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Abstract

Bidirectional best hits (BBH), which entails identifying the pairs of genes in two different genomes that are more similar to each other

than either is to any other gene in the other genome, is a simple and widely used method to infer orthology. A recent study has

analyzed the linkbetweenBBHandorthology inbacteriaandarchaeaandconcluded that,given theveryhighconsistency inBBHthey

observedamongtripletsofneighboringgenes, ahighproportionofBBHare likely tobebonafideorthologs.However, limitedby their

analysis setup, the previous study could not easily test the reverse question: which proportion of orthologs are BBH? In this follow-up

study,weconsider thisquestion in theoryandanswer itbasedonconceptual arguments, simulateddata,andrealbiologicaldata from

all three domains of life. Our analyses corroborate the findings of the previous study, but also show that because of the high rate of

gene duplication in plants and animals, as much as 60% of orthologous relations are missed by the BBH criterion.
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Two genes are called orthologs if they evolved from their last

common ancestor after a speciation event, and paralogs if

they arose by a gene duplication event (Fitch 1970). The

accurate identification of orthologs and paralogs is a prereq-

uisite for many analyses in comparative genomics and an

active area of research (Dessimoz et al. 2012). One simple

and widespread approach to identifying orthology is the

bidirectional best hit (BBH) method (also known as reciprocal

best hit or reciprocal Blast hit): call as orthologs all pairs of

genes between two species that are more similar (i.e., with

highest alignment score) to one another than to any other

gene in the other species (Overbeek et al. 1999). We and

others have previously observed that despite its simplicity,

and substantial conceptual limitations (elaborated below),

results obtained by BBH are at times surprisingly robust com-

pared with more sophisticated methods (Hulsen et al. 2006;

Altenhoff and Dessimoz 2009; Salichos and Rokas 2011).

In a recent article published in Genome Biology and

Evolution, Wolf and Koonin (2012) investigated the link

between BBH and orthology, using conserved gene order in

bacterial and archaeal genomes. They observed a high consis-

tency in BBH pairing among neighboring genes and concluded

that “at least in prokaryotes, genes for which independent

evidence of orthology is available typically form BBH and, con-

versely, BBH can serve as a strong indication of gene

orthology.” Indeed, in their evaluation framework, almost all

BBH tested appeared to be bona fide orthologs. However, this

does not necessarily mean that the converse (“almost all

orthologs are BBH”) is true. In other words, the observation

that BBH as a predictor of orthology has a high precision rate

says nothing about its recall rate.

Here, we revisit the question of the link between BBH and

orthology using three lines of investigation. First, we present

conceptual arguments on the advantages and limitations of

BBH as predictor of orthology. Second, we exploit the recent

availability of a genome evolution simulation tool to assess the

performance of BBH as a function of the rate of gene dupli-

cation. Finally, we evaluate the performance of BBH on real

biological data across clades from all three domains of life.

These different lines confirm the high precision of BBH
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observed by Wolf and Koonin (2012), but also demonstrate

that BBH can miss a substantial portion of the orthologs in

presence of duplicated genes and is thus suboptimal in ani-

mals and plants where the rate of gene duplications is com-

paratively high.

Conceptual Advantages and Limitations of BBH

As a first step, we try to understand from first principles in

which scenarios BBH performs well and in which it fails. To see

where BBH works, let us consider the motivation behind the

method. Assuming that genes evolve along trees in which

splits are caused by either speciation or gene duplication,

note that between any two species, orthologous genes start

diverging after all out-paralogous genes (i.e., after all paralo-

gous genes that span across the two species in question).

Indeed, by definition, out-paralogs result from a gene duplica-

tion necessarily ancestral to the speciation. Under a molecular

clock or near-molecular clock assumption, we can expect pairs

of genes having started diverging later to have accumulated

fewer changes, and therefore to have generally higher align-

ment score, which motivates the use of BBH (fig. 1a).

One important limitation of BBH is that it can only detect

1-to-1 orthology: in presence of a duplication after the last

common ancestor of the species in question, some species

might contain more than one orthologous gene. Because it

(a) (b)

(c) (d)

FIG. 1.—Performance of BBH in conceptual examples. (a) BBH recovers the orthologous pair, because the orthologous pair is closer than the paralogous

pair due to evolution accrued between the duplication and speciation events (highlighted in bold). (b) BBH only identifies one of the two orthologous pairs,

namely the one with higher score. This scenario is common if duplication occurs after speciations of interest. (c) BBH identifies paralogs if the orthologous

counterpart is missing in both species. This might happen if the rate of gene losses is high (e.g., following a whole genome duplication). (d) BBH identifies

paralogs if the departure from the molecular clock is so strong that paralogs are closer in sequence despite having started diverging before the orthologs.
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only picks the highest scoring pair, BBH will at best identify a

subset of the orthologous relationships, thereby causing “false

negatives” (fig. 1b).

