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ABSTRACT This work is concerned with the historical progression, to fixation, of an allele in a finite population. This progression is
characterized by the average frequency trajectory of alleles that achieve fixation before a given time, T. Under a diffusion analysis, the
average trajectory, conditional on fixation by time T, is shown to be equivalent to the average trajectory in an unconditioned problem
involving additional selection. We call this additional selection “fictitious selection”; it plays the role of a selective force in the
unconditioned problem but does not exist in reality. It is a consequence of conditioning on fixation. The fictitious selection is frequency
dependent and can be very large compared with any real selection that is acting. We derive an approximation for the characteristic
trajectory of a fixing allele, when subject to real additive selection, from an unconditioned problem, where the total selection is
a combination of real and fictitious selection. Trying to reproduce the characteristic trajectory from the action of additive selection, in
an infinite population, can lead to estimates of the strength of the selection that deviate from the real selection by .1000% or have
the opposite sign. Strong evolutionary forces may be invoked in problems where conditioning has been carried out, but these forces
may largely be an outcome of the conditioning and hence may not have a real existence. The work presented here clarifies these issues
and provides two useful tools for future analyses: the characteristic trajectory of a fixing allele and the force that primarily drives this,
namely fictitious selection. These should prove useful in a number of areas of interest including coalescence with selection, experi-
mental evolution, time series analyses of ancient DNA, game theory in finite populations, and the historical dynamics of selected alleles
in wild populations.

THE phenomenon of fixation, where an allele becomes
fully established in a population, was first studied by

Fisher (1922) and Haldane (1927). Building on results pre-
viously obtained by Fisher (1922), Haldane (1927) showed
that the probability of fixation of a new beneficial allele in
a large population is �2s, where s is the allele’s selective
advantage (i.e., its selection coefficient). For typical values
of s, the probability of fixation of a beneficial allele is very
small. Hence even in a large population, the majority of
positively selected alleles are unlikely to fix. The probability
of fixation of neutral and deleterious mutations is nonzero
but lies beyond the reach of Haldane’s result; they are even

less likely to fix than beneficial mutations (Kimura 1962).
However, despite the improbability of any new allele fixing,
over time there is repeated production of new alleles in
a population, so that eventually fixation will occur. Apart
from the long-term changes in a population that fixation
entails, we note that alleles “on the way” to fixation have
intermediate and high frequencies for extended periods of
time, and the associated variation has important implications
for genetics and evolution. In the present work we are pri-
marily concerned with the progression of alleles to fixation.

Since the early studies cited above, there have been
various concepts of population genetics, including fixation,
the probability of fixation, and the expected time to fixation,
which have played a pivotal role in the development of the
subject. These essential ingredients of the neutral theory of
molecular evolution (Kimura 1983) appear in more recent
developments, such as in methods to estimate the propor-
tion of mutations under positive selection (see, e.g., Messer
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and Petrov 2013). The concept of fixation was somewhat
eclipsed, in the 1990s, with the coming of age of retrospec-
tive population genetics and coalescent theory but today
there are a number of good reasons to return to studying
fixation.

First, despite important advances in modeling coales-
cence with selection, i.e., the selection ancestral graph
(Krone and Neuhauser 1997), these new models have been
hard to implement. The main approach used today to ana-
lyze the coalescent of a sample of DNA sequences, where
both drift and selection occur, is to combine forward and
backward simulations. Briefly, the first step is to perform
simulations that go forward in time and incorporate selec-
tion, keeping track of the frequency of a beneficial allele.
Then, via simulating backward in time, the coalescent is
used to reconstruct the genealogy of the sampled individu-
als, conditional on the frequency of the beneficial allele—
which was determined in the simulations of the first step
(Teshima and Innan 2009; Ewing and Hermisson 2010).

The second reason comes from advances in experimental
evolution. As has been stressed by Patwa and Wahl (2008)
and exemplified by Gifford et al. (2012), models of fixation
can now be tested. For example, Gifford et al. (2012) used
the fungus Aspergillus nidulans to test a model of the prob-
ability of an allele surviving genetic drift—which is a major
component of the probability of fixation.

Third, and in a similar vein, we note that in studies of
ancient DNA (Skoglund et al. 2012), in studies of viruses
(Rodrigo and Felsenstein 1999), and in experimental evolu-
tion (Illingworth et al. 2012), it is now possible to acquire
the time series of an allele’s frequency. In experimental evo-
lution, one major issue is that even strongly favored alleles
take a long time to fix. In ancient DNA studies, there are
generally only a limited number of time points available in
the series. In both of these cases it would be very useful to be
able to extrapolate the full trajectory of an allele’s frequency
from limited information.

Fourth, a better understanding of the process of fixation
will help to understand the dynamics at selected loci and
may cast new light on well-known examples of allele
trajectories in wild populations. Possibly the best known is
that of the scarlet tiger moth, Callimorpha dominula, where
a wing-color polymorphism has been tracked since 1939 in
the Cothill reserve population in Oxfordshire, Britain. These
longitudinal data do not trace the allele frequency from
mutation to fixation, but from a time in 1939 where it had
reached a frequency of �10%. The frequency then pro-
ceeded to decline to a recorded temporary loss during the
1960s (Ford and Sheppard 1969; O’Hara 2005). This study
has been at the center of an ongoing debate, since the time
Fisher and Ford (1947) dismissed genetic drift as the likely
cause of this decline, principally on the basis of the esti-
mated (large) population size. Instead, they argued for fluc-
tuating selection (for recent work on fluctuating selection,
see, e.g., Huerta-Sanchez et al. 2008; Waxman 2011a).
Wright (1948) was the first to point out that there were

probable scenarios consistent with an effective population
size that is much smaller than the estimated census size. The
most recent analysis is supportive of Wright’s notion that,
although selection is operating, a greater proportion of var-
iation in allele frequencies is explained by drift (O’Hara
2005). Less controversial examples include the fixation of
SNPs associated with drug resistance in the malarial parasite
Plasmodium falciparum (Taylor et al. 2012). Here, mutations
found segregating at moderate frequencies (�20%), in two
genes, went to fixation in just 9 years after the widespread
implementation of the drug. Strong directional trajectories,
such as these, are atypical of drift and are often used as
arguments for selection, simply by deduction. Another ex-
ample is the peppered moth Biston betularia, whose melanic
morph has been noted since the mid-19th century in the
United Kingdom and recorded since 1959 at Caldy Common,
England (Grant et al. 1996). Despite large fluctuations in the
estimated population size at this site, the trajectory fits well
with expectations that are based on a constant positive selec-
tion coefficient; explorations of multiple populations through-
out England also found trajectories that are consistent with
constant selection during fixation of a typical allele (Cook and
Turner 2008). The above examples are valuable glimpses of
the dynamics of mutant alleles in the wild, but provide
limited scope for generalization.

