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Abstract
Understanding the factors that regulate hematopoiesis opens up the possibility of modifying these
factors and their actions for clinical benefit. DEK, a non-histone nuclear phosphoprotein initially
identified as a putative proto-oncogene, has recently been linked to regulation of hematopoiesis.
DEK has myelosuppressive activity in vitro on proliferation of human and mouse hematopoietic
progenitor cells and enhancing activity on engraftment of long term marrow repopulating mouse
stem cells, has been linked in coordinate regulation with the transcription factor C/EBPα, for
differentiation of myeloid cells, and apparently targets a long term repopulating hematopoietic
stem cell for leukemic transformation. This review covers the uniqueness of DEK, what is known
about how it now functions as a nuclear protein and also as a secreted molecule that can act in
paracrine fashion, and how it may be regulated in part by Dipeptidylpeptidase 4, an enzyme
known to truncate and modify a number of proteins involved in activities on hematopoietic cells.
Examples are provided of possible future areas of investigation needed to better understand how
DEK may be regulated and function as a regulator of hematopoiesis, information possibly
translatable to other normal and diseased immature cell systems.
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Introduction
Hematopoietic stem (HSC) and progenitor (HPC) cells give rise to all blood forming
elements and have been used to successfully treat non-malignant and malignant disorders
[1,2]. However, much remains to be deciphered regarding regulation of HSC and HPC
function and fate. In efforts to uncover key factors involved in HSC and HPC production
and fate decisions, we identified DEK, a biochemically distinct mammalian nuclear
phosphoprotein initially classified as a putative proto-oncoprotein [3], as a candidate for
regulating hematopoiesis [4]. We noted that DEK had negative regulatory effects on
proliferation of HPCs: granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and
multipotential (CFU-GEMM), but positive effects on engrafting HSC [4]. Others have
linked DEK in coordinate regulation with the transcription factor C/EBPα on the
differentiation of myeloid cells [5]. This complex of C/EBPα and DEK, whose assembly
and disassembly is regulated by serine 21 phosphorylation of C/EBPα, enhanced the
activation of the granulocyte-colony stimulating factor receptor 3 promotor. Knocking down
expression of the DEK gene reduced the capacity of C/EBPα to drive granulocyte target
gene expression. We recently reported that the cell surface enzyme CD26, a
Dipeptidylpeptidase 4 (DPP4), truncates and changes the functional activities of cytokines
such as the colony stimulating factors (CSF: granulocyte macrophage (GM)-CSF,
granulocyte (G)-CSF, interleukin-3 (IL-3), and erythropoietin (EPO)) and of the chemokine,
stromal derived factor-1 (SDF-1/CXCL12) [6, 7]. We now know that other proteins with cell
regulatory activity have putative truncation sites for DPP4 [8,9]. As discussed below, DEK
has a putative specific truncation site for DPP4. Based on this information, we hypothesize
that DEK is a key and perhaps crucial regulatory determinant of HSC and HPC function and
fate decisions in both steady-state and stressed hematopoiesis, effects that may be mediated
or regulated by DPP4 truncation of DEK. There is still a paucity of information on DEK and
its actions. This review covers current knowledge of DEK and its role in cell regulation and
fate decisions, with a particular emphasis on HSC, HPC, and hematopoiesis. Examples are
suggested for future studies in this area.

DEK Regulation and Activities
DEK bears little resemblance to other known proteins (Fig. 1A), and is the only
representative of its own protein class. While DEK, an abundant non-histone chromosomal
factor, is vital to global heterochromatin integrity [10] (Fig. 1B and 1C), it can be secreted
by certain cells, sometimes in exosomes, or in its free form and subsequently be taken up as
the same molecule in bioactive form in a heparin sulfate-dependent process by other cells
where it, in turn, modulates global chromatin structure [11], a process similar to what is seen
in a paracrine loop. Whether uptake of DEK can also take place through G-Protein coupled
receptors, or whether DEK can act through stimulation of such receptors, is not clear, and
this may vary between cell types and their maturational status.

