

Identification of driver mutations in tumor specimens from 1,000 patients with

lung adenocarcinoma: The NCI’s Lung Cancer Mutation Consortium (LCMC).

Journal of Clinical Oncology 29: (suppl: abstr CRA7506).

40. TCGA (2012) Comprehensive molecular characterization of human colon and

rectal cancer. Nature 487: 330–337.

41. TCGA (2012) Comprehensive molecular portraits of human breast tumours.

Nature 490: 61–70.

42. TCGA (2012) Comprehensive genomic characterization of squamous cell lung

cancers. Nature 489: 519–525.

43. Hughes GF (1968) On the mean accuracy of statistical pattern recognizers. IEEE

Transactions on Information Theory: 55–63.

44. Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of

random forests and support vector machines for microarray-based cancer

classification. BMC Bioinformatics 9: 319.

45. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in

bioinformatics. Bioinformatics 23: 2507–2517.

46. Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 Tumor

Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis.

Genes Cancer 2: 466–474.

47. Pratilas CA, Xing F, Solit DB (2011) Targeting Oncogenic BRAF in Human

Cancer. Curr Top Microbiol Immunol.

48. Karakas B, Bachman KE, Park BH (2006) Mutation of the PIK3CA oncogene

in human cancers. Br J Cancer 94: 455–459.

49. Fernandez-Medarde A, Santos E (2011) Ras in cancer and developmental

diseases. Genes Cancer 2: 344–358.

CanDrA: A Cancer Driver Mutation Annotation Tool

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e77945


