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Abstract

Deviation from multiplicativity of genetic risk factors is biologically plausible and might explain why Genome-wide
association studies (GWAS) so far could unravel only a portion of disease heritability. Still, evidence for SNP-SNP epistasis has
rarely been reported, suggesting that 2-SNP models are overly simplistic. In this context, it was recently proposed that the
genetic architecture of complex diseases could follow limiting pathway models. These models are defined by a critical risk
allele load and imply multiple high-dimensional interactions. Here, we present a computationally efficient one-degree-of-
freedom ‘‘supra-multiplicativity-test’’ (SMT) for SNP sets of size 2 to 500 that is designed to detect risk alleles whose joint
effect is fortified when they occur together in the same individual. Via a simulation study we show that the SMT is powerful
in the presence of threshold models, even when only about 30–45% of the model SNPs are available. In addition, we
demonstrate that the SMT outperforms standard interaction analysis under recessive models involving just a few SNPs. We
apply our test to 10 consensus Alzheimer’s disease (AD) susceptibility SNPs that were previously identified by GWAS and
obtain evidence for supra-multiplicativity (p~0:008) that is not attributable to either two-way or three-way interaction.
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Introduction

Despite of thousands of confirmed disease susceptibility variants

[1], the findings from Genome-wide association studies (GWAS) so

far explain only a portion of the heritability of complex diseases

[2]. Multi-SNP approaches like interaction and pathway analysis

were proposed [3] to detect the still unexplained portion of genetic

disease risk. While Genome-wide interaction analysis has become

computationally feasible [4,5], by now only few, if any, replicable

interactions have been found. In order to explain the phenomenon

of missing evidence for interaction, Zuk et al. [6] suggested that

common diseases may follow so-called limiting pathway liability

models (LPLMs). A LPLM is defined by multiple risk factors which

imply a risk threshold. Individuals with a risk allele load above the

threshold have a strongly increased disease risk, while a baseline

risk applies below the threshold. LPLMs can be viewed as a special

case of the larger class of liability models [7,8] which allow that the

risk contribution of the involved factors may vary. In addition, the

LPLMs focus on a single pathway that is under polygenic

influence. In contrast to that, Li et al. [8] describe two sources

of liability to depression, namely genetic liability for stress

sensitivity mediating depression, and genetic liability for depres-

sion in general. Both sources are shown to be under polygenic

control. A key feature of these models and the simpler LPLMs is

that they imply epistasis that goes beyond two-way interaction.

Further important classes of more complex high-dimensional

models have been discussed in [9].

Although pointed out previously [10], it is worthwhile to recall

that diverging definitions and interpretation of the terms

‘‘interaction’’ or ‘‘epistasis’’ in the literature often lead to

confusion. The topic is intrinsically difficult, since the statistical

definition of interaction is scale-dependent [11]. In this paper, as

in the majority of statistical publications on the topic, we interpret

interaction as deviation from multiplicative relative risks, which

corresponds to deviation from additivity on the logarithmic scale

used in logistic regression models. This definition is the

appropriate definition for rare diseases [12] and will also prove

to be appropriate in the settings we are going to investigate.

The risk allele threshold models proposed by Zuk et al. [6] lead

to marginal effects that are comparable with effect sizes observed

in GWAS studies and imply both low and high-dimensional

interactions. However, pairwise interaction, although present, is

typically so small that it would be detectable only with sample of

several hundreds of thousands of individuals. In this sense, LPLMs

would be consistent with the expected importance of genetic

interaction [10,13,14] on the hand and lacking statistical evidence

for its presence on the other hand.
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The search for deviation from multiplicativity in all medium-

sized SNP sub sets of a GWAS panel is clearly unfeasible and not a

realistic strategy in the coming years. However, it is an important

research question how to decide whether a given set of SNPs

displays ‘‘supra-multiplicativity’’ of allelic risks. In this paper, we

present a powerful one degree of freedom (d.f.) regression test for

deviation from multiplicativity which simultaneously addresses

interactions of all orders and which is particularly powerful in the

presence of threshold models.

Results

Empirical Levels
Table 1 shows results from the simulations under the model

with marginal effects, but no interaction effects of any kind. Under

all scenarios, the empirical levels are slightly lower than the

nominal level. This phenomenon is caused by the application of a

Bonferroni-correction to not completely independent test statistics.

The conservativeness is significant for a~0:05 and all SNP sizes,

as well as for a~0:005 and for SNP sets with less than 30 SNPs.

However, the observed conservativeness is rather small in size.

The strongest difference we observe is an empirical level of 0.042

at a~0:05 for 40 SNPs. Therefore, we conclude that the

application of the Bonferroni-correction is sufficient for practical

purposes. The results of the power will support this claim.

