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ABSTRACT Inference of population structure and individual ancestry is important both for population genetics and for association
studies. With next generation sequencing technologies it is possible to obtain genetic data for all accessible genetic variations in the
genome. Existing methods for admixture analysis rely on known genotypes. However, individual genotypes cannot be inferred from
low-depth sequencing data without introducing errors. This article presents a new method for inferring an individual’s ancestry that
takes the uncertainty introduced in next generation sequencing data into account. This is achieved by working directly with genotype
likelihoods that contain all relevant information of the unobserved genotypes. Using simulations as well as publicly available sequenc-
ing data, we demonstrate that the presented method has great accuracy even for very low-depth data. At the same time, we
demonstrate that applying existing methods to genotypes called from the same data can introduce severe biases. The presented
method is implemented in the NGSadmix software available at http://www.popgen.dk/software.

ADMIXTURE occurs when isolated populations begin in-
terbreeding and their offspring represent a mixture of

alleles from different ancestral populations. Estimating the
admixture proportions of an individual is a valuable tool in
both population genetics and genetic epidemiology. In pop-
ulation genetics admixture analysis allows the researcher to
classify individuals with unknown ancestry into discrete pop-
ulations. This has successfully been used to describe the
genetics of different populations (Rosenberg et al. 2002)
and even extinct populations (Rasmussen et al. 2010).
Knowing the individual admixture proportions is also useful
in genetic association studies. Conventional association
studies assume that the individuals are sampled from the
same homogeneous population and a violation of this as-
sumption will lead to an uncontrolled false positive rate
(Marchini et al. 2004; Clayton et al. 2005). Population strat-
ification is the presence of a systematic difference in allele
frequencies between subpopulations often due to different

ancestries leading to false positive findings in the association
study. Various methods can be used to alleviate this prob-
lem, for example by including the admixture proportions in
the association model (Price et al. 2010).

Next generation sequencing (NGS) platforms such as
Illumina sequencing are used to generate large amounts of
sequencing data. Although the price of sequencing is rapidly
decreasing, it is still expensive to generate high-depth whole
genomes for a large number of individuals. Low-depth
sequencing is a much cheaper alternative that still retains
most of the information in the genome (Pasaniuc et al.
2012). However, using low-depth sequencing is not unprob-
lematic. Unlike traditional Sanger sequencing and genotyp-
ing platforms, NGS platforms do not provide genotype calls
directly. Sites from pairs of homologous chromosomes are
not sequenced in equal proportions but instead the chromo-
somes are sampled with replacement. If the sequencing
depth is low, it can happen that only one of the homologous
chromosomes is sequenced. On top of that there are non-
negligible errors in the sequencing data, which adds another
layer of uncertainty to genotype calls. The error rates from
NGS technology are high and may exceed the level of
genetic variability we would expect from a biological
viewpoint.

Current methods and models for finding population
structure and admixture require exact knowledge of the
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individual genotypes. Therefore, existing methods should be
applied to genotypes inferred from NGS data only if the
sequencing depth is sufficiently high.

In this article we develop a new method for inferring
individual ancestry based on genotype likelihoods calculated
from NGS data, assuming a known number of admixing
populations. This allows us to take the uncertainty in the
NGS data into account and avoid inferring individual
genotypes. The method is applicable not only to NGS data
but also to other forms of data where the information on
some or all genotypes is incomplete. The information on the
genotype contained in the data must simply be condensed
into genotype likelihoods and the new method can be
applied.

Population structure is often estimated using the Bayes-
ian method STRUCTURE (Pritchard et al. 2000); however,
in recent years full maximum-likelihood approaches like
FRAPPE (Tang et al. 2005) and ADMIXTURE (Alexander
et al. 2009) have become popular especially for large data
sets. This is due to efficient expectation-maximization (EM)
algorithms that allow for simultaneous optimization of mil-
lions of parameters. Here we extend this maximum-likelihood
framework to work on genotype likelihoods. The core of
the underlying model is the same as in many previous
methods (Pritchard et al. 2000; Tang et al. 2005; Alexander
et al. 2009; Huelsenbeck et al. 2011) but the presented
method, called NGSadmix, is based on genotype likelihoods
that contain all relevant information of the unobserved
genotypes.

Materials and Methods

Genotype likelihoods

The information on the unobserved genotypes contained in
next generation sequencing data is best summarized in
genotype likelihoods (Nielsen et al. 2011). We denote the
sequencing data X = {X1, X2, . . . , XN} and Xi = {Xi1, Xi2, . . . ,
XiM} for N individuals and M sites. The genotype likeli-
hoods are the likelihood of observing the sequencing data
for a single individual given the unobserved genotype, de-
fined as

L
�
Xij

��G ¼ fA1;A2g
�
} p

�
Xij

��G ¼ fA1;A2g
�
;

A1;A2 2 fA;C;G;Tg:

Several methods for calculating the genotype likelihoods
exist. The SOAPsnp model (R. Li et al. 2009) computes
a mismatch matrix that is used for estimating type-specific
errors, and SAMtools (Li 2011) uses a model derived
from the MAQ model (Li et al. 2008). We use the simple
GATK model (McKenna et al. 2010) for calculating the
genotype likelihoods. The GATK model assumes indepen-
dence of the reads and solely uses the observed bases
overlapping a specific position along with their associ-
ated quality scores. Thus, the genotype likelihood is com-
puted as
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Here d is the depth at site j for individual i, bk is the observed
base, and P is the probability of error as calculated from the
quality score of bk.

Model

Existing methods for estimating population structure are
based on genotype data from many single-nucleotide poly-
morphisms (SNPs) for a large number of individuals.