Perhaps more useful are examples that present the
known end point of a beneficial mutation’s path to fixation,
such as human lactase persistence among European popula-
tions and fixation of the FY*O allele, which confers resis-
tance to P. vivax in populations of Africa, where malaria is
endemic (Sabeti et al. 2006). For cases such as these, the
typical form of an allele’s frequency trajectory, combined
with knowledge of additional historical events, can allow
us to understand the path to fixation and the path from
fixation to the allele’s origination. The typical trajectory
can give us the opportunity to make a plausible reconstruc-
tion of events.

While there has been a lot of work on the probability of
fixation (for recent work see, e.g., Otto and Whitlock 1997;
Uecker and Hermisson 2011; Waxman 2011a), little or no
theoretical work has been devoted to inferring the typical
way that fixation actually occurs. The present work aims to
remedy this omission. We present results that allow us to
understand and calculate the typical route to fixation. We
anticipate that the results presented here will be useful in
future theoretical and experimental studies, for understand-
ing and explaining the way factors, such as demographic
and environmental changes, influence the progression of
an allele to fixation.

Trajectory of an Allele

An important notion in this work is the trajectory of an
allele. Knowing an allele’s trajectory means knowing its (rel-
ative) frequency for a range of relevant times. Examples of
trajectories that result in fixation are given in Figure 1.
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The present work is primarily concerned with under-
standing the characteristic trajectory of alleles that achieve
fixation in a specific time. We adopt a natural definition of
the characteristic trajectory, namely the average or expected
trajectory. We can obtain the expected trajectory, which fixes
by a specified time, by carrying out an average over many
trajectories, all of which start with identical initial frequen-
cies and all of which fix by the specified time. The expected
trajectory is a key aspect of fixation. Apart from being
a guide of the historical path, as noted above, it largely
determines averages of quantities that depend on the allele’s
frequency—when deviations from the expected value are
either small or largely cancel out.

In this work we investigate (i) the shape of the
characteristic trajectory, for alleles that achieve fixation;
(ii) the important factors influencing the characteristic
trajectory; and (iii) the extent to which observing fixation
can bias our estimates of the level of selection that is acting.

We present an analysis that addresses (i), (ii) and (iii)
and provides an approximation of the characteristic (i.e.,
expected) trajectory.

Given that we are asking questions about trajectories that
actually achieve fixation means we are ignoring trajectories
that lead to other outcomes. Focusing attention on only
a subset of all trajectories is an act of conditioning in the
language of probability theory. It may not be obvious at this
point, but such conditioning leads to identical results to
those derived from a related problem, where no condition-

ing is carried out (hence all trajectories are used in the
analysis), but there is additional selection acting. This addi-
tional selection ensures that the trajectories in the uncondi-
tioned problem achieve the specified outcome (i.e., they
achieve fixation by a given time). Since this additional se-
lection does not exist in the biological system under consid-
eration, but is a theoretical construct, we describe it as
“fictitious”. The fictitious selection is a direct manifestation
of the conditioning in the original problem.

There are advantages in viewing a conditioned problem as
an unconditioned problem with what is generally an addi-
tional evolutionary force acting. First, an intuitive understand-
ing can be gained of what factors are shaping the characteristic
trajectory in such problems. Second, using the fictitious
evolutionary force in a theoretical analysis suggests new ways
of looking at the problem and new ways of proceeding.

Background

We present an analysis of an unlinked locus of interest in
a randomly mating diploid sexual population. The locus has
two alleles, denoted A and B, and generations are nonover-
lapping. Censusing the population in adults, we reserve the
term frequency for the proportion of all genes at the locus in
adults that are the A allele. The frequency in generation t is
written as X(t), where t = 0, 1, 2, . . . .

Infinite population

Consider first a population whose size is infinite, so there are
no effects of random genetic drift and the frequency of the A
allele at the locus of interest changes in a completely pre-
dictable (i.e., deterministic) manner over time. We assume
the frequency of this allele, X(t), changes by only a small
amount each generation so its dynamics are well described
by the differential equation dX/dt = M(X, t). In this equa-
tion, it is useful to think of M(X, t) as the value of the “force”
that acts when the frequency has the value X at time t. The
function M(X, t) contains the effects of any migration, mu-
tation, and selection that are acting. If M(X, t) is zero for all
X, it signals the absence of all evolutionary forces and the
frequency does not change; this describes a neutral locus. If
there are evolutionary forces acting, then M(X, t) is gener-
ally nonzero, and it causes the frequency to change. For
definiteness, we restrict the theoretical considerations of this
work to the important case of additive selection (also called
directional selection). In terms of a selection coefficient s of
the A allele, additive selection is defined by the AA, AB, and
BB genotypes having relative fitnesses of 1 + 2s, 1 + s, and
1, respectively. Throughout this work we assume, as is often
the case, that natural values of s are very small (jsj � 1). We
thus neglect terms in s2 within M(X, t) and obtain M(X, t) =
sX(1 2 X). The resulting equation, which determines the
trajectory of the frequency of the A allele, is

dX
dt

¼ sXð12XÞ: (1)

Figure 1 (A) Three deterministic trajectories of the frequency of an allele
in an infinite population. The trajectories are associated with three differ-
ent values of the selection coefficient, s, in a model of additive selection
(see Equation 1). The selection coefficients used are s =20.01, 0.00, 0.01
and the initial frequency is y = 0.2. Given the infinite size of the popula-
tion, random genetic drift does not occur and, hence strictly, neither does
fixation. However, for positive selection coefficients, trajectories approach
unity and can be reasonably described as ultimately fixing, while trajec-
tories associated with negative or zero selection coefficients do not ap-
proach unity, and so do nothing resembling fixation. (B) Three particular
trajectories of the allele frequency in a finite population of size N = 100.
The trajectories are subject to random genetic drift and additive selection;
the selection coefficients and initial frequency used are again s = 20.01,
0.00, 0.01 and y = 0.2. The trajectories displayed all undergo fixation.
Trajectories associated with zero or negative selection coefficients have
a nonzero probability of achieving fixation due to random genetic drift.
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The solution of Equation 1 exhibits different behaviors,
depending on the value of the selection coefficient s. When s
is positive, the solution logistically grows toward unity, see
Figure 1A, showing what we might call “fixation-like behav-
ior”. Fixation cannot, strictly, occur in an infinite population:
the allele frequency changes continuously and never reaches
a value of unity. However, the approach of the frequency
toward unity is so strongly reminiscent of fixation that, for
practical purposes, its long-term behavior is not usefully
distinguished from fixation. When s is zero or negative, no
such approach of the frequency to unity occurs (Figure 1A).