DEK is heavily post-translationally modified. Regulation of the phosphorylation status of
DEK by CK2 and protein phosphatase 2A [12,13], acetylation [14,15], and poly (ADP-
ribosyl)ation [16,17] can regulate the function of DEK. Transcription of the DEK gene is
controlled by YY1 and NF-Y [18], E2F [19], and the estrogen receptor α [20]. The DEK
protein can be degraded by the F-box/WD repeat containing protein 7 (Fbxwt) [21], and
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microRNA-489, which is involved in the maintenance of muscle stem-cell quiescence, does
so by targeting DEK [22]. DEK interacts with RelA/p65 [23] and represses gene expression
in conjunction with SET and PARP1 [24]. Phosphorylation by protein kinase CK2 [12] in
one way affects the function of the DNA-binding domains (SAP-box and C-terminal DNA
binding domain) of DEK [25], and in another way allows for the histone chaperone
functions of DEK that co-activate transcription of a nuclear receptor [26]. However, CK2
does not seem to play a role in regulating DEK’s function in chromatin integrity [12].

Blood cell production is regulated by cytokine and microenvironmental influences that
direct HSC and HPC functions and fate decisions [2,27]. Knowledge of these influences and
how they are mechanistically mediated is crucial to understanding hematopoiesis under
steady-state and stress conditions, and eventually for correction of the abnormalities in
hematopoiesis associated with disease, and for optimal efficacy in the use of HSC and HPC
for hematopoietic cell transplantation. Our knowledge of the extracellular and intracellular
factors influencing the proliferation, self-renewal, survival, differentiation and movement of
HSC and HPC is increasing [2,27], but there is still much to be learned if we are to best use
this information for improved health care. In continuing efforts to define new factors in the
regulation of hematopoiesis, we focused on DEK, a non-histone phosphoprotein which was
initially identified as a fusion protein resulting from a t(6;9) translocation in a rare subtype
of acute myelogenous leukemia [3]. Furthermore, DEK is overexpressed and implicated in
many malignancies [3,28–38], and exhibits critical functions in several central tumor-
promoting pathways, e.g inhibition of apoptosis and senescence, among others
[3,28,30,33,37,39,40]. DEK bears little resemblance to other known proteins, but is well-
conserved among higher eukaryotes, as all DEK proteins share a unique conserved region,
the “SAP-box” (SAP = Saf/Actinus/PARP) [41]. This motif is found in proteins such as
DEK that are typically involved in DNA binding, chromatin remodeling, and/or RNA
processing [41–43]. DEK is capable of binding to the TG-rich pets site in the human
immunodeficiency virus type 2 (HIV-2) promoter, where it acts as a transcriptional repressor
[13,44], although it appears that DEK primarily recognizes DNA on the basis of structure
rather than sequence and thus might play an active role in maintaining higher-order
chromatin architecture [42,43,45,46]. In addition to its DNA binding properties, DEK is
found in association with mRNA splicing and export factors, as well as with spliced
transcripts, where it influences 3’ splice fidelity [46–50]. Intense post-translational
modification of DEK by phosphorylation [12], acetylation [14–16], and poly(ADP-
ribosyl)ation [17] point to the importance of these post-translational modifications in
regulating DEK’s multiple functions and sub-or extracellular localization. DEK antibodies
are found in patients with juvenile idiopathic arthritis (JIA) and other auto-immune diseases
[15,51,52], raising the question of why this nuclear protein is an autoantigen. Although DEK
is primarily associated with chromatin throughout the cell cycle [53], two independent
pathways, both involving post-translational modifications, were recently identified that
result in DEK’s presence in the extracellular space. The first pathway implicated non-
classical secretion of DEK by activated human monocyte-derived macrophages in both a
free form and in exosomes [54]. In the second, passive release of poly(ADP-ribosyl)ated,
hyperphosphorylated DEK by apoptotic T-lymphocytes was observed possibly occurring as
a result of Fas-ligand-or stress-mediated apoptosis [16]. IL-8 induces the secretion of DEK,
and DEK acts as a chemoattractant for peripheral blood leukocytes [54]. Of particular note
in this context, secreted DEK can be taken up by other cells, move to the nucleus, and
effectively carry out the intranuclear functions of DEK, including control of global
heterochromatin integrity and DNA repair [11].
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DEK and Hematopoiesis
Extracellular and intracellular DEK expression modulates hematopoiesis [4]. It remains to
be determined exactly how DEK is mediating its different effects on hematopoiesis. This
may be through receptor mediated cytokine-like activities in which a sequence of
intracellular signals are induced, or perhaps by cellular uptake through a specific receptor,
and/or non-receptor mediated DEK uptake. Uptake of DEK through receptor-mediated or
non-receptor-mediated events may involve chromatin regulation (Fig. 1B and C). These
different possibilities require additional investigation. Exploring these possibilities are
important for understanding the effects of DEK and perhaps for casting new light on
regulation of hematopoiesis during health and disease.