Note that in terms of orthology and paralogy, there is no

distinction between the “original” and “copy” of a gene

duplication. In the toy example of figure 1b, Mouse5 could

be the result of a duplication of Mouse6 into another genomic

locus. Although this might make Mouse5 more or less inter-

esting than Mouse6 from a functional point of view, this

makes no difference in terms of orthology, as orthology is

exclusively defined in terms of the ancestral relationships of

the genes, not their location in the genome or functional

considerations.

To see how problematic lineage-specific duplications can

be for BBH, consider a gene that undergoes independent

duplications in two species, resulting in m copies in one spe-

cies and n copies in another. As a result, all m copies in the first

species are orthologous to all n copies in the other (m-to-n

orthology), leading to m � n orthologous gene pairs. Of these,

BBH can at most identify minðn, mÞ pairs. Therefore, if lineage-

specific duplications are common, BBH will miss a large pro-

portion of the orthologs.

What about false positives (BBH that are paralogs)? First,

there is the case of differential gene losses, which leads to the

absence of orthologous genes in the two species and can

cause the BBH to be between paralogs (fig. 1c; see also

Dessimoz et al. 2006; Scannell et al. 2006). Second, departure

from a molecular clock can result in paralogous pairs appear-

ing to be closer than the actual ortholog (fig. 1d). Finally, the

highest scoring pairs are not always the evolutionary closest

pairs (Koski and Golding 2001). For instance, we recently

demonstrated the disruptive effect of artifacts caused by

sequencing and assembly errors: ambiguous characters lead

to perturbations of the alignment scores, lowering the accu-

racy of BBH (Dalquen et al. 2013).

These theoretical considerations provide us an idea of

the potential successes and failures of BBH, but to gauge

the performance of BBH in practice we turn to empirical

analyses.

Performance of BBH on Simulation Data

In order to quantify the effect of gene duplication on the

proportion of orthologs that are BBH, we simulated datasets

of 30 genomes with different duplication rates using the soft-

ware package ALF (Dalquen et al. 2012; see also Materials and

Methods). We then used Basic Alignment Search Tool (Blast)

(Altschul et al. 1990) to identify BBH gene pairs and compared

these with the true orthologs as given by the simulation pro-

gram. For comparison, we also analyzed the predictions of

Inparanoid (Ostlund et al. 2010) and OMA/GETHOGs

(Altenhoff et al. 2013). We computed the trends of the pre-

cision (proportion of predicted orthologs that are true ortho-

logs) and the recall (proportion of true orthologs that are

correctly predicted) as a function of the true proportion of

non-1-to-1 orthology relations, which increases as the gene

duplication rate increases. In line with the other two methods,

the precision of BBH remained at a very high level with increas-

ing duplication rate, indicating that almost all genes forming

BBH are bona fide orthologs (fig. 2a). This part of our analysis

corroborates the results of Wolf and Koonin (2012). In

FIG. 2.—Relationship between the proportion of non-1-to-1 orthology and precision/recall for BBH (in red) on simulated data sets with different

proportions of genes with a history of duplications. Results for Inparanoid (green) and OMA/GETHOGs (blue) are given for comparison. Each point

corresponds to the mean value of five replicates. Error bars give the 95% confidence interval of the mean values in both dimensions.
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contrast and unlike the behavior of the more sophisticated

methods, the recall of BBH decreased rapidly with increasing

duplication rate (fig. 2b). This behavior indicates that the pro-

portion of orthologs that are BBH decreases as the number of

non-1-to-1 orthology relations increases.

To ensure that our results hold for varying loss rates, we

repeated the analysis on eight scenarios with different combi-

nations of gene loss and duplication rates (see Materials and

Methods). Results were highly consistent across all control

conditions (supplementary figs. S1–S5, Supplementary

Material online).

As BBH are sometimes used to seed orthologous groups,

for instance in Inparanoid, we also investigated the coverage

of orthologous groups (i.e., clusters of n:m orthologs with

n, m � 1) achieved by BBH, OMA/GETHOGs, and

Inparanoid. We observed that even under high rates of gene

gains and losses, all three methods almost always recover at

least one of the orthologous pairs associated with each ortho-

logous group (supplementary fig. S7, Supplementary Material

online).