Finite population

Consider now a finite population, where the locus of interest
is again subject to additive selection, and neither mutation
nor migration occur. In a finite population, the frequency no
longer obeys Equation 1 because of random genetic drift,
which amounts to a stochastic contribution to the dynamics.
Such stochasticity is interesting and important. It can modify
phenomena that occur in infinite populations and it can fuel
phenomena that are impossible in infinite populations. For
example, selection coefficients that are zero or negative do
not lead to high allele frequencies or fixation in an infinite
population, but in a finite population the stochastic contri-
bution of genetic drift to the dynamics leads to a nonzero
probability of high values or fixation of the allele frequency.
Figure 1B contains two trajectories in a finite population
that achieve fixation but are associated with selection coef-
ficients that are not positive.

We consider a finite population where the locus of
interest is subject to both additive selection and random
genetic drift. Our aim is to describe some of the properties of
an allele that achieves fixation before a given time has
elapsed. Some results are also given for the case where
the allele reaches a specific frequency at a specific time.

To frame our thoughts, it is helpful to think about the
way we would learn from simulations about the properties
of an allele that fixes before a specific time, say T. We would
proceed by generating a large number of trajectories on the
computer that are appropriate to a finite population and
store only the subset of trajectories that fix by time T. This
retention of only a subset of trajectories is equivalent to
conditioning, in the sense of probability theory. From the
stored trajectories, estimates can be made of properties of
the focal allele. We may, however, be able to do better than
simulations. Calculations, when we can perform them, give
more accurate results than simulations. A calculation is
equivalent to considering an infinite number of simulated
trajectories; thus calculations do not suffer from the statis-
tical errors associated with a simulation involving only a
finite number of trajectories. Below, we give details of
calculations, based on the diffusion approximation, which
determine the implications of conditioning. The calculations
presented have another benefit: they allow us to carry out
transformations that relate apparently different scenarios and
establish the following equivalence:

a. Either we carry out conditioning that corresponds, for
example, to fixation occurring by a given time. This is
equivalent to considering only a subset of the frequency
trajectories. In this example these are only those trajec-
tories that fix by a given time.

b. Or we do not condition in any way, but include a specific
additional selective force. This is equivalent to consider-
ing all frequency trajectories; however, the additional se-
lective force influences their behavior. In the above
example of fixation, the additional selective force makes
the trajectories fix by the given time.

The additional selection that is required to make the
unconditioned problem, b, equivalent to a conditioned prob-
lem, a, does not actually exist. Rather, it encapsulates the way
the data (the set of all frequency trajectories) have been
sampled. That is, those trajectories we consider at any time, t,
are included (sampled), because of properties they will have
later, and so are, in fact, “conditioned on the future”. We call
the additional selective force required in case b fictitious.
Such a force is a conceptual construct that we believe pro-
vides a useful way of viewing and analyzing problems. Below
we use this fictitious selective force to find an approxi-
mation for the trajectory that is characteristic of a fixing
allele.

Fictitious Force

Origins

As already noted, the frequency of the A allele exhibits
stochasticity in a finite population. Indeed, if we could in-
spect a number of copies of a population that are identical
at time 0, then for positive times the frequency X(t) in
different copies of the population would be likely to take
different values—due to random genetic drift. Such varia-
tion requires a statistical description. Statistics of X(t) can
be described by a Wright–Fisher model (Fisher 1930;
Wright 1931). However, to make theoretical progress, we
consider an analysis based on the diffusion approximation
and use methods of Kimura (1955), along with some
more recent results of McKane and Waxman (2007) and
Waxman (2011b). Under the diffusion approximation,
the frequency X(t) has a statistical description in terms of
a distribution (a probability density). Assuming the fre-
quency of the A allele has the definite value y, at an initial
time of u, we write the distribution of X(t), when evaluated
at a frequency of x, as K(x, tj y, u). This obeys the diffusion
equation

2 @
@t Kðx; t  jy; uÞ ¼ 2 1

4Ne

@2

@x2 ½xð12 xÞKðx; t  jy; uÞ�
þ  @

@x ½Mðx; tÞKðx; t  jy; uÞ�
(2)

(Kimura 1955, 1964), where Ne is the effective population
size and

Mðx; tÞ ¼ sxð12 xÞ (3)
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Note that generally, the diffusion equation in Equation 2
describes an unconditioned problem in which the evolu-
tionary force that is acting is M(X, t).

To describe properties of trajectories that fix by time T,
we need to construct their distribution, which is the analog
of K(x, tjy, u), but is conditional on fixation occurring by
time T. The construction involves two ingredients: (i) the
probability of fixation by time T, given an initial frequency of
x at time t, which we write as Pfix(Tjx, t); and (ii) the un-
conditioned distribution, K(x, tjy, u).

The distribution, conditional on fixation by time T, can
then be motivated from the following reasoning (formal argu-
ments are given in Appendix A, where it is shown that the
distribution is based on a mathematical transform that was
introduced by Doob 1957). First, X(t) “propagates” from fre-
quency y at time u to frequency x at time t; this propagation is
characterized by K(x, tj y, u). Second, X(t) undergoes a tran-
sition from having a value x at time t to being fixed by time T.
This occurs with probability Pfix(Tjx, t). As a consequence, the
distribution of X(t), conditional on fixation by time T, is pro-
portional to Pfix(Tjx, t)K(x, tjy, u). In other words, Pfix(Tjx, t)K
(x, tj y, u) is proportional to the distribution associated with
trajectories that fix by time T. For the case where fixation
ultimately occurs (T= ‘) the result is known in the literature
(Ewens 1973, 2004). The result of the present work general-
izes the result of Ewens to finite values of T.

It is natural to ask what equation the conditional
distribution obeys. In Appendix A we show that the distribu-
tion obeys a diffusion equation that is of the same form as
Equation 2; however, the force in the diffusion equation
consists of the original force, sx(1 2 x), plus an additional
force Mfict(x, t), that we call fictitious. In the present case,
Mfict(x, t) depends on the time-dependent probability of fix-
ation, Pfix(Tjx, t) (see Equation 5, below). The conditional
distribution obeys a diffusion equation of the same form as
Equation 2, but with a force of

Mðx; tÞ ¼ sxð12 xÞ þMfictðx; tÞ: (4)

Thus we can say that the conditional problem has the
mathematical form of an unconditional problem, but with
the force of Equation 4, which contains a fictitious compo-
nent. The above reasoning gives the essence of the origin of
the fictitious force. Generally, the specific form of the
fictitious force Mfict(x, t) depends on the subset of all trajec-
tories that we focus attention (condition) upon.