In table 2, ‘‘nominal levels’’ or, depending on the perspective,

power levels for the non-multiplicative models A and B are shown.

Model A involves non-zero dominance effects and model B has

several pairwise interactions. In other words, classic logistic

regression test for dominance deviation or two-way interaction

would be the method of choice. Under both models, the SMT

shows a measurable excess of the nominal level, i.e., already 1-way

interactions ( = dominance effects) and two-way interactions

produce small signals. The level of excess of the nominal level is

very small, in particular under scenario A. Under scenario B the

excess is slightly more substantial, at a nominal a of 0.005 the

empirical level is 0.021. The SMT will typically be applied to

detect higher-order interactions in which case adjustment for a

priori known or data-derived dominance or interactions terms is

warranted. When such terms are added as additional covariate

parameters, the excess of the nominal level disappears (table 2). In

other words, adjustment for significant interaction terms is possible

and should be applied in order to investigate which terms drive the

significance of a successful SMT application.

Power of Single-marker Analysis and Conventional
Interaction Analysis

Table 3 and table 4 show the power of conventional one-SNP-

at-a-time and pairwise interaction analysis in the presence of

different LPLMs. Let us first consider the penetrance value

fT~0:7. Such a penetrance might be considered to be unusually

high, but leads to allele relative risks no larger than 1.4.

Consistently, power for single-marker analysis in table 3 is on a

level that is reasonable given a sample size of 3000 cases and 3000

controls. With 50 SNPs, there is 62% power to detect at least one

SNP at the Genome-wide level of 5|10{8. Power increases with

decreasing size of the SNP set. This is not too surprising, since in

our set-up we kept the portion of individuals above the liability

threshold constant. As a consequence, the marginal effects become

larger when fewer SNPs are part of the model. With fT~0:5,

power of single-marker analysis is low for more than 30 SNPs and

at fT~0:3, only under the 10-SNP model some power is left.

However, it has to be emphasized that much higher penetrances

fT have been suggested [6] and that we included the lower fT

values for the purpose of completeness.

Power for pairwise interaction is typically absent (table 4), with

the exception of the 10 SNP model and to some extent the 20 SNP

model for fT§0:5. Even under the 10-SNP model interaction can

be detected only at a significance level of a~0:05=45, i.e., under

the assumption that the 10 SNPs of the model are known a priori

and that only these SNPs are tested for interaction. In a Genome-

wide search it is impossible to detect any of the interactions at the

experiment-wide significance level of a~0:05|10{13. In sum-

mary, our LPLMs are consistent with the models proposed by Zuk

et al. [6] and also consistent with the results of the last years of

GWAS analysis: the LPLMs imply some detectable marginal

effects, but pairwise interaction effects are not identifiable with the

given sample size.

Table 1. Empirical a-levels for supra-multiplicativity test
(SMT)a.

Number of SNPs

ab 10 20 30 40 50

0.05 0.044* 0.045* 0.046* 0.042* 0.045*

0.005 0.0043* 0.0043* 0.0045* 0.0047 0.0049

0.0005 0.00048 0.00043 0.00043 0.00046 0.00045

aUnder a model with multiplicative SNP effects, without interaction effects.
bNominal significance level.
*indicates significant deviation from the nominal level.
doi:10.1371/journal.pone.0078038.t001

Table 2. Empirical a-levels for SMTa.

ab ModelA ModelB

0.05 0.048/0.0047 0.123*/0.047

0.005 0.008*/0.004 0.021*/0.0045

0.0005 0.001/0.0003 0.006*/0.0004

aUnder models with SNP dominance (model A) or pairwise interaction effects
(model B), with/without dominance and interaction covariates.
bNominal significance level.
*indicates significant deviation from the nominal level.
doi:10.1371/journal.pone.0078038.t002

Table 3. Power valuesa for single-marker analysis.

Number of SNPs

fT
b 10 20 30 40 50

0.1 0.03 0.00 0.00 0.00 0.00

0.3 0.79 0.00 0.00 0.00 0.00

0.5 0.99 0.52 0.24 0.25 0.09

0.7 0.99 0.99 0.91 0.89 0.62

aPower to detect at least one SNP at a~5|10{8 .
bPenetrance for individuals above the allele load threshold.
doi:10.1371/journal.pone.0078038.t003

A One D.F. Test for Supra-Multiplicativity
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Power of SMT
Figures 1, 2, 3, and 4 show power levels of the SMT in the

presence of LPLMs which follow the specifications by Zuk et al.

