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Abstract

Computational genomics is now generating very large volumes of data that have the potential to be used to address important

questions in both basic biology and biomedicine. Addressing these important biological questions becomes possible when mecha-

nistic models rooted in biochemistry and evolutionary/population genetic processes are developed, instead of fitting data to off-

the-shelf statistical distributions thatdonotenablemechanistic inference. Three examples are presented, the first involvingecological

processes inferred frommetagenomic data, the second involving mechanisms ofgene regulation rooted in protein–DNA interactions

with consideration of DNA structure, and the third involving existing models for the retention of duplicate genes that enables

prediction of evolutionary mechanisms. This description of mechanistic models is generalized toward future developments in

computational genomics and the need for biological mechanisms and processes in biological models.

Key words: stochastic modeling, computational biology, molecular evolution, gene duplication, transcriptional regulation,

bacterial ecology.

Introduction

A recent opinion piece in the journal Science (Brunham and

Hayden 2012) described perhaps the biggest hurdle in the

move to personalized genomics as the bioinformatics of

analyzing personal genomic data. Although this may be

true, the hurdles are even bigger than commonly appreciated.

Biological models that actually incorporate biology are an

important component of the future success of personalized

genomics. Disease risk is typically assessed using purely statis-

tical association measures (not rooted in biological processes),

as is the reverse problem of associating single nucleotide poly-

morphisms (SNPs) with a disease (see, e.g., Stephens and

Balding [2009] for a discussion of the underlying statistics).

Given the recent exponential expansion of the human popu-

lation (Keinan and Clark 2012), the number of rare variants

that are uncharacterized medically is expected to be large.

Further, given the context-dependent nature of the functional

effects of mutations, especially in an expanding outbred pop-

ulation, nonsynonymous SNPs (nsSNPs) may cause disease in

some genetic backgrounds and not in others. Using statistical

methods that ignore known biological processes to analyze

such data does not appear to be the best strategy.

Moving from biomedicine to basic molecular biology and

especially to comparative genomics, we are presented with a

wealth of sequence and functional data. Reductionism in

molecular biology and biochemistry has missed the context-

dependence of changes as well as the larger picture of cell and

organismal functions. As molecular biology moves from data

collection to theory development, a theoretical foundation

that enables mechanistic analysis will be necessary. While mo-

tivated by questions in basic molecular biology, it will have

clear applications in human health as well as in evolutionary

biology.

What Differentiates a Mechanistic
Model from a Phenomenological
Model?

A major theme of this work will be to call for mechanistic

models as differentiated from off-the-shelf distributions and

phenomenological models. Rodrigue and Philippe (2010) have

presented a nice discussion of this topic; although for reasons

outlined in this article, we would go further than they do in

questioning the utility and reliability of parameterization of
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phenomenological models. In reality, there is a continuum

between these extremes, and the mechanistic nature of the

model also depends on the hypothesis being addressed. First,

we will now define what we mean with a mechanistic and

phenomenological model.

Two key features characterize mechanistic models. The

model to fit the data bears some relationship to the process

that generated the data and the parameters of the model are

interpretable with respect to the underlying process. In many

cases, it is the parameterization of the model that enables

mechanistic inference. Models can be mechanistic for some

hypotheses but not for others. All models necessarily have

some level of coarse graining (approximation of processes to

make models simpler and more tractable), but it is important

that the coarse graining does not affect estimation of param-

eters used for mechanistic interpretation.

One important concern is that the parameterization of the

model is such that the relationship between the model and

what is being fit is well understood. The model space consists

of a continuum of mechanistic models ranging from the sim-

plest to the most complicated models. The parameters in the

mechanistic models should be clearly biologically interpret-

able, and the importance of including model parameters is

testable using likelihood ratio tests or standard model selec-

tion criteria such as Akaike information criteria (AIC), Bayesian

information criteria, and goodness-of-fit tests. Validating the

robustness of mechanistic inference is another concern, and

this discussion is extended in the section below on validating

mechanistic models.

By contrast, the nonmechanistic models utilize off-the-shelf

probability distributions that are fit to the data. As the param-

eters in the assumed probability distribution do not have

biological interpretations, the inference based on the off-

the-shelf distribution may not be able to address the biological

questions of interest.

