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Abstract. CpG island methylation in the promoter regions 
of the DNA mismatch repair gene mutator L homologue 1 
(MLH1) and DNA repair gene O6‑methylguanine‑DNA 
methyltransferase (MGMT) genes has been shown to occur 
in the leukocytes of peripheral blood and colorectal tissue. 
However, it is unclear whether the methylation levels in the 
blood leukocytes and colorectal tissue are correlated. The 
present study analyzed and compared the levels of MGMT and 
MLH1 gene methylation in the leukocytes of peripheral blood 
and colorectal tissues obtained from patients with colorectal 
cancer (CRC). The methylation levels of MGMT and MLH1 
were examined using methylation‑sensitive high‑resolution 
melting (MS‑HRM) analysis. A total of 44 patients with CRC 
were selected based on the MLH1 and MGMT gene methylation 
levels in the leukocytes of the peripheral blood. Corresponding 
colorectal tumor and normal tissues were obtained from each 
patient and the DNA methylation levels were determined. The 
correlation coefficients were evaluated using Spearman's rank 
test. Agreement was determined by generalized κ‑statistics. 
Spearman's rank correlation coefficients (r) for the methylation 
levels of the MGMT and MLH1 genes in the leukocytes of the 
peripheral blood and normal colorectal tissue were 0.475 and 
0.362, respectively (P=0.001 and 0.016, respectively). The 
agreement of the MGMT and MLH1 gene methylation 
levels in the leukocytes of the peripheral blood and normal 
colorectal tissue were graded as fair and poor (κ=0.299 and 
0.126, respectively). The methylation levels of MGMT and 
MLH1 were moderately and weakly correlated between the 
patient‑matched leukocytes and the normal colorectal tissue, 
respectively. Blood‑derived DNA methylation measurements 

may not always represent the levels of normal colorectal tissue 
methylation.

Introduction

DNA methylation is a significant regulator of gene tran-
scription, and its role in carcinogenesis has become a topic 
of considerable interest in the last few years. DNA cytosine 
methylation has been widely studied, with investigations often 
focusing on the methylation level of CpG dinucleotides in 
promoter regions that usually have higher concentrations of 
CpGs, known as CpG islands (1). The methylation of normally 
unmethylated CpG islands in the promoter regions of DNA 
repair genes is correlated with a loss of expression of these 
genes (2‑5), which occurs in the early stages of colorectal 
cancer (CRC) development (6‑8).

Methylation of DNA mismatch repair gene mutator L homo-
logue 1 (MLH1) and DNA repair gene O6‑methylguanine‑DNA 
methyltransferase (MGMT), is known to cause high‑degree 
microsatellite instability (MSI‑H) (4) and guanine to adenine 
mutations in KRAS, TP53 (9) and PIK3CA (6), respectively. 
Methylation of the MLH1 promoter has been reported in 
sporadic MSI tumors and is associated with the loss of protein 
expression (4,7,8). MGMT encodes a DNA repair enzyme that 
removes the mutagenic adduct from O6‑methylguanine (10). 
Alterations in the MGMT gene impair the ability of the 
MGMT protein to remove the mutagenic adduct from 
O6‑methylguanine, thereby increasing the mutation rate (6,9) 
and the risk of cancer (11).

To date, studies with regard to the methylation of genes 
have mainly focused on the methylation level of tumor 
tissues  (12‑15). Although the majority of CpG islands are 
unmethylated in normal tissues, the methylation changes 
of a small subset of genes may be observed under physi-
ological conditions in normal colonic mucosa (16‑18). In a 
previous study, samples of colorectal mucosa collected from 
healthy individuals undergoing screening colonoscopies 
were analyzed for MLH1 and MGMT promoter methylation 
and low background methylation levels were subsequently 
identified (0.1‑18.8%) (19). The results of another study that 
analyzed 13 types of normal somatic tissues, placenta, sperm 
and an immortalized cell line, indicated that ~18% of the 
genomic regions exhibited a significant difference in DNA 
methylation levels among the 16 tissues analyzed and were clas-
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sified as tissue-specific differentially methylated regions (20). 
Furthermore, studies have focused on the detection of methyl-
ated DNA in peripheral blood and normal tissues (21,22), and 
MLH1 (23‑26) and MGMT (27‑29) gene methylation has been 
reported in peripheral blood leukocytes. 