The fictitious force on trajectories that fix by
a specific time

Let us return in more detail to the example just considered,
namely the trajectories that achieve fixation by a specific
time, T. For this case we find that the fictitious force, Mfict(x,
t), is given by

Mfictðx; tÞ ¼
�

1
2Ne

@

@x
ln PfixðT  jx; tÞ

�
3 xð12 xÞ (5)

(see Appendix A for details).
There are different ways we can view the fictitious force

appearing in Equation 5. These different viewpoints do not
affect any outcomes, but do determine the descriptive
language used. We proceed by noting the presence of the
factor x(1 2 x) in Equation 5 and, on making the compar-
ison with Equation 1, take the view that Mfict(x, t) is an
additional contribution to the additive selection acting on
the A allele. That is, we write

Mfictðx; tÞ ¼ sfictðx; tÞ 3 xð12 xÞ; (6)

where sfict(x, t) is the selection coefficient associated with
fictitious additive selection and

sfictðx; tÞ ¼
1

2Ne

@

@x
ln PfixðT  jx; tÞ: (7)

Having adopted the language of fictitious selection, we
generally find that it is frequency and time dependent
because sfict(x, t) depends on both x and t. Furthermore,
the form of sfict(x, t) must be such that all trajectories fix
by no later than time T. Thus no trajectory ever reaches zero
frequency prior to time T and loss is prevented by sfict(x, t)
being very large and positive at small frequencies and times
(for an example of this, see Figure 2).

Had we chosen to write the fictitious force in Equation 5
in the form Mfict(x, t) = mfict(x, t) 3 (1 2 x), then mfict(x, t)
would have the interpretation as either a rate of mutation
from the B allele to the A allele or a rate of migration, from
a population that is fixed for the A allele. In either interpre-
tation, there is generally frequency and time dependence of
mfict(x, t). We adopt only the selection viewpoint of the
fictitious force in this work.

To gain insight into the properties of the fictitious
selection, it is helpful to consider special cases of the
associated selection coefficient, sfict(x, t) (Equation 7).

Figure 2 For trajectories where fixation eventually occurs (T = ‘), the
quantity sfict(x) represents the selection coefficient of the fictitious selec-
tion. We plot 2Nesfict(x) against the frequency, x. We give results when
the parameter Nes (involving the real selection coefficient s) takes the
values21, 0, and +1. The result 2Nesfict(x) = 2Nes[coth(2Nesx)2 1] shows
that sfict(x) explicitly depends upon x and therefore exhibits frequency
dependence. The neutral limit of sfict(x) follows from taking s / 0 and
is given by sfict(x) = 1/(2Nex).
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(a) Fixation ultimately occurs T/‘: When the time T
becomes arbitrarily large (T / ‘), the quantity Pfix(Tjx, t),
which appears in Equation 7, becomes the probability that
the A allele ultimately fixes. When the effective population
size, Ne, and the strength of “real” selection, s (appearing in
Equations 1 and 3) are independent of time, Pfix(Tjx, t) becomes
a function only of x, which we write as Pfix(x). Under the
diffusion approximation, PfixðxÞ ¼ ð12 e24NesxÞ=ð12 e24NesÞ
(Kimura 1962). Using this result and Equation 7 allows
us to determine the selection coefficient of the fictitious
selective force; in this case it is independent of time and
given by

sfictðxÞ ¼ s½cothð2NesxÞ2 1� (8)

(cf. Ewens 1973, 2004; Lambert 2008). When the frequency
x is small (x � 1/(2Nejsj)) or under neutrality (the limit of
Equation 8 as s approaches zero), we obtain sfict(x) = 1/
(2Nex). In this case, sfict(x) depends extremely strongly on fre-
quency: it is positive and very large at low frequencies and this
prevents loss of the A allele. Figure 2 illustrates the form of
sfict(x) for several values of the real selection coefficient, s.

(b) Fixation occurs by finite time T: The result for sfict(x, t),
when fixation occurs by the finite time T, is both frequency
and time dependent. In Figure 3 we plot 2Nesfict(x, t) as
a function of x, when the time T has the value T = Ne.
Several different values of the real selection coefficient s
and the time t have been chosen.

In Appendix B, we provide complementary material that
gives details of trajectories that achieve an intermediate fre-
quency at a specific time.

Characteristic Trajectory of a Fixing Allele

The above results, while interesting in their own right, also
provide information that is relevant for understanding the
behavior of alleles that fix by time T. As already stated, we
take the frequency trajectory characterizing such fixations to
be the expected trajectory. Determining the form of this
involves averaging the frequency with respect to its distri-
bution. Even from an approximate analysis, such as the dif-
fusion approximation, this is not mathematically simple; the
required distribution is the solution of the diffusion equation
that is conditional on fixation occurring by the time T. How-
ever, the insight we have gained, from investigating the
effects of conditioning on fixation, is that conditioning rep-
resents a very powerful force. Indeed, as we have shown,
conditioning is equivalent to incorporating additional—fic-
titious—selection into the problem, and this selection is very
strong for at least some frequencies. It is intuitively plausible
that once the fictitious selection is taken into account, addi-
tional effects of random genetic drift are not so significant.
This suggests that we can circumvent a great deal of the
complexity of the computation of the expected trajectory
by neglecting fluctuations around its expected value. This

leads to the expected trajectory approximately obeying an
equation of the same general form as that of the determin-
istic dynamics in an infinite population, Equation 1. When
the real selection is additive, this leads to the expected tra-
jectory, X[XðtÞ, approximately obeying

dX
dt

¼ �
sþ sfictðX; tÞ

�
Xð12XÞ (9)

(see Appendix C for details). In Equation 9, sfict(x, t) is the
selection coefficient associated with fictitious selection and
is given in Equation 7. Approximate and exact forms of the
expected trajectory, XðtÞ, are given in Figure 4.

In Table 1 we give some numerical illustrations of the
accuracy of the approximate expected trajectory of Equation
9 for some specific cases. The quantity D in Table 1 is a mea-
sure of the mean mismatch between the approximate and
the exact trajectories and is small, suggesting very reason-
able accuracy of the approximate trajectory for the parame-
ter values considered.