We assume that the variable sites are diallelic. For
a variable site we observe two different alleles and have
three possible genotypes. Without loss of generality we can
assign our two alleles randomly and denote the two alleles
as A, B. The allele frequency is the frequency with which A
occurs. We identify the genotype by the counts of the B
allele. So AA = 0, AB = 1, BB = 2.

For individual i at SNP j we consider the three relevant
genotype likelihoods:

p
�
Xij

��Gij ¼ 0
�
; p

�
Xij

��Gij ¼ 1
�
; p

�
Xij

��Gij ¼ 2
�
: (3)

Here Xij is the sequencing data for individual i at site j, Gij is
the unobserved genotype and, p(Xij|Gij = 0) is (proportional
to) the probability of observing the sequencing data Xij given
that individual i is genotype 0 at SNP j.

The individual admixture proportion is the proportion of
an individual’s alleles that has ancestry in a postulated an-
cestral population. We write the proportion of individual i’s
genome that originates from population k as p(k) = qik.

The model assumes K different ancestral populations, each
with its own allele frequencies. We denote the allele frequen-
cies of allele A in population k at SNP j as f jk. If the frequencies
and admixture proportions are known, the probability that an
allele is A for individual i at site j is hij ¼ PK

k¼1 f
jkqik. The

probability for observing genotype Gij in individual i at site j,
assuming Hardy–Weinberg equilibrium, is

p
�
Gij
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12hij
�2

if Gij ¼ 2:

(4)

Likelihood function: When the genotypes are observed,
assuming that sites are independent, the likelihood is
written as
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If the sites are not independent, then this is a composite
likelihood that will still have consistent estimates. This
likelihood corresponds to the likelihood used in Tang et al.
(2005) and Alexander et al. (2009) and will be used when
dealing with called genotypes.

When using NGS data, the genotypes are not observed
and we instead work with genotype likelihoods. The above
likelihood is extended by summing over all possible
genotypes:
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In the case of known genotypes the factor p(Xij|Gij) = 1 if Gij

is the observed genotype and zero otherwise, and the two
likelihoods are equivalent.

Estimation

We define the following maximum-likelihood estimators of
the admixture proportions and the population frequencies:n

Q̂; F̂
o
¼ arg max

fQ;Gg
pðXjQ; FÞ: (7)

We note that the likelihood is invariant to switching the
labels in the ancestral populations; thus there are at least K!
equivalent global maximums. Also note that the likelihood
must be maximized under the constraints that qik, f jk 2 [0, 1]
and

P
kq

ik ¼ 1.

EM algorithm: The EM algorithm iteratively optimizes the
parameters. A new and better guess for the parameters is
found by using the previous guess. The parameters guess for
iteration n + 1 is given by
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Here we have used the shorthand notation

HðXijjQn;FnÞ¼Pg2f0;1;2g pðXijjgÞpðgjhij
nÞg=Pg2f0;1;2g pðXijjgÞpðgjhij
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A derivation of this EM algorithm from the likelihood
function is found in Supporting Information, File S1. We
initialize the algorithm by a randomly chosen point in the
parameter space. When there is no uncertainty in the ge-
notype data, the expression reduces to H(Xij|Qn, Fn) = Gij

and it follows that for called genotypes the EM algorithm is
the same as in Tang et al. (2005) and Alexander et al.
(2009).

Accelerated convergence of the EM algorithm: When the
parameter space is high dimensional, the convergence of
the EM algorithm can be slow. When the progress of the
algorithm in the parameter space is monitored, it is clear
that many small steps in the same direction could be
replaced by larger steps. This is the principle of squared
iterative methods (Varadhan and Roland 2008) for accel-
erating EM algorithms. This acceleration is similar to the
approach of Alexander et al. (2009). In each iteration of
the accelerated EM algorithm, the initial value of the
parameters is updated twice, using the regular EM algo-
rithm step described in the previous section. An optimal
combination based on the old and the two new parameter
estimates is calculated (we choose to use scheme S3 of
Varadhan and Roland 2008) and this extrapolation is then
again updated by a regular EM algorithm step.

Simulations

This section describes how we carried out simulations for
the purpose of validating NGSadmix and compared the
performance to existing methods. Each simulated scenario is
based on a choice of the admixture coefficients for each
individual, the joint distribution of allele frequencies in the
ancestral populations, the average sequencing depth of each
individual, and the sequencing error rate.

Allele frequencies in the ancestral populations: To use
a realistic joint distribution of allele frequencies for the
ancestral populations, we use allele frequency estimates
from two data sets. The first set of allele frequencies is
based on Human Genetic Diversity Project (HGDP) pop-
ulation allele frequencies. The data were obtained from the
University of California, Santa Cruz (UCSC) table browser
(http://genome.ucsc.edu/cgi-bin/hgTables). We used the
allele frequencies from three closely related populations,
namely the Han Chinese, the Japanese, and the Cambodian
populations. The second set is based on allele frequencies
estimated from HapMap 3 (Altshuler et al. 2010b), where
we used the allele frequencies from three distantly related
populations: Centre d’Etude du Polymorphisme Humain
collected in Utah (CEU); Yoruba in Ibadan, Nigeria (YRI);
and Han Chinese in Beijing, China (CHB).
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Simulation scenarios: For each of the two sets of allele
frequencies we simulated four different scenarios each with
100,000 SNPs and three ancestral populations.

The simulated scenarios A, B, and C all consist of 50
samples with 30 nonadmixed samples from three ancestral
populations, 10 samples that are equally admixed from all
three populations, and 10 samples that are composed of two
of the ancestral populations in equal proportions; see top
plot in Figure 1. The sequencing depths are different be-
tween the three scenarios. In scenario A the average depth
varies between individuals. In scenario B each individual is
sequenced at an average depth of 2 and in scenario C we let
25 individuals have a high average depth (203) and 25
have a low average deoth (13).