We found that DEK, in purified recombinant human form was myelosuppressive for colony
formation by CFU-GM, BFU-E, and CFU-GEMM from C57Bl/6 mouse BM and human CB
cells, effects that were dose-dependent [4]. The suppressive effects of DEK on colony
formation were apparent when assayed on single isolated CD34+ CB cells, suggesting direct
acting effects of DEK on HPC although how these effects are mediated is not known. This
negative regulatory role of DEK was consistent with the enhanced numbers and cycling
status of CFU-GM, BFU-E, and CFU-GEMM in the BM and spleen of C57Bl/6 DEK−/−,
compared to C57Bl/6+/+, mice [4]. Some of this effect may reflect the reports of others
showing that DEK works in concert with C/EBPα to regulate differentiation of myeloid cells
[5]. Most recently, we found similar effects using cells from DEK−/− mice on another
mouse strain background. DBA/1 DEK−/− HPC were at a higher cell cycling rate than
DBA/1 DEK+/+ HPC (Fig. 2). Moreover, purified recombinant human DEK inhibited
colony formation of DBA/1+/+ CFU-GM, BFU-E, and CFU-GEMM in dose-response
fashion (Broxmeyer unpublished observations). These results demonstrate that the findings
are not confined to effects on only one mouse strain. In contrast to the inhibition of CFU
proliferation by DEK, BM cells from C57Bl/6 DEK−/− mice manifested decreased longer-,
but not short-, term competitive repopulation capability in lethally-irradiated congenic mice,
in addition to even greater decreases in repopulation of lethally-irradiated secondary mouse
recipients in a non-competitive assay [4]. This suggested that DEK was important for the
positive engrafting capability of a long-term, but not short-term, repopulating and self-
renewing HSC (schematically shown in Fig. 1D). The results suggest that DEK may be
necessary for maintenance of HSC, consistent with reports that DEK is expressed in
immature cell populations and that this expression decreases with the differentiation and
maturing of the cells [55]. Interestingly, the DEK/CAN fusion protein resulting from the
t(6;9) chromosomal translocation [3] targets a long-term repopulating HSC for leukemic
transformation [56].

Still to be determined are effects of exogenously added DEK on HSC and HPC numbers and
functional activity, and hematopoiesis in vivo, and possible effects of DEK on ex-vivo
expansion of HSC and HPC, information that could possibly be of therapeutic use. The
functional DEK domains that may be involved in DEK receptor-binding and/or non-receptor
mediated uptake and translocation to the nucleus remain to be determined, although DEK
does have a putative nuclear localization domain (Figure 1).