Comparison of the Expected Trajectory with a
Deterministic Trajectory

So far we have determined a very reasonable approxima-
tion to the expected trajectory, XðtÞ, which characterizes

Figure 3 We show how the selection coefficient of the fictitious selec-
tion, sfict(x, t), changes as a function of frequency and time. We have
taken fixation to occur by time T = Ne = 99. Each panel covers a specific
value of the time t; i.e., t = 0, Ne/3, or 2Ne/3. Each panel also contains
three curves, where the top curve is for Nes = 21, the middle curve is for
the neutral case Nes = 0, and the bottom curve is for Nes = 1. When the
time t is small compared with the “final time” T, the quantity 2Nesfict(x, t)
has a similar shape to the corresponding quantity in Figure 2, with one
difference: its value is larger—to “compel” trajectories to fix by time T.
When the value of the time t is increased, the quantity sfict(x, t) takes
larger values. To illustrate this, at a frequency of x = 0.4, the ratios of the
strength of fictitious selection sfict(x, t) at the times plotted, namely
sfict(0.4, 0):sfict(0.4, Ne/3):sfict(0.4, 2Ne/3), are found to be �0.4:0.5:1.
The quantity plotted, 2Nesfict(x, t), is defined by Equation 7. This involves
a derivative, which we approximate by a discrete calculation, using
a Wright–Fisher model with population size Ne. In particular, we use
the approximation 2Nesfictðx; tÞ � ð1=PWF

fix ðT jxn; tÞÞððPWF
fix ðT jxnþ1; tÞ2

PWF
fix ðT jxn21; tÞÞ=ðxnþ1 2 xn21ÞÞ, where n is an integer, xn ¼ n=ð2NeÞ,
and PWF

fix ðT jxn; tÞ ¼ ðWT2tÞ2Ne ;n is the corresponding Wright–Fisher fixa-
tion probability (W is the Wright–Fisher transition matrix).
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some of the properties of fixation of an allele by a given
time. It is interesting to now consider an infinite popula-
tion where the A allele is subject to additive selection, and
ask what constant selection coefficient would be needed,
to best reproduce the expected trajectory of a finite pop-
ulation. We thus look for a trajectory in an infinite pop-
ulation that obeys the deterministic equation dXinf/dt =
sinfXinf(1 2 Xinf) and then make the optimal choice of the
constant selection coefficient sinf. A natural way of deter-
mining this optimal value is to minimize the mean mis-
match between the two trajectories. That is, we minimize
D ¼ T21PT

t¼1

��XinfðtÞ2XðtÞ�� with respect to sinf.
The parameters in the problem are the frequency y of the

A allele at time t = 0 (y is common to both deterministic and
expected trajectories), the real selection coefficient s (which
appears in Equations 3 and 9), and the effective population
size, Ne. The value of sinf that minimizes D generally
depends on all of these parameters. Some results are illus-
trated in Figure 5. The value of the initial frequency can be
seen to play an important role in the infinite population
dynamics and can cause different shapes of the trajectory.
For the deterministic trajectory to be as close as possible to
the expected trajectory requires a value of sinf that can be
substantially larger than s. For example, for N = 100, s =
0.01, T = 100, and y = 0.05, the value of sinf
that minimizes D is sinf � 0.0695, i.e., �700% of the value
of s.

Discussion

In this work we have considered the phenomenon of allele
fixation, which occurs only in finite populations, due to the
occurrence of random genetic drift. We have focused on the
characteristic trajectory of those alleles that reach fixation
by a given time and the fictitious evolutionary force that
appears to drive such alleles to fixation.

Characteristic trajectory

The typical or characteristic trajectory of an allele that fixes
by a given time has been taken to be an average over all
frequency trajectories that fix by the given time. Our
presentation of the theory of this characteristic trajectory
began by first describing the fictitious evolutionary force
that can be thought of as pushing the trajectory to fixation
(we say more about this force shortly). We then derived a
simple differential equation that approximately determines
the expected trajectory, assuming real additive selection,
and showed that for a range of selection coefficients,
population sizes, and values of the given time, the resulting
approximation to the expected trajectory captures the exact
result with good accuracy (Table 1). The differential equa-
tion determines the shape of the characteristic trajectory
and in some cases explicitly displays parameters of the prob-
lem. This differential equation is straightforward to solve
numerically and it demonstrates that for alleles segregating
in a finite population, the typical path to fixation can be
predicted across a range of scenarios. There are some impli-
cations of this finding.

The approximation we have for the expected trajectory of
an allele that achieves fixation constitutes, we believe, a
workable and potentially useful description of the way
fixation is achieved. A calculated trajectory can be viewed
as establishing a relation—or a constraint—between param-
eters in the theory and trajectory observations. Indeed, with
sufficient data, the trajectories obtained could shed light
upon field observations. As one example of the sort of data
where the current work could be applied, consider the hu-
man Duffy blood group antigens (FY). There are three com-
mon alleles of this gene (FY*A, FY*B, and FY*O) but in
much of sub-Saharan Africa only the FY*O allele has come
close to fixation. It has been hypothesized that the resistance
to P. vivax malaria that this allele confers has resulted in
positive selection (Miller et al. 1976). A plausible trajectory
spanning the period of segregation and replacement of the
non-FY*O alleles could, in principle, be determined, given
estimates of the ancestral population size and the selection
coefficient, when combined with other relevant information,
such as the timing of the spread of agriculture and the ac-
companying spread of malaria (Seixas et al. 2002). Such an
analysis would undoubtedly be complex. Perhaps simpler
situations, where the results of the current work may be
profitably applied, are where the effective population size
is small and hence the times to fixation are correspondingly
brief. This may well describe the situation of carcinogenic
mutations in the minority of neoplastic cells that are capable
of self-renewal (Pepper et al. 2009).

Fictitious force

When alleles have been observed to reach fixation in a
relatively short period of time, it is possible that they were
subject to very strong positive selection. The achievement of
fixation might then occur in a near deterministic manner,

Figure 4 Approximate and exact forms of the expected trajectory when
fixation is achieved by a specific time T. We have used a final time of T =
200, an effective population size of Ne = 200, a value of the real selection
coefficient of s = 0.01, and an initial frequency of y = 0.1. The approx-
imate results follow from Equation 9, while exact results were determined
from a Wright–Fisher model (Fisher 1930; Wright 1931). The expected
trajectory from simulations is very close to the approximate and Wright–
Fisher results and is not displayed; we have, however, plotted 20 simu-
lated trajectories.
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according to something like the first equation in this work,
Equation 1. But an alternative picture is possible.