In scenario D we examine the behavior of NGSadmix for
a wider range of admixture proportions. We simulated 340
individuals with 150 nonadmixed samples, 50 samples that
are equally admixed from all three ancestral populations,
and 50 samples that are composed of two of the ancestral
populations in equal proportions. We divided the remaining
90 samples into groups of 10 and gradually increased the
admixture proportion for two of the populations from 5% to
45% by steps of 5% (see Figure S9). This scenario was sim-
ulated 100 times. For each realization the individual depths
were uniformly sampled from 0.53 to 63 and the allele
frequencies were randomly sampled without replacement.

Simulation of genotype likelihoods: From the admixture
coefficients and the allele frequencies in the ancestral
populations, we simulate the genotypes of each individual
according to the probabilities given by Equation 4. With
these genotypes we generate the genotype likelihoods, using
Equation 1, by simulating the sequencing errors and sequenc-
ing depth, assuming a Poisson distribution. We assume
a symmetric error rate of 1% and assume that this error rate
is reflected in the base quality scores.

From the simulated genotype likelihoods we remove sites
with a minor allele frequency ,5% estimated from the ge-
notype likelihoods. We also remove sites with .80% miss-
ing data. For each simulated scenario we use the first
100,000 SNPs that pass these filters.

Calling genotypes: To compare NGSadmix results with
admixture estimates based on called genotypes, we called
genotypes from the simulated genotype likelihoods, using
two different methods: maximum-likelihood (ML) geno-
types where the genotype with the highest likelihood is
chosen and maximum posterior probability genotypes
[Hardy–Weinberg (HW) genotypes]. The posterior genotype
probability is found using a prior based on an estimate of
the minor allele frequency (Kim et al. 2011) under the as-
sumption of Hardy–Weinberg equilibrium. This prior is
shared for all individuals. To see the effect of using a cutoff
when calling genotypes we also estimated the admixture
proportions based on HW genotypes with a posterior prob-
ability .0.95 (filtered genotypes).

1000 Genomes sequencing data

Overlap with the HapMap 3 genotype data: The HapMap 3
(Altshuler et al. 2010b) data set contains genotypes for 1.6
million SNPs in 1184 reference individuals from 11 popu-
lations. Some of these individuals have been resequenced
in the 1000 Genomes Project (Altshuler et al. 2010a;
Abecasis et al. 2012). This allows us to validate NGSadmix
on low-coverage sequencing data by comparing our estimates
with admixture coefficients estimated from the HapMap 3
genotype data. From the 9 partially overlapping popula-
tions we chose 5 populations that all had at least 20 indi-
viduals, European (CEU), Yoruban (YRI), Chinese (CHB),
Mexican ancestry in the United States (MXL), and African
ancestry in the United States (ASW), and chose 20 unre-
lated individuals from each population to constitute a 5-
population scenario. Similarly we also chose 20 individuals
from each of two more closely related populations, namely
the Han Chinese (CHB) and the Japanese (JPT), to consti-
tute a 2-population scenario.

Analysis of sites with known genotypes: Using PLINK
(Purcell et al. 2007), we extracted SNPs from the HapMap
3 genotype data with a joint minor allele frequency (MAF)
.5%, with no more than 5% missing genotypes and with-
out being out of Hardy–Weinberg equilibrium (P .
0.000001). Genotype likelihoods were calculated using
Equation 1 from the 1000 Genomes low-coverage sequenc-
ing data for the sites overlapping the HapMap 3 genotype
data. To be able to compare NGSadmix results with called
genotypes based on haplotype imputation, we also per-
formed whole-genome haplotype imputation for the two
1000 Genomes data sets. For each site we first performed
a likelihood-ratio test for variability, assuming diallelic
SNPs, and chose a P-value cutoff of 1026. The likelihood
function used to test for variability is described in Kim et al.
(2011) and the method for finding the major and the minor
allele is described in Skotte et al. (2012). For the variable
sites the genotype likelihoods were calculated using Equa-
tion 1. Implementations of all methods mentioned above
are available in the ANGSD software (http://www.popgen.
dk/angsd). We used the calculated genotype likelihoods in
the haplotype imputation software Beagle (Browning and
Yu 2009). For the 100 individuals in the five-population
scenario we inferred 16,536,092 polymorphic sites and we
found 7,312,452 polymorphic sites in the 40 individuals in
the two-population scenario. For fast imputation we sepa-
rated the genome in 10-Mb regions and merged the im-
puted genotypes afterward. We then used the sites that
overlapped with the HapMap 3 genotypes for the admix-
ture analysis.

Analysis of inferred polymorphic sites: To assess the
performance on SNPs detected directly from the sequenc-
ing data we also inferred polymorphic sites from the 1000
Genomes low-coverage data instead of limiting our
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analysis to a subset of sites known to be polymorphic. For
the first 10 chromosomes we chose five random contiguous
10-Mb regions for a total of 500 Mb. This was done by calling
polymorphic sites across the genome, using the above-
mentioned likelihood-ratio test. Using genotype likelihoods

based on Equation 1 we inferred 2.9 million sites, and with
SAMtool’s genotype likelihoods we obtained 2.3 million
sites. Implementations of the genotype-likelihood estima-
tors and the likelihood-ratio test are available in the
ANGSD software (http://www.popgen.dk/angsd).

Figure 1 Scenario A simulations based on HGDP allele frequencies. The top plot is the true admixture proportions used for simulating the 50 samples.
Each bar reflects the admixture of a single individual. A single color bar means that there is no admixture, and proportions of admixture are seen as the
proportion of different colors. The second plot shows the individual average sequencing depths. The third plot shows the admixture proportions
estimated from genotype likelihoods using NGSadmix. The final two plots show admixture proportions estimated by ADMIXTURE from called
genotypes—ML genotypes and HW genotypes.
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Implementation

The presented method for estimating individual admixture
proportions based on genotype likelihoods, NGSadmix, has
been implemented in C++, using POSIX threads (Pthreads).
The input files are the general and widely used Beagle input
files (Browning and Yu 2009). The NGSadmix software is
available at http://www.popgen.dk/software.