Examples of Mechanistic Models in
Evolution and Ecology

Detailed examples of mechanistic and phenomenological

models for various hypotheses are given below. We start

with an example from evolutionary biology. In the field of

evolutionary biology, mechanistic models have roots dating

back 150 years. In the mid-19th century, realizing that similar

species are likely due to shared ancestry, Darwin introduced a

mechanistic model describing the emergence and disappear-

ance of species, combining micro-evolutionary processes with

macro-evolutionary processes, which we call natural selection.

More recently, a mathematical backbone to the evolution of

species has begun to be developed with scientists fitting dis-

tributions to species abundance curves. However, identifying

that, for example, a lognormal curve fits the empirical data

well or not well tells us little about the underlying mechanistic

speciation and extinction process. Thus, mechanisms

producing these abundance curves have been proposed,

which are based on modeling population dynamics, niche

partitioning, and spatial distribution (for a review, see McGill

et al. 2007) and relating ecological and evolutionary processes

to observed data. Although these evolutionary and ecological

models are controversial, the mechanistic approaches provide

a tool to test evolutionary and ecological hypotheses which

was not possible by simply fitting off-the-shelf distributions

(McGill et al. 2007). Combining theory in evolutionary ecology

and metagenomic data will be discussed later in this article.

In further steps in evolutionary biology, one wishes to

reconstruct the ancestry of the species and individuals of a

species in a population. This is typically done using molecular

sequence data, where macroevolutionary processes are linked

to changes in, for example, protein-coding genes. Sequence

data have signal from multiple sources, including ancestry,

selection and function (with the possibility of convergence),

and shifting population genetic parameters. In systematics, it is

commonly assumed that a tree is reflective of ancestry, even if

the model used to generate the tree is phenomenological at

the level of inference. The problems with this and the need for

more mechanistic amino acid models (which complement nu-

cleotide models) are discussed in more detail in Liberles et al.

(2012). Ideally, these models (at both the nucleotide and the

amino acid levels) should differentiate between signals from

ancestry and signals from other sources if the goal is to obtain

a tree reflective of ancestry.

More generally, in phylogenetic analyses, each column of

an alignment of n nucleotide sequences may have m ¼ 4n

possible patterns. Let xi be the count (or frequency) of pattern

i along the alignments. Assuming that each site evolves inde-

pendently, the probability distribution of the alignments is a

multinomial distribution with parameters P¼ {p1, p2, . . . pm}.

The parameters in this model are simply the probabilities of

observing particular patterns. As parameters P are not con-

nected to the underlying substitution process along the line-

ages of a phylogenetic tree, it is impossible to use this model

to estimate phylogenies or substitution rates, which are the

primary goals of most phylogenetic studies. Although this

nonmechanistic model can perfectly describe the observed

patterns using a multinomial distribution, it is practically use-

less as it is incapable of making inference on the phylogeny-

related parameters, even though the DNA sequence data

contain phylogenetic information. On the other hand, a

simple mechanistic phylogenetic model further describes pa-

rameters P as functions of a phylogenetic tree and rate pa-

rameters in the substitution model. With reparameterization

of P, a mechanistic model builds a bridge between data and

biological parameters. As the probability of a particular pattern

observed in the sequence data varies upon the change in the

topology of the phylogenetic tree and the substitution rates in

the phylogenetic model, certain site patterns can be used to

infer phylogenetic trees and substitution rates. In the

nonmechanistic model, parameters P are the ultimate outputs
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of the substitution process running along the lineages of the

phylogenetic tree, which makes it difficult to scrutinize the

effects of individual parameters involved in the substitution

process.

Of course, mechanistic models can also be mis-specified.

The simple mechanistic model described above ignores the

context-dependence of mutation, the population genetic pro-

cess of fixation, linkage of sites, and specific types of selection.

If the mis-specifications affect the type of inference being

made or the interpretability of parameters for the question

being asked, that is another potential concern. This would

occur when, for example, parameters do not fit what they

are intended to fit because the process is not sufficiently well

captured by the structure of the model.

Linking Evolution to Molecular
Biology with Mechanistic Models

In parallel to ecology and evolution, in thinking about building

up a theory for molecular biology, where does one start? The

human genome contains about 20,000 genes. These genes

need to be expressed. Once expressed, they need to function.

Functions typically include processes such as intermolecular

binding, catalysis, and transport. These are all processes that

are well described by physical chemistry and biochemistry.