It is reasonable to speculate that an ultimately fixing
allele might be subject to selection at a typical level (i.e.,
selection that is not strong and not necessarily positive)
along with random genetic drift. The trajectory of the allele,
however, is one of the somewhat rare samples of all possible
trajectories that achieve fixation due to a “fortunate” epi-
sode of random genetic drift. If so, it may appear that the
allele is driven by a strong evolutionary force, but in this
case the strong force does not exist. In the present work this
force has been termed fictitious and we have found it most
natural to interpret this force as selection, especially since it
is likely to be identified as a major contribution to selection.
As we pointed out, this is a matter of viewpoint and other
viewpoints are possible. We note that the fictitious selective
force is characterized by a selection coefficient that is gen-
erally both time and frequency dependent. The frequency
dependence is enormously strong at low frequencies, ensur-
ing that loss of the allele is completely prevented, and this
originates in the conditioning on fixation, which should

therefore not be viewed as being passive, but rather as being
an agency with a major influence on the observed dynamics.

We can consider the fictitious selection to be the additional
selection we would need to invoke to explain observations in
a finite population, where we are presented only with fixing
trajectories, but are not told that they are a subset of all
trajectories (thus trajectories corresponding to loss of the
allele are assumed to have not been presented to us). The
fictitious selection could, from this viewpoint, be viewed as
an artifact of a strong reporting bias. We can go farther and
note that any attempt to identify the selection coefficient, in
the assumed deterministic dynamics of an infinite popula-
tion, could lead to substantial errors in the identified level of
selection. In the examples given in Figure 5 in Comparison of
the Expected Trajectory with a Deterministic Trajectory, we
note that when the actual selection is positive, the selection
coefficient that would be invoked in an infinite population
would severely overestimate the real selection coefficient, in
some cases by .1000%. If the actual selection were, in fact,
negative (a fixing trajectory associated with a negative se-
lection coefficient is given in Figure 1B), then the identified

Table 1 Comparing approximate and exact expected trajectories

Initial
Frequency, y

Selection
Coefficient, s

Effective
Population Size, Ne

Time, T, by Which Fixation
is Specified to Occur

D, Measure of MeanMismatch
Between Approximate
and Exact Trajectories

0.01

0.01

100

100 0.010
200 0.016
400 0.018
800 0.017

200

100 0.005
200 0.013
400 0.019
800 0.026

20.01

100

100 0.005
200 0.011
400 0.013
800 0.014

200

100 0.002
200 0.007
400 0.013
800 0.022

0.1

0.01

100

100 0.009
200 0.016
400 0.018
800 0.017

200

100 0.005
200 0.011
400 0.019
800 0.027

20.01

100

100 0.005
200 0.011
400 0.014
800 0.015

200

100 0.001
200 0.006
400 0.014
800 0.023

We compare the approximation of the expected trajectory, from Equation 9, with the exact numerical result, calculated from the Wright–Fisher
model (Fisher 1930; Wright 1931). The quantity D, defined by D ¼ T21PT

t¼0

��XapproxðtÞ2XWFðtÞ
��, is a measure of the mean mismatch between the

two trajectories.
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selection coefficient would not even have the correct sign. It
seems possible to us that in experimental evolution, and
related studies, where population sizes are modest, a mis-
identification of the strength of selection may be possible,
but it seems less likely in laboratory bacterial populations,
where population sizes can be extremely large. Furthermore,
in such bacterial populations, competition assays against the
wild-type strain can provide realistic estimates of the strength
of selection.

We have shown in this work how the fictitious force
arises from the diffusion approximation: the distribution of
the frequency, conditional on fixation by a given time T,
obeys a diffusion equation with an additional term, com-
pared with the equation obeyed by the original, uncon-
ditional distribution. This additional term represents an
evolutionary force and is directly identified with the appar-
ent force that drives the allele to fixation—the fictitious
force. The explicit presence of the fictitious force in the
diffusion equation makes it a tangible mathematical object
that can be subject to examination and analysis.

In a simple case, where the allele ultimately achieves
fixation (T = ‘) and is subject to real additive selection
(which would be the sole force acting in an infinite popula-
tion), the selection coefficient describing the fictitious selec-
tion, sfict(x), where x is the frequency, is given by Equation 8.
The form of the “fictitious selection coefficient”, sfict(x),
depends on the effective size of the population, Ne, which
confirms the obvious fact that at least some aspects of the
fictitious force arise from random genetic drift. However
sfict(x) also depends on the selection coefficient, s, of the
real selection that is acting. The dependence of the fictitious
force on drift is a key feature. In the absence of real selection

(s / 0) the fictitious selection coefficient becomes sfict(x) =
1/(2Nex); this is frequency dependent and is extremely large
at small frequencies—to prevent loss of the allele. However,
the full s-dependent form of the fictitious selection coeffi-
cient in Equation 8 has a most interesting property in the
limit of no drift.

When the effective population size becomes arbitrarily
large (i.e., Ne / ‘), and the real selection coefficient, s, is
positive, the fictitious selection coefficient vanishes. This is
reasonable; the real selection, in large populations, is suffi-
cient to drive the frequency to fixation. However, when the
real selection coefficient, s, is negative, the fictitious selection
coefficient sfict(x) becomes sfict(x) = 22s [ 2jsj. This feature
is related to the known feature that all statistics of the fixation
time, under additive or genic selection, are to high accuracy,
the same for the selection coefficients s and 2s (Nei and
Roychoudhury 1973; Maruyama 1974, 1977; see also Taylor
et al. 2006) and generally follows from time-reversal proper-
ties (Ewens 2004). This is an indication of the potentially
strong effect of conditioning, which can effectively nullify
the underlying force in the problem and replace it with some-
thing substantially different. Of course, the probability of ac-
tually observing fixation in a very large population, when
selection is negative, is likely to be very small.

The present work has presented results for fixation by a
given time. It can also be extended to some other situations,
e.g., determining the approximate expected trajectory that
achieves a given intermediate frequency at a given time (see
Appendix B). The results of Appendix A can also be extended to
determining the approximate trajectory that fixes during a spec-
ified time interval (results not given). Unlike the case where
fixation occurs by a given time, the fictitious forces in these two
cases may become negative for some fraction of the time, and
this can be interpreted as a suppression of the frequency trajec-
tories, so that the specified end condition is correctly achieved.