Results

Using simulations we explore different study designs that
could occur for real data and evaluate the performance of
NGSadmix by comparing the estimated admixture propor-
tions to true admixture proportions as well as estimates of
admixture proportions based on genotypes called from the
simulated sequencing data. We then apply the method on
low-depth sequencing data from the 1000 Genomes Pro-
ject, while comparing the estimates to admixture propor-
tions inferred from HapMap 3 genotype data as well as
genotypes called from the sequencing data.

Simulations

We considered two different population scenarios for our
simulations: three closely related ancestral populations
based on HGDP allele frequencies and three more distant
populations based on HapMap 3 allele frequencies. For
each of these sets of allele frequencies, we simulated four
different study designs, denoted scenarios A, B, C, and D.
We simulated sequencing data conditional on the admix-
ture proportions and allele frequencies in the ancestral
populations. Further details of the simulations can be
found in Materials and Methods.

Scenario A: Variable depth: Inspired by the observed
average depth distribution in the 1000 Genomes data (see
Figure S1), we simulated 100,000 SNPs for 50 samples with
varying average depth based on HGDP frequencies, as de-
scribed in Materials and Methods. The true admixture pro-
portions are shown in the top panel of Figure 1 followed by
the individual average sequencing depths. The other panels
in Figure 1 show the estimated admixture coefficients using
NGSadmix, the estimated admixture coefficients based on
maximum-likelihood genotypes (ML), and the maximum
posterior genotypes (HW). On filtered HW genotypes (HW
filtered) we could not obtain convergence, and the estimates
are shown in Figure S6. NGSadmix performs better than the
analysis based on called genotypes no matter how the gen-
otypes were called. The HW genotypes called by applying
a prior based on the allele frequencies seem to perform
better than calling genotypes based on the highest genotype
likelihood (ML genotypes).

To quantify the performance beyond visual inspection
we calculated the root mean square deviation (RMSD) of
the estimated admixture proportions from the true admix-
ture proportions (see leftmost group of bars in Figure 2).

Using NGSadmix gives a RMSD of 0.16 while the best-performing
method based on called genotypes has an RMSD of 1.18.
Similarly, the largest deviation between estimated propor-
tions and true proportions is shown in Figure S2.

The same scenario was also simulated based on allele
frequencies from three distinct populations from HapMap 3. All
approaches perform better since the populations are easier to
distinguish (see Figure S5). Interestingly, HW genotypes do
worse than the ML genotypes for the more distant populations
(see Figure 2). NGSadmix still outperforms the methods based
on called genotypes.

Scenario B: Low depth: When simulating a scenario with
a low and equal depth of 23 for all individuals, calling gen-
otypes does not show the large bias clearly visible in the
variable-depth scenario (see Figure S3 and Figure S4).
NGSadmix still performs better with an RMSD of 0.11 while
the best-performing method based on called genotypes has an
RMSD of 0.18 in the HGDP-based simulations (HGDP Low in
Figure 2). Genotype callers based on multiple samples such as
using allele frequency priors generally generate better geno-
type calls than individual genotype callers (Nielsen et al.
2011). However, for this simulation the called ML genotypes
based solely on the individual genotype likelihoods give
a slightly better result. This is true both for the closely related
populations and for the distantly related populations.

Scenario C: High and low depth: This scenario seeks to
mimic a design where a reference panel is sequenced at high
depth or genotyped using SNP chips while some individuals
are sequenced at very low depth (see Figure S7 and Figure
S8). NGSadmix gives approximately correct admixture propor-
tions when simulating both distant and closely related popu-
lations. However, when calling genotypes the estimated
admixture proportions for the closely related populations re-
semble the difference in sequencing depth more than the ac-
tual ancestry. These problems are clearly reflected in the RMSD
and in the maximum difference between the true and esti-
mated admixture proportions (High/Low in Figure 2 and Figure
S2). For the HapMap populations the ML genotypes give good
results compared to the HW and filtered genotypes.

Scenario D: Small admixture proportions: In practice the
contribution of a single ancestral population to an individ-
ual’s ancestry can be much lower than the proportions stud-
ied above. In this scenario we simulated individuals with
sequencing depth between 0.53 and 63 and with a wide
range of admixture proportions as low as 5%; see top panel
in Figure S9. NGSadmix identifies even low levels of ances-
tral contribution quite accurately for distantly as well as
closely related populations (see Figure S9 and Figure
S10). Figure S9 and Figure S10 illustrate how sequencing
depth can severely bias the admixture proportions estimated
from called genotypes. To further describe the precision of
the estimated admixture proportions, we simulated 100
realizations of this scenario. For each simulation we also
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estimated the admixture proportions directly from the true
simulated genotypes. Figure S11 and Figure S12 show that
even though some accuracy is lost, NGSadmix does not per-
form much worse than estimates from the true simulated
genotypes. From Figure S13 we see that NGSadmix gener-
ally outperforms estimating admixture proportions from
called genotypes regardless of the admixture proportions.
Figure S14 and Figure S15 show that the distribution of
the coefficients estimated from called genotypes strongly
depends on sequencing depth with small differences be-
tween admixture proportions.