DEK and DPP4
We recently found that in addition to the homing and chemotactic protein SDF-1/CXCL12
[7, 57], GM-CSF, G-CSF, IL-3, and EPO have truncation sites for the enzyme DPP4 [6].
DPP4 is found on the surface of many cells as CD26 and is present within cells expressing
CD26. It is also found as a soluble enzyme in serum and plasma. DPP4 treatment of SDF-1/
CXCL12 produces a molecule in which the two N-terminal amino acids have been removed.
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Truncated SDF-1/CXCL12 is inactive as an HPC chemotactic molecule and as an HPC
survival enhancing factor, and this truncated SDF-1/CXCL12 can block the chemotactic and
survival enhancing effect of the full length SDF-1/CXCL12 molecule [6, 7]. DPP4 treatment
of GM-CSF, G-CSF, IL-3, and EPO produced truncated forms of these CSFs that had
greatly decreased CSF activity, but blocked the activity of the full length forms of their
respective CSF, for colony formation in vitro, and with human GM-CSF for intracellular
signaling (phosphorylation) of JAK2 and STAT5 using TF1, a human factor dependent cell
line, and primary CD34+ CB cells [6]. These in vitro effects on HPC proliferation were
duplicated in vivo in mice given exogenously added full length, truncated, or the
combination of full-length and truncated GM-CSF, and also for full-length and truncated
EPO [6]. The effects were most apparent on target cells pretreated with an inhibitor of DPP4
(e.g. Diprotin A; a tripeptide: ILE-PRO-ILE) or in CD26−/− mice. Both radiolabeled full
length- and truncated-human GM-CSF demonstrated receptor binding to the GM-CSF
receptor of TF1 cells and primary CD34+ CB cells, but the truncated GM-CSF bound to the
GM-CSF receptor with higher affinity (had a lower dissociation constant), and truncated
GM-CSF blocked receptor binding of full-length GM-CSF at concentrations of truncated
GM-CSF one-eighth that of full length GM-CSF [6]. Thus, DPP4-treated and truncated
SDF-1/CXCL12, GM-CSF, G-CSF, IL-3 and EPO act as dominant negative or competitive
molecules for the actions of their respective full-length proteins, and offer a potential means
for regulating specific protein actions, and it may be that DEK works in a similar fashion.

DPP4 can truncate proteins at a penultimate alanine or proline at the N-terminus and also
when serine or other amino acids are at this penultimate site [8,9]. Most recently, we found
that the N-terminus start site of the DEK protein contained a putative DPP4 truncation site
(MSASAPAAEGEGTPTQP…) in which serine (the second amino acid in this sequence),
rather than alanine or proline, served as a potential site for DPP4 activity, unless in this case
methionine is pre-clipped off and it is the alanine (the second amino acid in the following N-
terminus sequence) that serves as a DPP4 truncation site (SASAPAAEGEGTPTQP…). As
shown in Fig. 3, DPP4-treated DEK did not manifest inhibitory activity against GM-CSF- or
GM-CSF plus SCF stimulated colony formation of mouse BM cells pretreated with Diprotin
A, an inhibitor of DPP4, and at one-fourth to one-eighth the concentration of untreated
DEK, the DPP4-treated DEK blocked the inhibitory activity of full-length DEK, suggesting
that DPP4-treated DEK can act as a dominant negative effector molecule for full-length
DEK, perhaps at the level of specific DEK receptor binding or non-receptor mediated
uptake. Whether DPP4 truncates at the second amino acid (serine) or if the methionine is
pre-clipped and DPP4 truncates at the alanine that follows the serine, this would leave the
next sets of amino acids open, with potential additional truncation sites (serine, alanine, or
proline) available, so that DPP4 may be able to continue to truncate DEK. It remains to be
determined by mass spectrometry or other analysis what the effects of DPP4 are on the DEK
protein itself and where exactly the DPP4 may be acting. Such analysis needs to be linked to
functional effects of DEK. These results, which need to be pursued in greater depth both in
vitro and in vivo, suggest a potentially strong and modifying influence of DPP4 on DEK
activity, which may be of physiological relevance, and of potential clinical interest.