Other applications

We have studied Wright–Fisher dynamics, via the diffusion
approximation. Closely related to this are stochastic popula-
tion dynamics, such as those that occur in evolutionary
game theory when the population size is finite (Traulsen
and Reed 2012). Problems in this area typically lead to a dif-
fusion equation that is closely equivalent to one derived
from a Wright–Fisher model with frequency-dependent se-
lection. Often, but not always, more than two types of alleles
(or strategies/phenotypes) are considered in a game theory
context. There are interesting and counterintuitive phenom-
ena in this area. For example, sometimes an increase in the
initial frequency of an allele can lead to an increased mean
time of fixation of the allele (Altrock et al. 2010). This be-
havior is in contrast to that in the simple biological systems
we have studied here, where an increased initial frequency
would lead to a decreased mean time to fixation. Phenom-
ena that appear to be related to this, in Wright–Fisher
models with frequency-dependent selection, have been
theoretically predicted to occur in the probability of fixation

Figure 5 We show the expected trajectory XðtÞ of a finite population
with N = 100 and the most closely corresponding deterministic trajectory
of an infinite population, Xinf(t), in which there is additive selection. The
form of Xinf(t) follows from choosing the optimal value of the constant
selection coefficient sinf of the additive selection. The different panels
correspond to different values of the initial frequency, y, and the greatest
difference between the expected and deterministic trajectories occurs at
the lowest values of y. The behavior of Xinf(t) is determined by the initial
frequency and the value of sinf. As a consequence it does not reach the
value of unity at the time, T, by which the expected trajectory achieves
fixation.
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(Chalub and Souza 2013). It is plausible that in all such
systems, the ideas and methods we have presented in this
work, associated with the expected trajectory and fictitious
selection, could shed new insights into the phenomena that
these complex systems exhibit.

Overview

Fixation is generally an improbable event that is strongly
influenced by random genetic drift. However, if we condition
on fixation, then it appears that a lot of the effects of genetic
drift are directly taken into account in the guise of a fictitious
force. The effects of random genetic drift that remain, while
not being negligible for small populations, appear to be
relatively unbiased. Thus most of the dynamics of the mean
trajectory result from the effects of the real selection (or other
evolutionary forces) that would occur in an infinite popula-
tion, combined with the effects of the fictitious force. It is easy
to imagine that strong forces (or other processes) may be
invoked in problems where conditioning, particularly condi-
tioning on the future, has been carried out, but that the forces
are largely an outcome of the conditioning and do not have
a real existence. The work presented here clarifies these
issues and provides two useful quantities for future analyses:
the characteristic trajectory of a fixing allele and its primary
driving force, namely fictitious selection. This work also
provides a rationale for further interest in evolutionary
trajectories that achieve high frequencies or fixation: they
seem to rather directly encapsulate important information
and insight about selective forces.
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Appendices

Appendix A: Relating Conditioned and Unconditioned Problems

In this Appendix we determine the form of the fictitious evolutionary force that is equivalent to restricting frequency
trajectories to a specific subset of all trajectories (i.e., to conditioning). We establish results involving (i) K(x, tjy, u), the
(unconditioned) probability density of X(t), at frequency x, given that X(u) = y; (ii) Kseg(x, tjy, u), which represents the part
of K(x, tjy, u) that includes only contributions from trajectories that are segregating; and (iii) Pfix(tjy, u), the probability of
fixation by time t, given that X(u) = y.

The results we establish are based on the h-transform of the probability density by Doob (1957) and are as follows:

1. If we condition so that fixation occurs by time T (i.e., fixation can occur any time up to and including time T), and if the
diffusion equation for K(x, tj y, u) is

2
@

@t
Kðx; tjy; uÞ ¼ 2

1
2
@2

@x2
½Vðx; tÞKðx; tjy; uÞ� þ @

@x
½Mðx; tÞKðx; tjy; uÞ�; (A1)

then the conditioned probability density obeys an equation of the same form as Equation A1 but with the replacement

Mðx; tÞ/Mðx; tÞ þ Vðx; tÞ @

@x
ln PfixðTjx; tÞ: (A2)

2. If we condition so that the frequency achieves the value z at time T, then the conditioned probability density obeys
Equation A1 with

Mðx; tÞ/Mðx; tÞ þ Vðx; tÞ @

@x
lnKsegðz;T   jx; tÞ: (A3)

In all of the cases considered in the present work,

Vðx; tÞ ¼ 1
2Ne

xð12 xÞ: (A4)

The term by which M(x, t) is augmented in Equations A2 and A3 represents the fictitious force, Mfict(x, t). Thus, in the
fixation case, Mfictðx; tÞ ¼ VðxÞð@=@xÞln PfixðTjx; tÞ ¼ ð1=2NeÞxð12 xÞð@=@xÞln PfixðTjx; tÞ, and in the case where frequency z
is achieved, Mfictðx; tÞ ¼ Vðx; tÞð@=@xÞlnKsegðz;Tjx; tÞ ¼ ð1=2NeÞxð12 xÞð@=@xÞlnKsegðz;Tjx; tÞ. In each case we choose to
write the expression for Mfict(x, t) as

Mfictðx; tÞ ¼ sfictðx; tÞ3 xð12 xÞ (A5)

with sfict(x, t) defined to be the selection coefficient of the fictitious selection, and we can read off the form it takes in the
“fixation” and “frequency achievement” cases from comparison with Equations A2 and A3.

Note that the replacement of M(x, t) via Equations A2 and A3 expresses the fact that under the diffusion approximation,
a problem that is conditioned has a probability density that follows from an unconditioned problem, provided the force in the
problem is modified from M(x, t) to M(x, t) + Mfict(x, t).

Calculation

To begin, we note that the unconditioned probability density we use, namely K(x, tj y, u), is complete in the sense that it
describes populations where the A allele is segregating or has been lost or fixed (McKane and Waxman 2007; Waxman
2011b). As such, it possesses the property that for all t$ u,

R 1
0 Kðx; t   jy; uÞdx ¼ 1 and K(x, tj y, u) generally contains spikes

(Dirac delta functions) located at x = 0 and x = 1, which signify loss and fixation.
We first establish a general result for a probability density KC(x, tj y, u), which, later, we associate with problems involving

conditioning. We take KC(x, tj y, u) to have the form

KCðx; tjy; uÞ ¼ Bðx; tÞFðx; tÞ; (A6)
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where B(x, t) and F(x, t) obey backward and forward diffusion equations with respect to x and t. To maintain some
generality, we write these equations as

@

@t
B ¼ 2

V
2

@2

@x2
B2M

@

@x
B (A7)

2
@

@t
F ¼ 2

1
2
@2

@x2
ðVFÞ þ @

@x
ðMFÞ; (A8)

where V = V(x, t) and M = M(x, t). We use these equations to determine the equation that KC = BF obeys. One way to
proceed is to write F = KCB21 and substitute this into Equation A8. Using Equation A7 leads, with some algebra, to the
general result

2
@

@t
KC ¼ 2

1
2
@2

@x2
�
VKC�þ @

@x

�	
M þ V

@

@x
lnB



KC

�
: (A9)

Thus KC(x, tj y, u) obeys an equation similar to that of F(x, t) except M(x, t) is replaced by Mðx; tÞ þ Vðx; tÞð@=@xÞln Bðx; tÞ:

Mðx; tÞ/Mðx; tÞ þ Vðx; tÞ @

@x
lnBðx; tÞ: (A10)

Next, we show that for the class of conditioned problems dealt with in this article, the distribution can be written in the
form KC(x, tj y, u) = B(x, t)F(x, t), where F represents the unconditioned distribution.