The Limits of BBH on Real Data

Finally, we sought to assess the performance of BBH on six

nonoverlapping sets of real genomes (20 archaea, 20 firmi-

cutes, 20 g-proteobacteria, 23 fungi, 20 animals, and 12

plants; see also Materials and Methods). As the true evolu-

tionary relationships in this case are unknown, we used

orthologs inferred by the GETHOGs and Inparanoid algorithms

as reference: by considering the intersection and union sets of

orthologs inferred by the two methods, we can get approx-

imate lower and upper bound estimates for the performance

of BBH. We tested this approach on the simulated data sets,

for which we know the truth, and observed that the resulting

trendlines are very close to the truth (supplementary fig. S6,

Supplementary Material online).

The results of this analysis on the six biological data sets are

provided in figure 3 and table 1. Consistent with the simula-

tion results, recall (red) drops rapidly as the proportion of

duplicated genes increases. The drop is more pronounced

than for simulated data, probably due to the additional diffi-

culties of modeling real sequences. Interestingly, although our

estimation approach yields relatively large uncertainty ranges

(reflected in the long dotted arrows in the plot), the favorable

direction of the uncertainty is such that we get a very consis-

tent trendline between the results obtained from the union

and the intersection of GETHOGs and Inparanoid. As noted

above, however, BBH is an adequate way to seed orthologous

groups (supplementary fig. S8, Supplementary Material

online).

The precision of BBH on real data (blue) is more difficult to

assess due to the unfavorable orientation of the uncertainty

ranges, which yield more uncertainty in the slope of the overall

trendline. Still, the results are largely consistent with simulated

data in that precision remains relatively high in all data sets

Prop

FIG. 3.—Precision and recall of BBH on real biological data sets, estimated from the intersection and union sets of orthologs inferred by Inparanoid and

GETHOGs—the intersection yielding a lower bound for precision and recall and the union yielding an upper bound for precision and recall. The trendlines

depict regression over the mid-points.

Bidirectional Best Hits Miss Many Orthologs GBE

Genome Biol. Evol. 5(10):1800–1806. doi:10.1093/gbe/evt132 Advance Access publication September 6, 2013 1803

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1
Lastly
-
gamma
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1
6
l
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt132/-/DC1


even by the conservative estimates obtained through the

intersection of GETHOGs and Inparanoid.

Conclusions

Given the importance of the concept of orthology in many

genomic studies, reliable identification of orthologous genes

is crucial for many downstream analyses. Often, methods

based on BBH are used for orthology inference, sometimes

assuming an equivalence between the two. Our results con-

firm the findings of Wolf and Koonin (2012) that gene pairs

which are BBH are indeed quite likely to be orthologous. But

at the same time, our conceptual and empirical analyses

show that, even for relatively simple evolutionary scenarios,

BBH can miss a large proportion of orthologous relations.

On real biological data, we furthermore observe that the

proportion of duplicated genes and therefore of missed

orthologs is considerable even in bacteria and archaea (5–

50% missed orthologs depending on the data set and strin-

gency of the analysis). In plants and animals, where gene

duplication rates are considerably higher, BBH misses a large

proportion of the orthologs (an estimated 55–60% missed

orthologs).

In particular circumstances, the use of BBH can nevertheless

be justified. For instance, we have shown above that BBH is

effective at recovering orthologous group seeds. Likewise, in

experiments that only require few but trusted orthologs, the

performance of BBH is sufficient.

However, if completeness of orthology prediction is impor-

tant, methods correctly dealing with many-to-many orthology

should be preferred over the convenient but inherently limited

BBH approach.

Table 2

Key Statistics for Simulated Data Sets

% Duplications

0 10 20 30 40

Parameters values

No. of sequences 1,000

Distr. of seq. length �ðk ¼ 2:4, � ¼ 133:8Þ

Min. sequence length 50

Substitution model WAG

Insertion and deletion rate 0.000125

Gene duplication rate 0 0.003 0.0056 0.009 0.0125

Gene loss rate 0 0.003

No. of species 30

Key statistics

Seq. length (mean) 316.6 326.4 323.3 325.0 320.3

Seq. length (stderr) 201.7 211.6 207.4 213.1 203.6

Avg. % gap chars in MSA 24.27 23.25 24.64 26.23 28.65

Variance of % gap chars 58.0 62.8 66.4 72.4 80.5

Total species tree length 763.6

Minimum species tree height 31.70

Maximum species tree height 77.80

Average species tree height 41.36

Average distance between species pairs 72.60

Table 1

Statistics Obtained by Comparing BBH to the Intersection and Union of Inparanoid and GETHOGs Predictions on Real Data