[6]. We start with the description of the power curve for fT~0:7
(figure 1). As expected, power increases with the percentage of

model SNPs that can be included. In order to reach a power of

80%, only about 35% of the risk SNPs have to be known. Here,

the required portion is smaller for the models with more SNPs, but

the effects on the power curves depends only moderately on the

number of SNPs in the model. The figure also shows, that below a

portion of 20% of known SNPs there is typically no power to

detect an involvement in a liability model.

When fT is reduced to 0.5 (figure 2), the portion of required

SNPs increases as expected. However, a power level of 80% can

still be reached also when only about 35% to 55% of the involved

SNPs are known. In addition, all models have 100% power when

more than 60% of the SNPs are included.

When fT is lowered to 0.3 (figure 3), power drops markedly. As

mentioned before, fT~0:3 is a rather small penetrance value for a

liability threshold model. We included this model for completeness

and in order to show limits of our approach. For 80% power, now

between 60% to 95% of the SNPs have to be known a priori. It

seems unlikely that such a high portion of disease SNPs is known

in advance, at least at the current state of research. For higher

values of fT , say fT§0:5, is more reasonable to assume that the

required portion of SNPs is known a priori. Finally, at fT~0:1
(figure 4), power vanishes completely, except for the 10-SNP

model. This penetrance value, however, is so small that also single-

marker analysis has no power, cf. table 3. In other words, hardly

any method will allow to to detect association with the sample size

investigated here.

In figure 5 the impact of incomplete tagging of the true causal

variants (r2~0:80 for all SNPs) is exemplified for the 30-SNP

LPLM (fT~0:70). The critical allele load risk threshold under this

model is k?~38. Under perfect tagging (blue curve, r2~1:00), the

regression estimates (pk) for ‘‘supra-multiplicativity’’ grow along

with the allele load k and rise to a sharp maximum at k~38 that

coincides with the simulated parameter. Under imperfect tagging

(red curve), the regression estimates pk have a smaller range,

which reflects the overall reduced power to detect supra-multi-

plicativity, c.f. also the power curve under incomplete tagging in

figure 6. On the other hand, the curve displays a similar behavior

as before, it rises along with k to a maximum, now at k~39. In

other words, the true maximum is missed, but the peak occurs very

close to the simulated parameter. We concluded that the SMT

works well also when the true causal SNPs are only captured by

variants in LD.

Figure 6 contrasts the power of the SMT under the 30-SNP

LPLM (blue curve) to the modified LPLM, which allows variation

of individual SNP risks (red curve). A slightly higher portion of

known SNPs is now required to reach a given power level. The

number of required SNPs increases by two on average. The SNP

effects that result under the modified model are quite high (relative

risks up to 2). As a consequence, a higher portion of the variance is

now explained by marginal effects and the portion of variance

explained by the supra-multiplicativity is reduced. In view of the

fact that modified LPLM implies strong marginal effects, we

Table 4. Power valuesa for pairwise interaction.

Number of SNPs

fT
b 10 20 30 40 50

0.1 0.21 0.00 0.00 0.00 0.00

0.3 0.70 0.02 0.00 0.00 0.00

0.5 0.99 0.11 0.00 0.00 0.00

0.7 1.00 0.28 0.01 0.00 0.00

aPower to detect at least one pairwise interaction (with 1 d.f. test) at a~0:05=m,
where m~n � (n{1)=2 is the number of pairwise tests for n SNPs. Power at the

Genome-wide significance level for interaction (a~5|10{13) was always 0.
bPenetrance for individuals above the allele load threshold.
doi:10.1371/journal.pone.0078038.t004

Figure 1. Power of SMT at a~5|10{8 for fT~0:70. The x-axis represents the available percentage of SNPs of the complete model, the y-axis
power levels.
doi:10.1371/journal.pone.0078038.g001

A One D.F. Test for Supra-Multiplicativity
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conclude that the SMT is rather robust against deviations from

equal SNP contributions.

Table 5 shows the performance of the SMT in the presence of

3-SNP recessive models, i.e., models in which the high-risk

genotype is defined by homozygosity for the risk allele at each of

three SNPs. The statistical interaction method of choice would be

the analysis of either all two-way interactions or the analysis of

three-way interaction. In the standard logistic regression setting, a

1-d.f. test for three-way interaction can be constructed by testing

the allelic interaction parameter x1x2x3. When dominance

variance terms shall be considered, as well, eight different three-

way interaction terms can be formulated and simultaneously

tested. Pairwise interaction in each of three SNP pairs

(i,j), 1v~ivjv~3 can be assessed either with a 1-d.f. allelic

test for interaction (investigation of xixj ) or a 4-d.f. genotypic test

for interaction.