Future efforts to more precisely define hematopoiesis in DEK−/− mice seem reasonable in
the context of steady-state hematopoiesis, and especially for hematopoiesis in mice
subjected to different stresses. We recently evaluated the effects of radiation and drugs in
CD26−/− mice [6]. Stress situations can help define the relevance of DEK in a way that may
not be picked up using untreated mice. The stresses to be evaluated for hematological
recovery can be low and higher non-lethal γ-irradiation, and non-lethal doses of drugs such
as 5 Fluorouracil, and cyclophosphamide (Cytoxan®).
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In depth studies on mechanisms of DEK activities might best be done on relevant
established cell lines with confirming studies on primary target cells, such as we recently
published for GM-CSF [6]. We have identified the human factor dependent cell lines, TF1
(responsive to stimulation of proliferation by either GM-CSF, IL-3 or EPO, and when used
in combination with SCF eliciting a synergistic stimulating effect) and M07e (responsive to
GM-CSF or IL-3, and synergistically to either GM-CSF or IL-3 with SCF) as responding to
the inhibitory effects of DEK with a one hour pulse exposure of these cell lines to DEK (Fig.
4). TF1 [6] and M07e cells express active DPP4 on their cell surface as CD26, (O’Leary and
Broxmeyer, unpublished studies), as do HPC and HSC in primary mouse and human BM
and human CB [6,7]. Although the effects of cytokines with DPP4 truncation sites are more
potent on CD26-expressing cells that have been pretreated to inhibit DPP4 [6 and
Broxmeyer unpublished observations], the activities of these cytokines can still be detected
although at a lesser effect if the CD26-expressing cells are not pretreated to inhibit DPP4.
Much work remains to elucidate a role for DPP4 on protein activity [8,9]. Hence, even
though the TF1 and M07e cells were not first pretreated to inhibit DPP4, we did detect DEK
inhibition of colony formation by these cell lines. Since both cell lines have been used by us
as models for stimulating and negatively acting cytokines at a cell and intracellular level
[58–68], these growth factor dependent human cell lines can be used as models to initiate
intracellular studies on DEK signal transduction, effects which can then be verified in less
extensive studies using, for example, primary CD34+ CB cells, as we previously reported for
GM-CSF [6].

Since communication between BM microenvironmental cells and the HSC and HPC that
reside in the BM are involved in HSC and HPC function and fate decisions, and DEK is
expressed in osteoblasts, endothelial cells and BM stromal cells [69–71; these authors
deposited their gene expression data sets into the GEO profiles], DEK may be involved in
microenvironmental cell-HSC/HPC interactions, perhaps with regards to positive effects we
have noted with DEK on engrafting capability of HSC and DEK negative regulation of
HPC. Such possible influences can be investigated in a stem cell transplant model that can
distinguish donor (e.g. CD45.2+) from recipient (e.g. CD45.1+/CD45.2+ F1) from
competitor (e.g. CD45.1+) cells in a competitive HSC setting, and also donor from recipient
cells in a non-competitive HSC transplant assay. DEK−/− mice (on a C57Bl/6 mouse strain
background) can be used alternatively as recipients and/or as a source of donor cells.