Data Set GETHOGs \ Inparanoid � GETHOGs [ Inparanoid

No. Orthologous Pairs % Non-1-to-1 Orthologs % Missed by BBH

Archaea 116,187–202,117 16.73–54.28 11.30–42.66

Firmicutes 193,354–395,959 20.08–64.73 12.93–52.25

Fungi 753,147–1,126,046 18.46–39.84 12.51–31.86

g-Proteobacteria 126,865–180,691 7.48–35.88 5.0–27.40

Metazoa 1,049,129–3,089,297 45.93–80.30 35.98–73.69

Viridiplantae 883,507–2,231,018 66.73–87.25 46.59–75.09
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Materials and Methods

Simulated Data Sets

We simulated data with ALF (Dalquen et al. 2012) using the

same basic setup as in a previous simulation-based bench-

marking study of orthology prediction (Dalquen et al. 2013):

we used a topology with 30 species sampled from the tree of

224 g-proteobacteria as estimated by the OMA project

(Altenhoff et al. 2011). The ancestral genome consisted of

1,000 amino acid sequences sampled from the stationary

distribution of the WAG substitution model (Whelan and

Goldman 2001), which was also used to simulate substitu-

tions. Sequence length was sampled from a gamma distribu-

tion fitted on gene lengths of bacterial genomes. Rates for

insertions and deletions were 1:25� 10�4 per PAM per site,

and the length of each insertion and deletion was sampled

from a Zipfian distribution with exponent parameter 1.821

(Benner and Cohen 1993).

We created five scenarios with different rates of gene dupli-

cations, based on the resulting proportion of genes with a

duplication background. Apart from a baseline with no dupli-

cations or losses, we chose four proportions that lie within the

range believed to be present in real species (Zhang 2003),

between 10% and 40%. The gene loss rate was kept con-

stant, coinciding with the duplication rate of the data set with

10% duplications (0.003 per gene per PAM unit). All simula-

tions were repeated five times to get an estimate of the sam-

pling variance (given fixed parameters). A summary of

parameters and key statistics is given in table 2.

In addition, we created eight scenarios where we varied

also the loss rate. In four scenarios, duplication and loss rates

were set to be equal. Of the remaining scenarios, one had a

proportion of genes with a duplication background of 10%

and a loss rate that was three times the duplication rate.

Two had a proportion of 30% of genes with a duplication

background and a loss rate of either one-third of or three

times the duplication rate. For the last scenario, we set the

loss rate to zero and the proportion of genes with a dupli-

cation background to 40%. Finally, we repeated all simula-

tions on a smaller set of 20 genomes, using as underlying

species tree a random subsample of the tree of 37 mam-

malian species from the OMA project (Altenhoff et al.

2011).

Real Data Sets

We assembled six data sets, covering all kingdoms of the tree

of life. With two exceptions, we used the trees of different

classes as inferred by the OMA project and pruned them to

20 leaves by repeatedly identifying the most closely related

pair of species and removing one of them. For the Fungi data

set, we used all 23 fungi species available in OMA, and for the

data set of Viridiplantae, we used all 12 species that are part of

OMA (see supplementary tables S1–S6, Supplementary

Material online, for the list of species in each data set). We

did not assume any species tree, as the methods tested do not

require one as input.

Orthology Inference

For the computation of BBH, we followed the methodology

described by Wolf and Koonin (2012). For each data set, we

performed pairwise all-against-all protein sequence alignments

of all genomes, using Blast with an E-value of 0.01. Blast hits

were considered BBH if they scored �99% of the top-scoring

hit. Alongside BBH, we also ran Inparanoid 4.1 (Ostlund et al.

2010) and GETHOGs (Altenhoff et al. 2013) on the data sets.

For the latter method, we used the option of inferring the

species tree from the data and derived the set of induced

orthologous gene pairs from the hierarchical groupings.

On the simulated data sets, we compared the set of

inferred pairwise orthologs of all three methods with the set

of true orthologs given by the simulation. To assess the per-

formance of BBH on real data, we compared its output with

the union and intersection sets of orthologous pairs from

Inparanoid and GETHOGs, which we considered bona fide

orthologs.

Supplementary Material

Supplementary figures S1–S8 and tables S1–S6 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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