At low significance levels, particularly at a~5|10{2, the 2-

SNP 1-d.f. interaction tests outperforms the SMT, which is

partially caused by the fact that power values for the pairwise tests

Figure 2. Power of SMT at a~5|10{8 for fT~0:50. The x-axis represents the available percentage of SNPs of the complete model, the y-axis
power levels.
doi:10.1371/journal.pone.0078038.g002

Figure 3. Power of SMT at a~5|10{8 for fT~0:30. The x-axis represents the available percentage of SNPs of the complete model, the y-axis
power levels.
doi:10.1371/journal.pone.0078038.g003

A One D.F. Test for Supra-Multiplicativity
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are not corrected for the multiple testing of three pairs. At

a~5|10{8, the SMT outperforms single-marker analysis and all

standard interaction tests, under all four recessive models

investigated. Under model REZ-C, for instance, power levels are

below 0.02 for all standard tests while the SMT has remarkable

power of 80%. This result might be surprising at first glance, but

can be explained by the architecture of the SMT. The completely

recessive model implies single-SNP dominance variation, two-way

and three-way interactions. The interaction terms often will not

reach significance, either because the effect is too small, but also

because of the high number of degrees of freedom. The SMT,

however, combines the evidence for two- and three-way interac-

tion in a single test statistic that follows a x2-distribution with just

one degree of freedom. In addition, the SMT takes into account

that the effect directions of risk alleles are not altered, a fact that is

not addressed when two-way and three-way interaction terms are

combined in a standard regression test. Thus, the SMT can also be

a powerful alternative when the goal is ‘‘just’’ interaction analysis

of SNP sets of small size.

Data Analysis
We applied the SMT to known Alzheimer’s disease (AD)

susceptibility loci. According to the GWAS catalogue [1], there are

currently 10 confirmed consensus AD genes [15–19]. These genes,

together with the SNP showing strongest evidence for association,

are APOE (rs429358), ABCA7 (rs3764650), CR1 (rs3818361),

Figure 4. Power of SMT at a~5|10{8 for fT~0:10. The x-axis represents the available percentage of SNPs of the complete model, the y-axis
power levels.
doi:10.1371/journal.pone.0078038.g004

Figure 5. Comparison of p-estimates between r2~0:8 and r2~1 tagging of causal variants under LPLM defined by 30 SNPs, fT~0:70.
The x-axis represents the allele threshold, the y-axis the supra-multiplicativity effect estimate. The circles indicate the ‘‘true’’ risk allele threshold.
doi:10.1371/journal.pone.0078038.g005

A One D.F. Test for Supra-Multiplicativity
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PICALM (rs3851179), CLU (rs11136000), BIN1 (rs744373),

EPHA1 (rs11767557), CD2AP (rs9349407), CD33 (rs3865444)

and MS4A (rs610932). We obtained genotypes for these SNPs

from a previously unpublished late-onset Alzheimer’s disease (AD)

Genome-wide case-control study, genotyped on the Illumina

Omni1M micro-array. AD patients were recruited within the

German Dementia Competence Network, DCN (http://www.

kompetenznetz-demenzen.de) and at the interdisciplinary memory

clinic of the Department of Psychiatry and Department of

Neurology at the University Hospital in Bonn, Germany.

Diagnosis of AD dementia was established according to

NINCDA-ADRDA criteria [20]. All patients gave written

informed consent for participation in the entire study protocol.

After application of standard quality control procedures, 850,612

genotypes of 649 cases and 1,096 selected controls were available.

We used the software IMPUTE2 [21] to impute into the February

Figure 6. Power of SMT test at a~5|10{8 for fT~0:70. Comparison of fixed threshold and modified threshold model. The x-axis represents the
available percentage of SNPs of the complete model, the y-axis power levels.
doi:10.1371/journal.pone.0078038.g006

Table 5. Power valuesa of SMT under 3-SNP-recessive models.