Concluding Comments
In summary, DEK is an apparently unique molecule whose functional activity in the normal
regulation of hematopoietic stem and progenitor cells [4, 5], and in leukemogenesis [56], is
only just beginning to be elucidated. It is likely that DEK will be found to have controlling
roles in other stem and progenitor cell types in addition to those in muscle [22], including
embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem/stromal cells.
Abnormalities in DEK and its actions may be associated with cancer and cancer stem/
progenitor cells [28,72]. How DEK fits in with other chromatin and intracellular molecules
involved in regulation of HSC and HPC [2,27] is of great interest, and remains to be
determined. DEK modulates global heterochromatin integrity in human cells and in a
Drosophila model [10]. Interference with DEK expression in human cells induces a
phenotype indicative of more accessible chromatin organization. DEK is a Su(var), meaning
that it is a positive modulator of heterochromatin as shown using the model of white-mottled
variegation in the eyes of Drosophila [10] (Fig. 1C). Loss of DEK is accompanied by loss of
the key heterochromatic marker H3K9Me3, and both phosphorylated and unphosphorylated
DEK interact with the vital heterochromatin factor HP1α, thus bringing HP1α to the H3K9
mark. DEK also plays a key role in epigenetic silencing by bringing the KMT1 A/B
methylase (which adds the third methyl group to H3K9), along with HP1α, to what becomes
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the H3K9Me3 mark, a hallmark of heterochromatin [10]. This was shown by CHIP analysis,
co-immunoprecipitation, and biochemical interactions. Thus, it is of interest to determine if
uptake of DEK into HSCs and HPCs leads to changes in chromatin architecture with the
subsequent effects on gene expression leading to effects on hematopoiesis. To further
understand the mechanism of action of DEK in hematopoiesis, it will be essential to
determine if DEK effects are mediated via specific receptors with subsequent induction of
intracellular signaling and/or by uptake and translocation of DEK into the cytoplasm and
subsequently into the nucleus (Fig. 1B and 1C). It will be important to identify the domains
of DEK that are responsible for the effects on HSC and HPC, and if they are the same
domains that are involved in DNA binding and heterochromatin integrity [23]. A search for
a specific receptor or receptors for DEK is currently ongoing. In the context of tumor cell
sensitivity to chemotherapy, up-regulation of DEK expression may enhance cell survival
and chemoresistance, while decreasing DEK expression in such cells may enhance the
sensitivity of the tumor cells to kill by specific chemotherapeutic agents [33,39,73,74]. Since
DEK expression is higher in immature compared to more mature blood cells such as those
present in the CD34+ cell population [55], and leukemia (LIC) or tumor (TIC) initiating cells
are present in the CD34+ cell population [2,27], DEK could be one of the reasons that LIC
or TIC populations survive chemotherapy. Also of interest is the effect of DPP4 truncation
of DEK on these functional activities of DEK. Therefore, further understanding the function
and molecular mechanisms of action of this biochemically distinct protein, including
assessment of protein partners, DNA and RNA targets and the secretion and uptake by
neighboring cells, is likely to yield information relevant to clinically important questions.
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Figure 1.
Schematic depiction of the structure, functional domains and post-translational
modifications of DEK, potential DEK uptake pathways, and effects of DEK on
hematopoiesis. A) Linear sequence of DEK with DNA binding domains (yellow: pseudo-
SAP-box; green: SAP-box; blue: C-terminal DNA-binding domain; orange lines: position of
α-helices, as revealed by NMR), and other functional features (red: acidic regions; black:
putative NLS) indicated [See references 25,41,42,44,45]. The positions of previously
mapped phosphorylation and acetylation sites are marked [See references 12, 14 and 15]. B)
Potential DEK receptor mediated and/or uptake pathways. C) Simplified depiction of DEK
functions in the setting of chromatin. DEK interacts with, and augments binding of HP1 to
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H3K9Me3, thereby recruiting SUV39H1/2, thus further enhancing the deposition of
H3K9Me3. In addition, DEK binds to DNA/chromatin via its DNA binding domains (see
A). However, the precise consequences for open or closed chromatin currently remains
elusive. D) Functional consequences of DEK in the setting of hematopoietic stem (HSC) and
progenitor (HPC) cells. Not shown is the potential influence of Dipeptidylpeptidase 4
truncation of DEK on DEK functional activity.
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Figure 2.
Effects of DEK knockout (−/−) on hematopoietic progenitor cells. Results are shown for
these cells in S-phase of the cell cycle, as determined by high specific activity tritiated
thymidine kill technique, when stimulated with 5% pokeweed mitogen spleen cell
conditioned medium (PWMSCM), SCF (50ng/ml), and EPO (1U/ml) in methylcellulose
culture (A) and when stimulated with GM-CSF (10ng/ml) alone and in combination with
SCF in agar culture (B) [6]. Results are given as mean±1SEM of 3 mice per group. *,
significantly different from control medium (p<0.05), as assessed by 2 tailed t test.

Broxmeyer et al. Page 14

Stem Cells. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Influence of DPP4 on DEK activity. Shown are effects of full length (FL) – and DPP4-
treated (=likely truncated, TR) DEK, alone and in combination, on 5×104 C57Bl/6 mouse
BM cells/ml pretreated with Diprotin A, an inhibitor of DPP4, and stimulated with GM-CSF
(Exp#1) or GM-CSF+SCF (Exp#2) (See reference 6 for details of such studies done with
other growth modulating proteins). Results are given as mean±1SEM. *, significantly
different from control medium (p<0.05); ND= not done
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Figure 4.
Influence of DEK on colony formation by human factor dependent cell lines MO7e and
TF1. These cells were not pretreated with a DPP4 inhibitor. Results are shown as mean
±1SEM for 1000 MO7e and 500 TF1 cells/ml −/+ 1 hour pulse treatment of these cell lines
with control medium or 50nM DEK prior to their stimulation with GM-CSF plus SCF (See
reference 6 for details of such studies done with the TF1 human growth factor dependent
cell line assessing the effects of other proteins on colony formation). *, significantly
different from control medium (p<0.05)
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