Previous studies (16‑18) on DNA methylation typically 
used paired tumor and normal surrounding tissues from 
cancer‑bearing individuals. To the best of our knowledge, no 
studies with regard to the correlation between DNA methyla-
tion levels in peripheral blood leukocytes and colorectal tissue 
specimens, including colorectal tumor and normal colorectal 
tissues, from each matched patient have been published. 
Therefore, the present study aimed to determine whether there 
was a correlation between the MLH1 and MGMT methylation 
levels in patient‑matched peripheral blood leukocytes and 
colorectal tissue DNA samples.

Materials and methods

Individuals and study samples. Samples (5 ml) of peripheral 
blood and colorectal tumor and normal tissues were obtained 
from 44 patients with CRC who underwent surgery in the 
Department of Surgery of the Tumor Hospital (Harbin, China). 
Informed consent was obtained from the surgeons and patients. 
No patients were administered pre‑operative radiation or 
chemotherapy. The normal colorectal mucosa specimens were 
obtained from colorectal tissues at the margins of the resected 
specimens (≥10 cm away from the tumor). Approval for this 
study was obtained from the Human Subjects Committee, 
Harbin Medical University.

The methylation status of MLH1 and MGMT was exam-
ined in the peripheral blood leukocyte DNA of the CRC cases. 
Based on the MLH1 and MGMT methylation results that were 
detected in the peripheral blood leukocytes (0% methylation 
as a cut‑off value), 19 individuals with methylation of either 
gene were selected as positive subjects and another 25 indi-
viduals without methylation for both genes were selected as 
negative subjects. 

Sodium bisulfite conversion. The genomic DNA was extracted 
from the blood samples and colorectal tissue specimens, 
including colorectal tumor and normal colorectal tissues, 
using a TIAN‑amp Genomic DNA kit (Tiangen, Beijing, 
China), according to the manufacturer's instructions. Sodium 
bisulfite conversion of the genomic DNA was performed as 
described previously (29). DNA (1 µg) was bisulfite‑modified 
using the EZ DNA Methylation‑Gold kit (Zymo Research, 
Orange County, CA, USA). The eluted DNA (10 µl volume) 
was used for the methylation‑sensitive high‑resolution melting 
(MS‑HRM) analysis.

Methylation analysis. Methylation of the MGMT and MLH1 
promoter was assessed using MS‑HRM (30). The primers used 
were those designed by Wojdacz and Dobrovic (30). For MGMT, 
the published primer sequences (31) and the designed sequences 
for MLH1 were 5'‑TTTTTTTAGGAGTGAAGGAGG‑3' 
and 5'‑AACRCCACTACRAAACTAAA‑3'. The reactions 
were performed in 96‑well LightCycler® 480 plates (Roche, 
Mannheim, Germany) using the LightCycler  480 High 
Resolution Melting Master mix, which contains a DNA inter-

calating dye in a final volume of 10 µl. The reaction mixture 
contained 1X LightCycler 480 High Resolution Melting Master 
mix, 200 nmol/l each primer and 1 µl bisulfite‑modified DNA, 
with 3.0 mmol/l final MgCl2 for MLH1 and MGMT. Each 
reaction was performed in duplicate. The cycling conditions 
that were used for the two assays were as follows: SYBR 
Green 1 detection format; 1 cycle at 95˚C for 10 min, 50 cycles 
at 95°C for 10 sec, a touch down from 64˚C to 58˚C for 
10 sec (1˚C/cycle) and 72˚C for 20 sec, followed by an HRM 
step at 95˚C for 1 min, 40˚C for 1 min, 74˚C for 5 sec and 
continuous acquisition to 90˚C at 25 acquisitions per 1˚C. Each 
plate included multiple water blanks for a negative control. 
Methylated and unmethylated genomic templates were used 
to calibrate the quantitative measurements of methylation. 
CpGenome Universal Methylated DNA (Zymo Research) was 
used as 100% methylated control DNA. CpGenome Universal 
Unmethylated DNA (Zymo Research) was used as unmethyl-
ated control DNA. Methylation standards were constructed by 
diluting 100% methylated bisulfite‑modified control DNA in a 
pool of bisulfite‑modified unmethylated control DNA at levels 
of 50, 25, 5 and 1%. These standards were included in each 
experimental run. Based on the standard curves, the patient 
data were classified into various methylation categories by 
two independent observers. Disagreements were settled by 
consensus or a third review for adjudication.