Modela ab SMTc Single-Markerd 2-SNP-1dfe 2-SNP-4dff 3-SNP-1dfg 3-SNP-8dfh

REZ-A 561022 1.00 1.00 1.00 0.99 0.71 0.72

561024 0.92 0.63 1.00 0.71 0.20 0.20

561028 0.86 0.08 0.54 0.07 0.00 0.00

REZ-B 561022 0.69 0.47 1.00 0.86 0.85 0.80

561024 0.67 0.02 0.81 0.21 0.36 0.20

561028 0.62 0.00 0.10 0.00 0.00 0.00

REZ-C 561022 0.88 0.85 0.95 0.88 0.79 0.84

561024 0.85 0.19 0.49 0.25 0.31 0.38

561028 0.80 0.01 0.01 0.01 0.00 0.02

REZ-D 561022 1.00 0.99 0.86 0.86 0.53 0.43

561024 0.98 0.56 0.19 0.20 0.11 0.02

561028 0.43 0.02 0.01 0.02 0.00 0.00

aDifferent completely recessive 3-SNP models, with varying risk allele frequencies. REZ-A: 0.2,0.5,0.8; REZ-B: 0.2,0.3,0.4; REZ-C: 0.4,0.5,0.6; REZ-D: 0.6,0.7,0.8. Baseline
penetrance was set to 0.03 and pentrances for 3-times recessive genotype were set to 0.2 (REZ-A), 0.7 (REZ-B), 0.1 (REZ-C), and 0.05 (REZ-D), respectively.
bSignificance level.
cPower of supra-mulitplicativity test.
dPower of single-marker analysis, as computed from the most significant SNP, without correction for multiple testing.
ePower of 2-SNP logistic regression interaction test with 1 d.f. (allelic test), as obtained from the most significant SNP pair, without correction for multiple testing.
fPower of 2-SNP logistic regression interaction test with 4 d.f. (genotypic test), as obtained from the most significant SNP pair, without correction for multiple testing.
gPower of 3-SNP logistic regression interaction test with 1 d.f. (allelic test).
hPower of 3-SNP logistic regression interaction test with 8 d.f. (genotypic test).
doi:10.1371/journal.pone.0078038.t005

A One D.F. Test for Supra-Multiplicativity
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2012 release of the 1,000 genomes project [22] and extracted the

10 AD SNPs for analysis.

As expected, our data shows overwhelming evidence for

association of APOE with AD (p~1:55|10{48, table 6). For

the remaining SNPs, the level of significance that is reached with

single-marker analysis is only moderate. However, for 8 out of 10

SNPs the risk allele is consistent with the risk allele reported in the

GWAS catalogue, which suggests that the effects of the known

SNPs are reflected in our data, but not significant because of a lack

of power. Of note, for two SNPs, rs744373 (p~0:963) and

rs3865444 (p~0:522), the effect direction is not in concordance

with the GWAS catalogue. When the SMT is applied to a priori

known SNPs, it is essential to count the number of risk alleles

according to risk allele specification of the outside source and not

according to the risk allele assignment that would follow from the

data itself. Indeed, it cannot be expected that all susceptibility

variants have the ‘‘correct’’ allele direction in a sample that is

smaller than the samples from which the AD consensus SNPs were

derived. Therefore, we computed the individual risk allele loads

according to the GWAS consensus risk alleles.

Prior to application of the SMT, we screened the data for SNP-

dominance effects, and two- and three-way interactions. None of

the dominance or pairwise interaction terms was nominally

significant. Analysis of three-way interaction of 120 SNP triples

was not significant after adjustment for multiple testing (p~0:24).

Table 7 shows the results of the supra-mulitplicativity analysis.

The allele thresholds 6,7 and 12 yield nominally significant p-

values, p~6:59|10{3, p~9:16|10{3 and p~2:72|10{2,

respectively. While the lower thresholds have effect estimates

below zero (p6~{0:971, p7~{0:736), the higher threshold have

an effect estimate above zero (p12~0:417). In other words, for

thresholds k~6,7 disease risk is lower than what would be

expected under complete multiplicativity, while for k~12 disease

risk is ‘‘supra-multiplicative’’. Thus, the effect directions are

consistent with the notion of a threshold model, disease risk

increases over-proportionally with higher risk allele loads. How-

ever, a sharply defined threshold, as observable with simulated

data (figure 5), is not detectable. Instead, the effect estimates pk

grow gradually with increasing threshold k (figure 7). For

illustrative purposes, table 6 also contains odds ratios computed

from a two-by-two contingency table with case-control status and

the number of individuals with a risk allele load below/above the

threshold as attributes. These odds ratios also grow gradually with

increasing allele threshold.

In summary, we see an over-proportional increase in disease

risk, along with growing risk allele load. Since the supra-

multiplicativity is not attributable to lower order interactions

terms, we can state that the deviation from multiplicativity would

have gone undetected without the SMT.

Discussion

We presented the SMT as a test for deviation from multi-

plicativity. It can be applied to sets of a size of up to n~500 SNPs

and allows joint investigation of all m-way interactions, mƒn, by a

single parameter. With n SNPs, there are 2n{1{1 allelic

interaction terms xi1 xi2 :::xim that theoretically could be analyzed

in a regression framework. With growing n, such systematic

investigation quickly reaches the limit of computability. The SMT,

however, can simultaneously assess interactions of different orders.