A growing field has developed methodologies to understand

pathway functions in a cell based on the underlying physical

rate constants of binding and catalysis (see Hoops et al. [2006]

for an example of software that enables this).

Understanding the relationship between gene content,

gene sequence, and biological function is also dependent on

population genetic and evolutionary processes. The number of

mutations segregating in a population will depend on the

population size. The optimality of proteins for the selective

constraints applied by evolution for proper function will

depend on the effective population size (Ne). The amount of

mutation available for selection to act upon and the strength

of selection are considered forward and backward looking Ne

(Nei 1987). They are not always the same and likewise, it is not

clear how they ultimately relate to the number of individuals in

a population. Ultimately, although the concept of effective

population size is important, one needs a measure that relates

to the expected biological mechanism controlling the process

(e.g., the strength of selection).

Another important consideration is the difference between

a mutation and a substitution, as their selective coefficients

are known to show a different profile (Tamuri et al. 2012).

For biomedical problems involving nsSNPs, mutations may

have emerged recently and are likely to be deleterious.

Substitutions have reached fixation in a population and

show a distribution of selective coefficients that includes an

enrichment for neutral and advantageous mutations over the

background distribution observed for mutations.

We have previously reviewed models for amino acid

substitution (Liberles et al. 2012; Teufel et al. 2012) and se-

lection in the context of protein structure (Siltberg-Liberles

et al. 2011). In this review, mechanistic insights into biological

processes such as gene expression, bacterial species distribu-

tions, and finally gene content will be described. These

processes call for new mechanistic models to use in compu-

tational genomics and metagenomics, whether for biomedical

purposes, molecular biological purposes, or comparative/

evolutionary purposes.

Gene Expression Analysis

Gene expression has been recognized as an important con-

tributor to the genotype–phenotype mapping (Wray 2007;

Gordon and Ruvinsky 2012). This is because there is a lot of

mutational opportunity to affect phenotype through the mu-

tational process acting on the genotype that affects gene ex-

pression. Although some studies on the evolutionary rates of

promoter regions averaged over all DNA sites regardless of

whether they were transcription factor binding sites or not,

most recent studies have focused on transcription factor bind-

ing sites, including examination of binding site specificity of

individual transcription factors (Wray 2007; Tsoy et al. 2012).

The common goal is to describe the mechanistic link between

transcription factor binding and gene expression. Current

methods sometimes fail to identify common transcription

factor binding sites linked to gene expression changes. One

potential reason is the lack of context dependence of the

mechanisms of transcription factor binding site functions.

Current models still neglect the role of DNA in transcriptional

regulation. For example, a recent study showed allosteric reg-

ulation of gene expression mediated by DNA itself (Kim et al.

2013). Although properties like intrinsic DNA curvature are

also known to affect transcription levels (Gimenes et al.

2008), more fundamental are the helical properties of DNA.

B-form DNA has a periodicity of 10.4 bp per turn (Saenger

1984). That means that transcription factors with binding

sites separated by multiples of 10.4 will be more likely to in-

teract (both directly and indirectly) than those separated by

odd multiples of 5.2.

In figure 1, the structure of two transcription factors that

bind adjacent sites in a promoter cooperatively to recruit a

third transcription factor is shown (Williams et al. 2004). For

this mechanism to operate, the interacting transcription fac-

tors need to be on the same face of DNA and over short

distances, and this can be accomplished with bent structures

when the phasing of the binding sites is maintained. This pro-

cess can apply both to transcription factor interactions that are

necessary to recruit additional transcription factors to the pro-

moter (including the basal apparatus) and to proteins that

dimerize on DNA (see Funnell and Crossley 2012 for a

review). Both the insertion and deletion processes as well as

the mutational process of binding sites fading in and out can
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lead to changes in spacing between transcription factor bind-

ing sites that can affect transcription. This larger level organi-

zation of promoter regions has not been described in

computational approaches examining the evolution of gene

expression from homologous promoter regions. Considering

the physical structure of DNA as well as proteins in the

evolution of gene expression may be important.

To develop a model along these lines, not only the binding

site sequence and its affinity for a transcription factor but also

the spacing of the sites should be considered. At a first

approximation that ignores the sequence context of the

spacer regions and any local structure, the distance between

sites (in base pairs) over a phylogeny describing the evolution

of the promoters would be registered and considered with the

helical structure to generate a modulator of effective local

concentration for co-interaction as a component of the

transcriptional regulation model.