1000 Genomes sequencing data

We tested the performance of our method on the 1000
Genomes low-coverage sequencing data. We selected 100
individuals from five distinct HapMap 3 populations that
overlap with the 1000 Genomes low-coverage sequencing
data. To evaluate the performance, we first used ADMIX-
TURE (Alexander et al. 2009) on publicly available HapMap
3 genotypes. Results assuming three ancestral populations
are shown in Figure 3 and those for four populations are in
Figure S17. For the same sites we generated genotype like-
lihoods based on the sequencing data. The admixture pro-
portions estimated by NGSadmix are shown in the second
panels of Figure 3 and Figure S17. The estimates based on
sequencing data are almost indistinguishable from those
based on HapMap 3 genotypes with the maximum observed
difference in admixture proportion of 1.5% (labeled K= 3 in
Figure S2). Analysis based on called genotypes also captures
most of the admixture signal but for HW genotypes several

of the nonadmixed individuals show a large amount of ad-
mixture (see Figure S16). Estimates based on called geno-
types in general have a higher RMSD and a higher
maximum deviance (labeled K = 3 in Figure 2 and Figure
S2). However, estimates based on haplotype imputed geno-
types performed only slightly worse than NGSadmix. Similar
results are observed when assuming a higher number of
populations (Figure S17).

We also tested NGSadmix on Japanese and Han Chinese
since these populations are more closely related and are
much harder to distinguish. The inferred population struc-
ture might not be due to two distinct homogeneous
ancestral populations but might instead be the result of
a more complex population history. All of the methods
perform worse in this data set. As observed in the simulated
data, the estimated admixture proportions correlate with
the sequencing depth for ML and HW genotypes, while the
admixture proportions estimated by NGSadmix and haplo-
type imputed genotypes correspond fairly well to those
inferred using HapMap 3 genotypes (see Figure S18).

So far only sites that are known to be polymorphic have
been analyzed. For some populations a large set of known
SNPs might not be available. Therefore, we inferred SNPs
from the sequencing data and based the analysis on those
SNPs. We chose to call SNPs from 50 10-Mb randomly
selected regions. This resulted in .2 million inferred SNPs.
The results based on this analysis can be seen in Figure S19.
Note that for the admixed individuals we cannot expect the
exact same results from two different sets of SNPs since
alleles from one population will be present in long tracts

Figure 2 Root mean square deviation (RMSD) from the true admixture proportions for the different estimated admixture proportions. Left, scenario A,
B, and C simulations using HGDP frequencies and then scenario A, B, and C simulations using HapMap frequencies. Right, the 1000 Genomes five-
population scenario sample assuming K = 3 ancestral populations and K = 4 ancestral populations and then the 1000 Genomes two-population scenario
sample assuming K = 2 ancestral populations. Note that RMSD is shown on log-scale.

Estimating Admixture from NGS Data 699

http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS11.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS12.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS13.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS14.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS15.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS17.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS17.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS2.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS16.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS2.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS2.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS17.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS18.pdf
http://www.genetics.org/content/suppl/2013/09/04/genetics.113.154138.DC1/FigureS19.pdf


along the genome. However, we still see a very high corre-
lation with the analysis from the SNP chip data. We esti-
mated genotype likelihoods using both Equation 1 and SAMtools
(H. Li et al. 2009). Although they gave a very different number of
polymorphic sites, they gave similar admixture proportion
estimates.

Convergence and computational speed

Convergence may sometimes be a problem due to the large
number of parameters that are estimated simultaneously.
Therefore, each scenario was run multiple times with different
random starting points. Using NGSadmix on genotype like-
lihoods, all runs typically converge to the same maximum.
When calling genotypes from the sequencing data, conver-
gence was in some scenarios more of a problem, and here we
had to run ADMIXTURE many times to determine the
maximum (see Table S1).

When applying NGSadmix on 100 individuals from the
1000 Genomes project with almost 3 million SNPs, the
method took on average almost 5 hr, using 10 central

processing unit (CPU) threads. When running ADMIXTURE
on SNP chip genotypes from the same data, the run time was
on average 0.5 hr, also using 10 CPU threads. For the 100
realizations of scenario D with 340 individuals the average
time for NGSadmix for the HapMap frequencies was
12.2 min (SD = 1.9), using 6 CPUs.

Discussion

Using simulations and real sequencing data, we have shown
that it is possible to accurately estimate the admixture
coefficients based on genotype likelihoods. This approach
works regardless of depth distribution, admixture propor-
tion, and sequencing/genotype technology, assuming that
the error rates are reflected in the genotype likelihoods. The
algorithm does not use any outside information from
reference populations, and thus it can be applied in studies
where appropriate reference panels from ancestral popula-
tions are not available. Calling genotypes can be an option
if the depth is high enough to call genotypes correctly.

Figure 3 Estimated admixture
proportions from both HapMap
3 genotype data (top) and
NGSadmix results (bottom) for
low-depth sequencing data from
the 1000 Genomes.
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However, having a low depth can bias the results of the
admixture analysis as we have shown through simulations.
In our simulations we have shown that basing the analysis
on genotype likelihoods always outperforms the called
genotypes. The biggest difference is seen when the popula-
tions are closely related and when depth distribution varies
between individuals. The bias from calling genotypes occurs
mainly when the depth differs between groups of individ-
uals since these groups will have differential genotype
errors, which is not the case when all individuals have
exactly the same depth. However, even if the depth is
exactly the same for all individuals, the genotype-likelihood
approach is always better. This is because the genotype
likelihoods contain all relevant information while the un-
certainty of a genotype is lost when calling genotypes. In the
presented results all individuals had an average depth of at
least 0.53. It is hard to make a precise statement for the mi-
nimum depth needed since this depends on other factors
such as how different the admixing populations are, the
number of individuals included in the analysis, and most
importantly the depth of the other individuals. Similarly it
is also hard to make a precise statement for the minimum
number of SNPs needed, as this depends on the above-men-
tioned factors, as well as on how informative each marker is.
NGSadmix suffers from the same problems as other methods
in that too much missing data can give rise to convergence
problems and we recommend removing sites with .80%
missing data. This means that in general the depth can be
very low for some individuals but not for all.