In addition, the formulation as a one parameter test improves

power via the reduction of degrees of freedom and by reduction of

the multiple testing burden. The test is powerful under two

assumptions: First, effect sizes of SNP alleles have to depend on the

combination of genotypes at other disease SNPs, but, effect

directions must not depend on the genotypes at other model SNPs.

Indeed, the indicator parameter counts the number of risk alleles

of an individual. As a consequence, the SMT will lose power when

effect directions can be reverted. Second, a substantial part of the

SNPs under investigation must deviate from multiplicativity. This

assumption might be considered to be a strong one, but is, on the

other hand, fulfilled by biologically plausible models which at the

same time are easily specified. In particular, limiting pathway

liability models (LPLMs) lead to strong supra-multiplicativity

which can be detected by the SMT, as shown in our simulation

study. Moreover, the SMT remained powerful when we altered

the LPLMs such that marginal SNP effects were allowed to vary

substantially. In addition, we exemplified the usefulness of the

SMT for small SNP sets by showing that it is much more powerful

than standard interaction tests under 3-SNP-recessive models.

Zuk et al. [6] have proposed LPLMs as a possible explanation

for missing evidence for epistasis in GWAS studies. With the SMT

it is now possible to systematically screen GWAS susceptibility

SNPs for their involvement in a LPLM. More generally, our

approach can be used as a tool to screen pre-defined SNP sets for

supra-multiplicativity. Thereby, it has the potential to assess the

presence of simultaneous effects of known SNPs and to contribute

to the judgement of their joint relevance. In this context,

previously confirmed, particular m-way interactions can be used

as model covariates, in order to detect supra-multiplicativity on

top of such interactions.

Our analysis of known Alzheimer’s disease (AD) susceptibility

SNPs in previously unpublished data revealed supra-multiplica-

tivity (p~0:008) that was neither attributable to SNP dominance,

nor to pairwise or three-way interaction effects. A sharp risk allele

threshold as it would be characteristic of LPLMs was not

identifiable. Instead, deviation from multiplicativity developed

gradually with increasing allele load, and, therefore, was not

detectable with standard interaction analysis.

Confirmed supra-multiplicativity of risk factors is of potential

relevance in various fields. In the presence of supra-multi-

plicativity, prediction of disease risk can be improved when the

joint distribution of risk factors is fully modeled in contrast to

prediction based on multiplication of risk factors. For application

in clinical practice, it is important that all risk factors as such, as

well as their amount of supra-multiplicativity, are confirmed by

Table 6. Single-marker analysis of GWAS Alzheimer’s disease
susceptibility SNPs in independent data.

Chr SNP Position Gene Minor Major p-value
Odds
Ratio

1 rs3818361 207784968 CR1 A G 4.2861024 1.07

2 rs744373 127894615 BIN1 G A 9.6361021 1.00

6 rs9349407 47453378 CD2AP C G 6.8061022 1.15

7 rs11767557 143109139 EPHA1 C T 7.7361022 0.89

8 rs11136000 27464519 CLU T C 8.6361022 0.88

11 rs610932 59939307 MS4A T G 7.9761021 0.98

11 rs3851179 85868640 PICALM T C 3.8561022 0.86

19 rs3764650 1046520 ABCA7 G T 3.8161021 1.11

19 rs429358 45411941 APOE C T 1.57610248 3.58

19 rs3865444 51727962 CD33 A C 5.2261021 1.05

doi:10.1371/journal.pone.0078038.t006
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independent studies. In addition, independent studies would have

to specifically investigate whether prediction can be improved over

prediction based on the domineering APOE locus.

Supra-multiplicativity is perhaps even more important for

treatment invention and drug development than it is for risk

prediction. Supra-multiplicative risk factors imply over-propor-

tionally strong disease risk when they occur together. Conversely,

this means that disease risk can be substantially reduced when the

effects on phenotype of only a portion of the risk factors can be

blocked. Under a risk threshold model, for instance, disease risk

can be reduced to a base-line level when the number of still

effective risk factors can be reduced so far that the number of still

active risk factors is below the risk threshold. In particular, this

means that for a complex disease it might not be necessary to have

an antidote for all risk factors, it might be sufficient to inactivate

just some of these. Stringent statistical evidence for strong supra-

multiplicativity of the risk factors of the disease under investiga-

tion, however, is an essential prerequisite for such a perspective.