Statistical analysis. The data were analyzed using non‑para-
metric Friedman and χ2 tests for the comparison of methylation 
levels in the peripheral blood leukocyte, colorectal tumor and 
normal colorectal tissue DNA. Spearman's rank correlation 
coefficient was used for analyzing the associations of the 

Table I. Demographic and clinical characteristics of 44 CRC 
patients.

Patient characteristics	 No. of cases (%)

Age, years	
  ≤60	 26 (59.1)
  >60	 18 (40.9)
  Total	 44 (100.0)
Gender	
  Female	 15 (34.1)
  Male	 29 (65.9)
Tumor location	
  Proximal colona	 8 (18.2)
  Distal colonb	 6 (13.6)
  Rectum	 30 (68.2)
Tumor stage	
  I	 3 (6.8)
  II	 22 (50.0)
  III	 18 (40.9)
  IV	 1 (2.3) 

aProximal colon includes the cecum through the transverse colon. 
bDistal colon includes the descending colon through the rectum. 
CRC, colorectal cancer.
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methylation levels between the three groups. The magnitude 
of the correlation was specified as weak (0.00‑0.39) moderate 
(0.40‑0.79) and strong (0.80‑1.00). Agreements of the levels 
of methylation between the peripheral blood leukocytes and 
normal colorectal tissues were determined using generalized 
weighted κ‑statistics (32) Agreement was classified as excel-
lent (κ>0.80), good (0.61≤κ≤0.80), moderate (0.41≤κ≤0.60), 
fair (0.21≤κ≤0.40) or poor (κ<0.20). SPSS (version 16.0; SPSS, 
Inc., Chicago, IL, USA) was used to analyze the data. P≤0.05 
was considered to indicate a statistically significant difference.

Results

Patient characteristics. A total of 44 patients, 29 males and 
15 females (mean age, 55 years; range, 28‑79 years), were 
selected for the present study. The basic characteristics of the 
patients are shown in Table I.

Comparing methylation status in patient‑matched periph‑
eral blood leukocyte and colorectal tissue DNA. The 
methylation analysis results of the 44 patients are shown in 

Figure 1. Normalized methylation‑sensitive high‑resolution melting (MS‑HRM) standard curves of MLH1 and MGMT in CRC. (A) Profile of fluorescence 
obtained at the melting temperature for serial dilutions of methylated DNA (100‑0%) and the melting plot for the MGMT gene. (B) Profile of fluorescence 
obtained at the melting temperature for serial dilutions of methylated DNA (100‑0%) and the melting plot for the MLH1 gene. MLH1, DNA mismatch repair 
gene mutator L homoloue 1; MGMT, DNA repair gene O6‑methylguanine‑DNA methyltransferase; CRC, colorectal cancer.

  B

  A

Table II. MS‑HRM assay of peripheral blood and colorectal tissue samples of CRC patients.

		  MGMT, n			   MLH1, n
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Frequencies of methylation (%)	 Leukocytes	 Normal tissue	 Tumor tissue	 Leukocytes	 Normal tissue	 Tumor tissue

0	 37	 35	 31	 32	 30	 31
0‑1	   0	   2	   1	   0	   2	   2
1‑5	   5	   4	   2	   7	   1	   2
5‑25	   0	   3	   3	   2	   9	   5
25‑50	   1	   0	   0	   3	   1	   2
50‑100	   1	   0	   2	   0	   0	   1
100	   0	   0	   5	   0	   1	   1

MS‑HRM, methylation‑sensitive high‑resolution melting; CRC, colorectal cancer; MGMT, DNA repair gene O6‑methylguanine‑DNA methyl-
transerferase; MLH1, DNA mismatch repair gene mutator L homologue 1.



LI et al:  CORRELATION OF MLH1 AND MGMT METHYLATION LEVELS IN THE BLOOD AND TISSUES OF CRC PATIENTS 1373

Table II and illustrated in Fig. 1A and 1B. Differences in the 
levels of MGMT and MLH1 methylation were examined in 
patient‑matched peripheral blood leukocyte, colorectal tumor 
and normal colorectal tissue DNA (Table II). There were no 
significant differences in the levels of MGMT and MLH1 
methylation between the three groups (Friedman test, P=0.260 
and P=0.464, respectively).