Calling genotypes jointly for multiple samples will in
general give a higher accuracy of the genotype calls (Nielsen
et al. 2011). Joint genotype calling can be performed based
on the allele frequencies or based on the haplotype frequen-
cies as used in haplotype imputation. However, for admixed
individuals or individuals with unknown ancestry the fre-
quencies used for the genotype calling might not represent
the frequencies of the individuals’ ancestry. This is the rea-
son we see the ML genotypes perform better than the HW
genotype in most of the simulations and for the 1000
Genomes data sets. However, as we have demonstrated,
even the ML genotypes can lead to very biased admixture
estimates. If individuals are admixed, the genotypes should
be called using an allele frequency prior that reflects their
ancestry. This is precisely the prior estimated by NGSadmix
by weighting the allele frequencies for each population by
the individual ancestry. Thus NGSadmix can also be used to
call genotypes from NGS data even if individuals are
admixed. For the two 1000 Genomes data sets we also used
Beagle (Browning and Yu 2009) to call genotypes though
haplotype imputation, which resulted in better RMSD than
that of both ML and HW genotypes but slightly worse than
that of NGSadmix. However, this will probably not always be
true. Given a large and fairly homogeneous sample, the
haplotype imputation could potentially outperform NGSadmix,
but a more heterogeneous sample with large difference

in depth and populations could potentially lead to large
biases.

Admixture analysis is important for many scientific fields.
For example, understanding the individual’s ancestry is cru-
cial in disease association studies. If the population structure
of one’s sample is not dealt with, it will lead to an increase in
the false positive rate (Marchini et al. 2004). For low-depth
sequencing data the presented method can first be used to
estimate the admixture proportion. These estimates can
then be used as covariates in a generalized linear model
framework as that also takes genotype uncertainty into ac-
count (Skotte et al. 2012). This will allow researchers to
perform association on admixed samples while taking geno-
type uncertainty into account without inflating the false
positive rates.

Admixture analysis is equally important in population
genetics where is it used to infer information of the history
of a sample or population. For some samples, especially
ancient DNA samples, it is not possible to sequence at high
depth. However, as we have shown it is possible to infer the
admixture proportion even for samples sequenced at very
low depth if a reference panel of high quality is available.
This panel could be either individuals sequenced at high
depth or individuals genotyped using a SNP chip. Genotype
errors from the SNP chip can easily be incorporated in the
analysis by estimating a genotype likelihood of the observed
genotype given the true genotype and the error rate. This
will allow samples genotyped on different platforms with
different genotyping errors to be analyzed jointly without
introducing a bias. Thus NGSadmix can also be very useful
for traditional genotype data.

Convergence is sometimes a problem when relying on
numerical optimization. NGSadmix converges almost every
time for all presented scenarios. For the called genotypes,
convergence can be a problem. For certain scenarios we had
to run ADMIXTURE hundreds of times to determine the
maximum likelihood. This is not a problem with the
ADMIXTURE implementation, but it is the bias caused by
calling genotypes that can produce many local maxima.

The computational speed can be a problem when dealing
with next generation sequencing data. However, the pre-
sented analysis is based only on sites that are polymorphic,
which means that only a small fraction of the genome is
included in the analysis. Even though NGSadmix is slower
than ADMIXTURE, it is still computationally feasible to
estimate admixture proportions in a very large number of
individuals.

Finally it should also be addressed that the performance
of this model is limited by the correctness of the genotype
likelihoods. If there is some error structure that is not
properly accounted for in the calculation of genotype like-
lihoods, the method might give biased results. However, for
the data analyzed from the 1000 Genomes Project we did
not observe any such problem and achieved results that
were virtually indistinguishable from the results from the
HapMap SNP chip genotypes. In addition, changing genotype
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likelihood estimators did not change the results, which demon-
strates the robustness of NGSadmix.
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File S1

EM algorithm

We wish to optimize the likelihood

P (X|Q,F ) =
∏
ij

P (Xij |Q,F ), (12)

given in equation (6). To derive an EM algorithm we exploit two latent variables. We consider a random

allele at site j for individual i, we let Zij denote the corresponding ancestral population of this allele and

we let Mij be the indicator that this allele is allele A.

A step in the EM algorithm consists of updating the previous parameter values Qn and Fn by optimizing

EZ,M |X,Qn.Fn
[logP (X,Z,M | Q,F )] (13)

in Q and F . We first determine the conditional distribution of Z and M given X,Qn.Fn.

P (Zij = k,Mij = 1 | Xij , Qn, Fn) = cijkn E[Gij | Xij , Qn, Fn]/2

P (Zij = k,Mij = 0 | Xij , Qn, Fn) = dijkn (2− E[Gij | Xij , Qn, Fn])/2

where

cijkn =
qikn f jk

n∑
l q

il
nf

jl
n

dijkn =
qikn (1− f jk

n )∑
l q

il
n (1− f jl

n )

In addition we note that

P (Zij = k,Mij = 1 | Q,F ) = qikf jk

P (Zij = k,Mij = 0 | Q,F ) = qik(1− f jk).
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It then follows that

EZ,M |X,Qn.Fn
[logP (X,Z,M | Q,F )] =

∑
ij

EZij ,Mij |Xij ,Qn.Fn
[logP (Xij , Zij ,Mij | Q,F )]

∝
∑
ij

∑
k

log(qikf jk)aijkn + log(qik(1− f jk))bijkn

=
∑
ij

∑
k

log(qik)(aijkn + bijkn ) + log(f jk)aijkn + log(1− f jk)bijkn

where

aijkn = cijkn E[Gij | Xij , Qn, Fn]/2

bijkn = dijkn (2− E[Gij | Xij , Qn, Fn])/2

The part of the expectation that depends on f jk is

log((f jk)
∑

i a
ijk
n (1− f jk)