Methods

Our work got its stimulus from the manuscript of Zuk et al. [6]

who suggested limiting pathway liability models (LPLMs) as an

explanation for the missing evidence for interaction in GWAS

studies. An LPLM can be defined as follows: Consider a set of n
SNPs, and specify for each SNP its risk allele. Let l, 0ƒlƒ2:n be

the number of risk alleles of an individual. Let k, 0ƒkƒ2:n be a

liability threshold. For individuals with lvk, the risk to be a case is

set to be equal to a baseline penetrance f0, while for individuals

with l§k risk alleles, an increased penetrance fT applies. It is

typically assumed that fTwwf0 and that n§10. By design, such a

model leads to marginal SNP effects and also to m-way interaction

effects for all 2ƒmƒn. Indeed, the effect of the risk allele of SNP

m, 2ƒmƒn, depends on the number of risk alleles present at

SNPs 1 to m{1. Since the interaction effects are distributed over

all orders, particular single interaction terms are rather small. As a

consequence, search for, for instance, pairwise interaction is not

the method of choice in the presence of a LPLM. Motivated by

this, we construct a one degree of freedom (d.f.) test for deviation

from multiplicativity for a set of n SNPs that simultaneously

addresses all m-way interaction effects, 2ƒmƒn. An implemen-

tation can be found in our software package INTERSNP [23]

(http://intersnp.meb.uni-bonn.de).

We consider a set of n SNPs with corresponding parameters xi,

1ƒiƒn, which follow the allele coding used in the logistic

regression framework described elsewhere [24]. We introduce a

series of indicator parameters Ik, 0ƒkƒ2:n, where k is a liability

threshold that shall be investigated. In case an individual has §k

risk alleles, we set Ik~1, otherwise we set Ik~0. Next, we test the

liability threshold k by comparing

L1(k) : logit(p)~b0zb1x1z . . . zbnxnzpkIk

against

L0(k) : logit(p)~b0zb1x1z . . . zbnxn

In other words, we use the marginal effects of the SNPs as

covariates and investigate if the disease risk increases sharply when

§k risk alleles are present. Since the optimal cut-off is not known

in advance, all values of k have to be tested. We compute the final

p-value p as p~s:minkpk where s is the number of cut-offs k for

which there are individuals both above and below the threshold.

The method will be conservative since the tests are not

independent for different values of k. In the results section, we

will show that the Bonferroni-correction is, nevertheless, more

than acceptable for practical purposes. We note that the suggested

test allows the inclusion of further covariate parameters. Adaption

to quantitative traits is also straightforward.

By design, the proposed test can detects various types of

deviation from multiplicativity. Therefore, we call it a supra-

multiplicativity test (SMT). The SMT is constructed to optimize

power in the presence of LPLMs. More generally, one can expect

the SMT to be powerful when a substantial portion of the sub sets

of the SNP set under investigation deviate from multiplicativity. In

addition, effect directions should not be reverted in combination

with other risk alleles since the test is build up on risk allele counts

per individual.

Figure 7. Curve of p-estimates for Alzheimer’s disease real data (10 susceptibility SNPs). The x-axis represents the allele threshold, the y-
axis the supra-multiplicativity effect estimate.
doi:10.1371/journal.pone.0078038.g007
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Simulation Set-up
Null models. Let j be the number of risk alleles, j[0,1,2, at a

given SNP and let fj be the respective penetrance. To investigate

the proposed test under the null hypothesis ‘‘no deviation from

multiplicativity’’, we simulated case-control data for n,

n[f10,20,30,40,50g disease SNPs under a completely multiplica-

tive model. We considered 1,000 permutation replicates for each

choice of n, and, for each replicate, randomly selected allele

frequencies from a uniform distribution and randomly assigned

relative risk values rj from 1.2 to 1.5. In order to investigate to

SMT in the presence of covariates, we considered ‘‘semi-null’’

models, i.e., models with deviation from multiplicativity that was

attributable either to single SNP dominance effects or to two-way

interaction. We simulated 30 SNPs. In model A, 15 SNPs were

simulated under a model of recessive type, the relative risk for

homozygote carriers was set to r~1:153. In model B, 7 SNP pairs

were simulated under a double-recessive model, i.e., the relative

risk was set to be r~1:154 for the two-locus genotype with 4 risk

alleles. All other effects were combined multiplicatively.