Various cut‑off methylation levels were used for the 
analysis (Table III). The level of methylation was classified 
as positive at a cut‑off value of 0‑1% methylation and no 
statistical significant differences were observed in the levels 
of MGMT and MLH1 methylation among the three groups 
(Table III). When a level of methylation of >5% was classified 
as positive, there was a significant difference in the levels of 
MGMT methylation among the three groups (P=0.014; χ2 test), 
but no significant difference in the levels of MLH1 methylation 
(P=0.251; χ2 test). Further analysis revealed that a significant 
difference in MGMT methylation existed between colorectal 
tumor tissue DNA and leukocytes or normal colorectal 
tissue DNA (P=0.013 and P=0.035, respectively; χ2 test), but 
not between leukocyte and normal colorectal tissue DNA 
(P=0.645; χ2 test). 

Spearman rank correlation coefficients. Positive correlations 
were observed between the peripheral blood leukocyte and 
normal colorectal tissue DNA in the levels of MGMT and 
MLH1 methylation (r=0.475, P=0.001 and r=0.362, P=0.016, 
respectively). However, there were no positive correlations 
between colorectal tumor tissue and peripheral blood leuko-
cyte or normal colorectal tissue DNA, based on the methylation 
levels of the assessments of the two genes (Table IV).

Agreement. The agreement between the peripheral blood 
leukocyte and normal colorectal tissue DNA with CRC on the 
levels of MGMT and MLH1 methylation were calculated using 
κ coefficients (Table V). The agreement of the MGMT gene 
methylation levels in the leukocytes of the peripheral blood 
and normal colorectal tissue was graded as fair (κ=0.299). The 
agreement of the MLH1 gene methylation levels in the leuko-
cytes of the peripheral blood and normal colorectal tissue was 
graded as poor (κ=0.126) (Table V).

Discussion

DNA promoter methylation has previously been shown to 
be a well‑characterized event in tumor biology and has been 
extensively documented in CRC (33,34). However, few studies 
have compared DNA promoter methylation in DNA from 
various patient‑matched sources. The present results revealed 
that the levels of MLH1 and MGMT methylation were not 
significantly different in patient‑matched peripheral blood 
leukocyte, colorectal tumor tissue and normal colorectal 
tissue DNA as original semi‑quantitatively rank data. Since 
low background methylation levels have previously been 
reported for various genes in normal samples (35,36), several 
studies have used 0.1‑10% as a cut‑off for the scoring criteria 
of gene methylation using the MS‑HRM assay (31,37‑40) and 
there has not been a unified standard to define methylation. 
Therefore, in the present study, in order to identify the various 
methylation levels between cancer and normal samples, a 
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range of cut‑off methylation levels were used. When samples 
with >5% methylation were considered as methylated, 
distinctive MGMT gene promoter methylation levels were 
identified between colorectal tumor tissue and leukocyte or 
normal colorectal tissue DNA, but no significant differences 
were observed between leukocyte and normal colorectal 
tissue DNA. Thus, in samples containing >5% methylation, 
the analysis of the MGMT gene appeared to increase the 

sensitivity for discriminating cancer from normal colorectal 
tissues or leukocytes. 

Previous studies have focused on DNA methylation 
measured in the leukocytes  (41,42) or the normal mucosa 
tissues (17,43,44), rarely reporting the correlation between 
the two. Ally et al reported significant positive correlations 
between the estrogen receptor‑α methylation index in leuko-
cytes and normal colonic tissue in CRC patients (r=0.570; 

Table IV. Spearman's rank correlation coefficients (P‑values) of MGMT and MLH1 methylation levels in case‑matched DNA 
with CRC.

DNA source	 Leukocytes	 Normal tissues	 Tumor tissues

MGMT			 
  Leukocytes	‑	  0.475 (0.001)	‑ 0.033 (0.833)
  Normal tissues	 0.475 (0.001)	‑	  0.025 (0.873)
  Tumor tissues	‑ 0.033 (0.833)	 0.025 (0.873)	‑
MLH1			 
  Leukocytes	‑	  0.362 (0.016)	 0.215 (0.161)
  Normal tissues	 0.362 (0.016)	‑	  0.293 (0.054)
  Tumor tissues	 0.215 (0.161)	 0.293 (0.054)	‑

MGMT, DNA repair gene O6‑methylguanine‑DNA methyltranserferase; MLH1, DNA mismatch repair gene mutator L homologue 1; CRC, 
colorectal cancer.

Table V. Frequencies of MGMT and MLH1 methylation in the peripheral blood and the normal colorectal tissues.