In principle, the results we derive below hold when parameters such as the effective population size and the selection coefficient,
etc., depend on time (cf. Waxman 2011a). We do not pursue any issues associated with such time dependence in this work.

Distribution when the frequency z is achieved at time T or fixation is achieved by time T

Let z denote a frequency that lies in the range 0 , z , 1 and corresponds to a segregating allele. We use Kz,T(x, tj y, u)
to denote the solution of the diffusion equation that represents the probability density of X(t), at frequency x, given (i)
that X(u) = y (with 0 , y , 1) and (ii) that the frequency z is achieved at time T. We have, by definition, Kz,T(x, tj y, u) =
K(x, tj z, T; y, u). Using Bayes’ formula we obtain Kz,T(x, tj y, u) = K(z, Tj x, t; y, u)K(x, tj y, u)/K(z, Tj y, u). We use the
Markov property to obtain Kz,T(x, tj y, u) = K(z, Tj x, t)K(x, tj y, u)/K(z, Tj y, u) and note that since z is a segregating
frequency (0, z, 1), all of the K’s on the right-hand side can be replaced by Kseg’s since none of the Dirac delta functions
present can contribute. It follows that

Kz;Tðx; t   jy; uÞ ¼ Ksegðz;Tjx; tÞKsegðx; tjy; uÞ
Ksegðz;Tjy; uÞ : (A11)

Consider now the frequency z = 1 that corresponds to a fixed allele. We use KT(x, tj y, u) to denote the probability density
of X(t), at frequency x, given (i) that X(u) = y (with 0 , y , 1) and (ii) that fixation is achieved by time T. The analysis is
similar to the segregating case just considered; we again start with Kz,T(x, tj y, u) but now allow z to take general values. We
are, however, interested in only one part of Kz,T(x, tj y, u), namely the coefficient of the Dirac delta function d(1 2 z) that is
located at z = 1. This coefficient is the contribution of frequency trajectories that fix by time T, and a term in d(1 2 z) is
present in the solution whenever fixation can occur (McKane and Waxman 2007; Waxman 2011b). The required probability
density, KT(x, t y, u), can be written as K(x, tj 1, T; y, u), where the “1, T” denotes formally conditioning on fixation by time T.
We proceed as in the segregating case. With K(1, tj y, u) corresponding to the probability of fixation by time T, given that
X(u) = y, i.e., K(1, Tj y, u) = Pfix(Tj y, u), we find that

KTðx; tjy; uÞ ¼ PfixðTjx; tÞKðx; tjy; uÞ
PfixðTjy; uÞ

: (A12)

Appendix B: The Achievement of an Intermediate Frequency at a Specific Time

To complement the results for fixation that occurs by a given time, we now consider trajectories that achieve the
intermediate frequency z at the specific time T. The fictitious force is now
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Figure A1 The expected trajectory when a frequency of 3/4 is achieved at a specific time, say T = 100. We adopt an effective population size of Ne =
100, a real selection coefficient of s = 0.01, and an initial frequency of y = 0.01. The approximate results follow from Equation 9 while the exact results
come from a Wright–Fisher model (Fisher 1930; Wright 1931).

Mfictðx; tÞ ¼
	

1
2Ne

@

@x
lnKsegðz;Tjx; tÞ



3 xð12 xÞ; (B1)

where Kseg(z, Tj x, t) is the probability density of the allele frequency, evaluated at a segregating frequency of z at time T,
given an original frequency of x at time t. Again we express this in terms of a selection of the fictitious selection, as in
Equation 6. It follows from results in Appendix A that for t # T

sfictðx; tÞ ¼
1

2Ne

@

@x
lnKsegðz;T   jx; tÞ: (B2)

In Figure A1 we illustrate the expected trajectory when a frequency of z = 3/4 is achieved at the time T = Ne.

Appendix C: Determination of an Approximate Equation of the Expected Allele Trajectory

In this Appendix we determine an equation for the expected allele trajectory. We begin by writing the equation for the
conditioned solution of the diffusion equation, Equation A9, as

2
@

@t
KC ¼ 2

1
2
@2

@x2
�
VKC�þ @

@x
��
M þMfict

�
KC�: (C1)

We assume that the probability current density of KC(x, tj y, u), namely
jðx; tÞ ¼ 2ð1=2Þð@=@xÞðVKCÞ þ ðM þMfictÞKC, vanishes at x = 0 and x = 1 (McKane and Waxman 2007), which auto-

matically ensures conservation of probability ðR 1
0 KCðx; tjy; uÞdx ¼ 1 for all t$ uÞ.

Let us write the expected allele frequency at time t as XðtÞ. Then XðtÞ ¼ R 1
0 xKCðx; t   jy; 0Þdx, where we have imposed the

initial condition that Xð0Þ ¼ y. To fully determine XðtÞ we would need to solve the diffusion equation for KC(x, tj y, 0);
this is generally hard. We aim for an approximation and proceed by multiplying Equation C1 by x and integrating
from 0 to 1. The vanishing of the probability current density at x = 0 and x = 1 yields 2 ðd=dtÞXðtÞ ¼R 1
0 ðð1=2Þð@=@xÞ½Vðx; tÞKCðx; t   jy; 0Þ�2 ½MðxÞ þMfictðx; tÞ�KCðx; t   jy; 0ÞÞdx. Assuming V(0, t) = 0, V(1, t) = 0, yields
ðd=dtÞXðtÞ ¼ R 1

0 ½MðxÞ þMfictðx; tÞ�KCðx; t   jy; 0Þdx. The most basic approximation is to replace x in M(x) + Mfict(x, t)
by XðtÞ. This neglects fluctuations around the expected trajectory and yields

d
dt
XðtÞ ¼ MðXðtÞÞ þMfictðXðtÞ; tÞ: (C2)

This equation can be viewed as the beginning of an expansion around the expected value. We can include higher-order
terms. If we terminated the expansion at second-order deviations from the mean, we would obtain coupled equations for the
expected value and the variance; however, here we employ Equation C2.

Using the form of MfictðXðtÞ; tÞ in Equation 5 leads to Equation 9 of the main text. We have numerically solved this
equation and find it leads to an XðtÞ that does not have large mean deviations from the exact solution—see Table 1 of the
main text.
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