LPLMs. In order to assess power of the SMT, we investigated

limiting pathway liability models (LPLMs) as suggested by Zuk

et al. [6]. Let n be the number of model SNPs and let kn be a

respective allele load threshold. In our set-up, n ranged from 10 to

50 in step sizes of 10 and the threshold kn was chosen such that

about 1.5% of the general population had an allele load equal to

or above the threshold kn. For individuals below kn, a baseline

penetrance value of 0.03 was assumed. For individuals above the

threshold, we assumed a strongly increased penetrance fT , where

fT was chosen from f0:1,0:3,0:5,0:7g. For each parameter

constellation (n,fT ), we simulated 1,000 data sets with 3,000 cases

and 3,000 controls and estimated empirical power at the level a as

the portion of simulated data sets significant at a. We decided to

present power at the level a~5:10{8, since an exhaustive search

over all subsets of a given set of SNPs quickly leads to a high

number of tests. In addition, analysis of 106 is a number of tests

that can be analyzed within a reasonable time frame with our

implementation. In practice, a less stringent a might be considered

sufficient, depending on the number of models that are actually

tested, cf. also the section ‘‘Data analysis’’. Power of the liability

was not only analyzed for the entire SNP set, but also for marker

subsets of all possible sizes, in order to mimic the situation that not

all SNPs belonging to a threshold model will be available or

known. For a set of n SNPs, the number of subsets of size m can be

enormously high. Therefore, we could not analyze all subsets, but

investigated the ‘‘first’’ m SNPs, in the arbitrary order implied by

the set-up, to assess power for subsets of size m. This procedure has

also the advantage of improved comparability when moving from

subset size m to subset size mz1.

We also investigated the potential impact of incomplete SNP

coverage on the power of the SMT. To this purpose, we assumed

that the true causal SNPs of the 30-SNP LPLM (fT~0:70) are not

available, but only tagged by proxy SNPs with an r2 of 0.80. After

genotype imputation, such approximation of causal SNPs by SNPs

in linkage disequilibrium is realistic.

Modified threshold models. The LPLMs suggested in [6]

might be considered to be to simplistic. In particular, differences in

the contribution of individual SNPs should be allowed in multi-

SNP models [9]. Therefore, we modified the 30-SNP LPLM

(fT~0:70) from above as follows. We maintained the load

threshold from before, but varied the weighting of the risk allele

contributions from different SNPs. For one third of the SNPs, the

risk allele counts were weighted with a factor of 0.5, for another

third of the SNPs, the risk allele counts were weighted with a factor

of 1, and the remaining SNPs were weighted with a factor of 2.

Recessive models. We investigated ‘‘completely recessive’’

models defined by three SNPs. A baseline penetrance of 0.03 was

assumed. Only individuals which were homozygous for the risk

allele at all three SNPs were assigned an increased penetrance. We

simulated data under different scenarios, defined by varying

population allele frequencies and risk genotype penetrance values.

In detail, we simulated the model REZ-A with allele frequencies of

the three SNPs of 0.2, 0.5 and 0.8, respectively, and a penetrance

of 0.20 for the high risk 3-SNP-genotype. Model REZ-B was

defined by allele frequencies 0.2, 0.3 and 0.4 and a high risk

genotype penetrance of 0.70, model REZ-C was defined by allele

frequencies 0.4, 0.5 and 0.6 and a high risk genotype penetrance of

Table 7. Application of SMT to Alzheimer’s disease susceptibility SNPs.

Allele
loada p-valueb pc sed ORe seORf Freq_Casesg Freq_Controlh

6 2.2361022 20.971 0.370 0.852 0.737 0.981 0.983

7 605961023 20.736 0.239 1.205 0.433 0.948 0.938

8 9.1661024 20.700 0.189 1.270 0.294 0.879 0.851

9 534861021 20.114 0.171 1.636 0.232 0.787 0.693

10 3.2061021 0.185 0.167 1.818 0.203 0.643 0.498

11 1.346102a 0.274 0.165 2.046 0.205 0.457 0.292

12 2.7261022 0.417 0.170 2.315 0.244 0.279 0.144

13 1.5161021 0.333 0.209 2.549 0.353 0.128 0.054

14 3.096102 0.357 0.318 3.025 0.593 0.048 0.017

aRisk allele threshold k under investigation.
bUncorrected p-value for given threshold.
cEffect estimate pk for indicator variable Ik at threshold k.
dCorresponding standard error.
eOdds ratio as computed from two-by-two case-control table with number of cases/control with a risk allele load above and below the threshold.
fCorresponding standard error.
gFrequency of cases above the allele load threshold.
hFrequency of controls above the allele load threshold.
doi:10.1371/journal.pone.0078038.t007
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0.10, and, model REZ-D was defined by allele frequencies 0.6, 0.7

and 0.8 and a high risk genotype penetrance of 0.05. The resulting

allelic relative risks ranged from 1.05 to 1.19 under model REZ-A,

from 1.03 to 1.06 under REZ-B, from 1.05 to 1.08 under REZ-C,

and, from 1.10 to 1.13 under REZ-D.
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