			  Frequencies of normal colorectal tissues methylation (%)
			‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  -‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Frequencies of blood methylation (%)	 0	 0‑1	 1‑5	 5‑25	 25‑50	 50‑100	 100	 n

MGMT
  0	 32	 2	 3	 0	 0	 0	 0	 37
  0‑1	   0	 0	 0	 0	 0	 0	 0	   0
  1‑5	   3	 0	 1	 1	 0	 0	 0	   5
  5‑25	   0	 0	 0	 0	 0	 0	 0	   0
  25‑50	   0	 0	 0	 1	 0	 0	 0	   1
  50‑100	   0	 0	 0	 1	 0	 0	 0	   1
  100	   0	 0	 0	 0	 0	 0	 0	   0
  n	 35	 2	 4	 3	 0	 0	 0	 44
  κ				    0.299 (P=0.002)
MLH1
  0	 24	 2	 1	 5	 0	 0	 0	 32
  0‑1	   0	 0	 0	 0	 0	 0	 0	   0
  1‑5	   5	 0	 0	 2	 0	 0	 0	   7
  5‑25	   1	 0	 0	 1	 0	 0	 0	   2
  25‑50	   0	 0	 0	 1	 1	 0	 1	   3
  50‑100	   0	 0	 0	 0	 0	 0	 0	   0
  100	   0	 0	 0	 0	 0	 0	 0	   0
  n	 30	 2	 1	 9	 1	 0	 1	 44
  κ				    0.126 (P=0.098)

κ: The κ statistics are parameters of agreement that take chance agreement into account. MGMT, DNA repair gene O6‑methylguanine‑DNA 
methyltranserferase; MLH1, DNA mismatch repair gene mutator L homologue 1.
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P=0.003) (45). However, the samples were not case matched. 
Spearman rank correlations were performed to investigate the 
correlation of the MLH1 and MGMT methylation levels in 
patient‑matched peripheral blood leukocyte, colorectal tumor 
and normal colorectal tissue DNA samples. The most signifi-
cant positive correlations were observed between the leukocyte 
and normal colorectal tissue DNA for methylation detection of 
MGMT and MLH1 (r=0.475 and r=0.362, respectively). 

In human studies, ethical and practical barriers may make 
it difficult or impossible to collect specimens from the target 
tissue. Hence, the use of surrogate samples, including DNA 
derived from easily accessible peripheral blood, is widely 
accepted when the target tissue is unobtainable. Several 
studies with regard to DNA methylation biomarkers tested in 
leukocytes suggest the suitability of epigenetic biomarkers for 
the detection of several cancers relative to controls (46‑48). 
Widschwendter et al identified that particular methylation 
patterns in peripheral blood DNA may serve as surrogate 
markers for the risk of breast cancer (49). To investigate the 
use of blood as a surrogate for DNA methylation in tissues, 
the present study measured the MGMT and MLH1 gene 
methylation levels in the leukocytes of the peripheral blood 
and normal colorectal tissue, which were graded as fair and 
poor (κ=0.299 and 0.126, respectively); therefore, blood-
derived DNA methylation level measurements may not always 
represent the levels of target colorectal tissue methylation (50). 
While all somatic cells in a given individual are genetically 
identical, differing cell types form highly distinct anatomical 
structures and perform a wide range of disparate physiological 
functions  (51). It has been conjectured that during tissue 
differentiation and development, transcription‑relevant control 
regions in the genome become selectively de‑ or upmethyl-
ated to enable the transcription of a restricted set of genes 
within a given tissue (52). It is also plausible that methylation 
patterns in DNA obtained from blood may be more ‘plastic’ 
compared with that of other tissues, due to the close proximity 
of the blood to environmental influences, such as nutrition and 
smoking (50). 

A limitation of the present study is the fact that the 
subjects that were selected. The methylation results may not 
reflect the natural frequencies of methylation in leukocytes 
or colorectal tissues. Another limitation of the study is a lack 
of inclusion of healthy controls. Studies using cancer subjects 
may not exclude the possibility of disseminated tumor cells 
or the effect the disease itself may have on the systemic 
methylation status in leukocytes and normal colorectal 
tissues. Further studies with disease‑free individuals and 
an investigation of tumor suppressor gene methylation are 
required to clarify this issue. 

In summary, the correlation of MGMT and MLH1 meth-
ylation levels between patient‑matched leukocytes and normal 
colorectal tissues was classified as moderate and weak, 
respectively. Blood‑derived DNA methylation measurements 
may not always represent the levels of normal colorectal tissue 
methylation.
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