∑
i b

ijk
n )

and it follows that

f jk
n+1 =

∑
i a

ijk
n∑

i a
ijk
n +

∑
i b

ijk
n

Recall that we are optimizing under the constraint that
∑

k q
ik = 1. The part of the expectation depending

on (qi1, . . . , qiK) is given by

∑
k

log((qik)(
∑

j(a
ijk
n +bijkn ))) =

∑
k

log((qik)sk)

with sk =
∑

j(a
ijk
n + bijkn ). It follows (e.g. using Lagrange multipliers) that

qikn+1 = sk/
∑
l

sl =
1

M

∑
j

(aijkn + bijkn ).
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Figure S1: Average individual depth for 1000 genomes sequencing data. Only sites over-
lapping the SNP chip data was used. Bases were filtered using a mapping quality of at
least 30 and a base quality score of at least 20.
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Figure S2: Maximum deviation of estimated admixture proportions from true admixture
proportions. From the left: Scenario A, B and C simulations using HGDP frequencies, then
scenario A, B and C simulations using HapMap frequencies. Followed by the 1000 genomes
5-population scenario sample assuming K = 3 and K = 4 ancestral populations. Finally
the 1000 genomes 2-population scenario sample assuming K = 2 ancestral populations.
Note that the deviation is shown on log-scale.
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Figure S3: Scenario B (low depth 2X) with 50 samples for 100,000 SNP sites simulated
from HapMap frequencies. The first panel shows the true admixture proportions, the
second shows the result of NGSadmix on the simulated genotype likelihoods and the last
three panels show the estimated admixture proportions from called genotypes (ML, HW
and filtered genotypes as described in the Materials and Methods section).
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Figure S4: Scenario B (low depth 2X) with 50 samples for 100,000 SNP sites simulated
from HDGP frequencies. The true admixture proportions can be seen in figure S3. The
first panel shows the results of NGSadmix on the simulated genotype likelihoods and the
other three panels show the admixture proportions estimated from ML genotypes, HW
genotypes and filtered genotypes.
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Figure S5: Scenario A (variable depths between 1X and 6X) with 50 samples for 100,000
SNP sites simulated from HapMap frequencies. The individual sequencing depths are
shown in the top plot. The true admixture proportions are shown in figure S3. The second
panel shows the admixture proportions obtained from the simulated genotype likelihoods
using NGSadmix. The remaining three panels shows the admixture proportions estimated
from ML genotypes, HW genotypes and filtered genotypes.
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Figure S6: Scenario A (variable depths between 1X and 6X) with 50 samples for 100,000
SNP sites simulated from HDGP frequencies. The sequencing depth is show in the top
plot. The true admixture proportions is shown in figure S3. The second panel shows the
admixture proportions obtained from the simulated genotype likelihoods using NGSad-
mix. The remaining three panels shows the admixture proportions estimated from ML
genotypes, HW genotypes and filtered genotypes.
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Figure S7: Scenario C simulations based on HapMap frequencies. We simulated 50 samples
for 100,000 SNP sites. The sequencing depth is show in the top plot. The true admixture
proportions is shown in figure S3. The second panel shows the admixture proportions
obtained from the simulated genotype likelihoods using NGSadmix. The remaining three
panels shows the admixture proportions estimated from ML genotypes, HW genotypes and
filtered genotypes.
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Figure S8: Scenario C simulations based on HGDP frequencies. We simulated 50 samples
for 100,000 SNP sites. The sequencing depth is show in the top plot. The true admixture
proportions is shown in figure S3. The second panel shows the admixture proportions
obtained from the simulated genotype likelihoods using NGSadmix. The remaining three
panels shows the admixture proportions estimated from ML genotypes, HW genotypes and
filtered genotypes.
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Figure S9: Scenario D simulations (variable depth between 0.5X and 6X and varying range
of admixture proportions). Based on HGDP frequencies we simulated 340 samples for
100,000 SNP sites. The sequencing depths are shown in the bottom plot, within each
population the individuals has been sorted by sequencing depth. The true admixture
proportions are shown in the top panel. The second panel shows the admixture proportions
obtained from the simulated genotype likelihoods using NGSadmix. The remaining three
panels shows the admixture proportions estimated from true genotypes, ML genotypes and
HW genotypes.
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Figure S10: Scenario D simulations (variable depth between 0.5X and 6X and varying
range of admixture proportions). Based on HapMap frequencies we simulated 340 samples
for 100,000 SNP sites. The sequencing depths are shown in the bottom plot, within each
population the individuals has been sorted by sequencing depth. The true admixture
proportions are shown in the top panel. The second panel shows the admixture proportions
obtained from the simulated genotype likelihoods using NGSadmix. The remaining three
panels shows the admixture proportions estimated from true genotypes, ML genotypes and
HW genotypes.
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Figure S11: RMSD for 100 simulations of scenario D for each of the two sets of allele
frequencies in the ancestral populations. The RMSD is calculated with respect to the true
admixture proportions. “True genotypes” is for admixture proportions estimated from the
true simulated genotypes. “NGSadmix” is based on admixture proportions estimated with
NGSadmix from the simulated genotype likelihoods. “ML” is for admixture proportions
estimated from ML genotypes and “HW” is the RMSD for admixture proportions estimated
from HW genotypes.
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Figure S12: Maximum deviance for 100 simulations of scenario D for each of the two sets
of allele frequencies in the ancestral populations. The deviance is calculated as the maxi-
mum difference between the true and observed admixture proportion. “True genotypes” is
for admixture proportions estimated from the true simulated genotypes. “NGSadmix” is
based on admixture proportions estimated with NGSadmix from the simulated genotype
likelihoods. “ML” is for admixture proportions estimated from ML genotypes and “HW”
is the deviance for admixture proportions estimated from HW genotypes.
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Figure S13: Maximum deviance for all individuals in the 100 simulations of scenario D
for the HGDP allele frequencies in the ancestral populations, stratified according to which
of the 14 different admixture proportions we have simulated (shown in figure 12). The
deviance is calculated as the maximum difference between the true and observed admixture
proportion. NGSadmix is based on admixture proportions estimated with NGSadmix
from the simulated genotype likelihoods. ML is for admixture proportions estimated from
ML genotypes and HW is the deviance for admixture proportions estimated from HW
genotypes.
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Figure S14: Maximum deviance for the low depth individuals in the 100 simulations of sce-
nario D for the HGDP allele frequencies in the ancestral populations, stratified according to
which of the 14 different admixture proportions we have simulated, and have a sequencing
depth smaller than 1.5 (shown in figure 12). The deviance is calculated with respect to the
true admixture proportions. NGSadmix is based on admixture proportions estimated with
NGSadmix from the simulated genotype likelihoods. ML is for admixture proportions es-
timated from ML genotypes and HW is the deviance for admixture proportions estimated
from HW genotypes.
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Figure S15: Maximum deviance for the high depth individuals in the 100 simulations of
scenario D for the HGDP allele frequencies in the ancestral populations, stratified accord-
ing to which of the 14 different admixture proportions we have simulated, and having a
sequencing depth higher than 5 (shown in figure 12). The deviance is calculated with
respect to the true admixture proportions. NGSadmix is based on admixture proportions
estimated with NGSadmix from the simulated genotype likelihoods. ML is for admix-
ture proportions estimated from ML genotypes and HW is the deviance for admixture
proportions estimated from HW genotypes.
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Figure S16: Estimated admixture proportions from both SNP chip (top) and low depth
sequencing data from the 1000 genomes. Results are based on 20 individuals from each of
the five populations: African Americans (ASW), European (CEU), Han Chinese (CHB),
Mexicans (MXL) and Yoruban (YRI), assuming three ancestral populations. Only sites
overlapping the two data sets were used. NGSadmix is based on genotype likelihoods, ML
is the genotype calling method that calls genotypes with the highest genotype likelihood.
HW are called genotypes estimated by using allele frequency as prior and filtered are the
HW genotypes where genotypes are only called if the posterior probability is above 95%.
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Figure S17: Estimated admixture proportions from both SNP chip (top) and low depth
sequencing data from the 1000 genomes. Results are based on 20 individuals from each of
the five populations: African Americans (ASW), European (CEU), Han Chinese (CHB),
Mexicans (MXL) and Yoruban (YRI), assuming four ancestral populations. Only sites
overlapping the two data sets were used. NGSadmix is based on genotype likelihoods, ML
is the genotype calling method that calls genotypes with the highest genotype likelihood.
HW are called genotypes estimated by using allele frequency as prior and filtered are the
HW genotypes where genotypes are only called if the posterior probability is above 95%.
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Figure S18: Estimated admixture proportions from both SNP chip and low depth sequenc-
ing data from the 1000 genomes. Results are based on 20 individuals from each of two
populations: Japanese (JPT) and Han Chinese (CHB), assuming two ancestral popula-
tions. Only sites overlapping the two data sets were used. The first plot is the average
individual depth followed by the admixture proportions estimated from SNP chip data.
NGSadmix is based on genotype likelihoods, ML is the genotype calling method that calls
genotypes with the highest genotype likelihood. HW are called genotypes estimated by
using allele frequency as prior and filtered are the HW genotypes where genotypes are only
called if the posterior probability is above 95%.
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Figure S19: Admixture using tow different genotype likelihood estimators. Estimated
admixture proportions from both SNP chip (top) and low depth sequencing data from
the 1000 genomes. Results are based on 20 individuals from each of the five populations:
African Americans (ASW), European (CEU), Han Chinese (CHB), Mexicans (MXL) and
Yoruban (YRI), assuming three ancestral populations. Only sites overlapping the two data
sets were used. The first plot is the admixture proportions estimated from SNP chip data.
The two last plots shown are based on NGSadmix using GATK genotype likelihoods and
SAMtools modified MAQ model for genotype likelihoods. The sites included in the analysis
are inferred from the sequencing data from 50 random 10Mb regions
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Table 1: Table showing the fraction of times the EM algorithm has converged to the same
maximum. NGSadmix is the convergence of NGSadmix on genotype likelihoods. ML is the
convergence of ADMIXTURE on ML genotypes. HW is the convergence of ADMIXTURE
on HW genotypes. Filtered is the convergence of ADMIXTURE on filtered genotypes.
SNP chip is the convergence of ADMIXTURE on HapMap 3 genotype data. In Scenario
D the average number of converged iterations is shown.

HGDP frequencies NGSadmix ML HW Filtered SNP chip

Scenario A 6/6 19/100 68/100 1/1500
Scenario B 5/6 95/100 96/100 1/100
Scenario C 6/6 1/1500 98/100 100/100
Scenario D 5.96/6 6/6 6/6

HapMap frequencies

Scenario A 6/6 20/20 20/20 11/20
Scenario B 6/6 20/20 20/20 1/1500
Scenario C 6/6 20/20 14/20 20/20
Scenario D 6/6 6/6 5.23/6

1000genomes/HapMap ASW-CEU-CHB-MXL-YRI

K = 3 6/6 6/6 3/6 6/6 6/6
K = 4 10/17 3/6 6/6 22/100 23/50

1000genomes/HapMap JPT-CHB

K = 2 5/50 16/500 2/500 1/500 10/50
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