Metagenomic Data Analysis

Metagenomics has emerged as a powerful approach for

assessing microbial diversity in medical and environmental

samples. Current data analysis in metagenomics has ignored

biologically motivated bacterial species concepts and arbitrarily

defined species as those with sequences showing less than

3% divergence. Several species concepts that are relevant to

bacteria have been described (de Queiroz 2007; Hausdorf

2011). One such concept is a phylogenetic species concept

that defines species as those separated by discrete breaks in

the distribution of branch lengths of the phylogeny of individ-

ual sequences (to define clades), suggesting for various mech-

anistic reasons, that individuals form natural groups that can

be defined as species when assayed phylogenetically. Another

such concept is the ecological species concept that defines

species by a combination of genetic similarity and ecological

role. A third species concept for bacteria that has been re-

cently introduced is more fluid across layers of biological or-

ganization, combining selfish gene thinking with population

genetics to produce a continuous species concept called the

goods hypothesis (McInerney et al. 2011).

In evaluating the 3% divergence level that is commonly

used, it is well known that individuals with less than 3%

divergence can be members of different species and more

importantly, that important ecological niche differentiation

can occur between individuals with less sequence divergence.

Two challenges are presented here. The first challenge is to

use a more appropriate measure of species. In metagenomic

analysis, all that is known about species is the sequence of

sometimes only a single gene. As has been shown for

Pseudomonas (Özen and Ussery 2012), the phylogenetic spe-

cies concepts which would be the obvious choice do not

obviously work, as there do not appear to be discrete

breaks in branch length separating individuals. There may be

large continua of sequences that play divergent ecological

roles. But how could one discover ecological roles without

defining species?

This now intertwines the first challenge with the second.

Are there patterns of sequence co-occurrence in metage-

nomic data that one can look for, even if the species are

not predefined a priori? To the extent that ecological interac-

tions are not purely context-dependent, the answer is per-

haps. There are patterns of ecological relationships between

organisms that have well-defined mathematical relationships.

This can then be examined by looking at co-occurrence data

of different species, where the model is more complex in

iteratively evaluating species clusters as part of the model-fit

process. In this case, given the fluidity of species definitions in

bacteria, the relationships between groups of individuals can

be evaluated at different levels of sequence divergence, and

natural ecological roles of individuals can be identified without

a fixed a priori sequence-based species definition.

For example, the most famous set of ecological relation-

ships are predator–prey dynamics, where the predator popu-

lation changes with a time delay in response to the prey

population changing, in the same direction. This then causes

the prey population to change in the opposite direction with a

time delay (although the nature of this delay is controversial

and may be very small in some cases). Other relationships

include competitive (anticorrelated), amensalistic (one is asym-

metrically anticorrelated with another), mutualistic (corre-

lated), and comensalistic (one is asymmetrically correlated

with another) relationships. These relationships are shown in

figure 2. Some of these relationships are well known in bac-

terial species. For example, a predator–prey relationship

and the associated gene content underlying antibiotic produc-

tion as prey species-specific chemical warfare between

FIG. 1.—The two domains of Oct1 (POUS [bottom right] and POUHD

[top right]) and the SOX2 (left) transcription factors bind adjacently to the

Hoxb1 element on DNA. Sox2 and POUS interact by binding cooperatively

to adjacent sites to facilitate the binding of co-activator OBF-1 (Williams

et al. 2004). The image is generated from PDB file 1O4X.
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Myxococcus xanthus as predator and Escherichia coli or

Micrococcus luteus as prey has been described by Xiao et al.

(2011). The analysis suggested here represents a coarse-

grained attempt to suggest an evolutionary-ecological basis

for the analysis of metagenomic data.

One complicating factor with this type of correlative anal-

ysis is that relationships may be indirect rather than direct. This

has led to controversy in the ecology community in the past,

and as discussed later, even more mechanistic models may be

necessary that also include proper null models with evolution-

ary and ecological process information (Connor and

Simberloff 1979). The analysis ultimately becomes similar to

the construction of genetic interaction networks in molecular

biology, where with enough experiments, network architec-

ture and direct interactions can be inferred. A framework of

this nature for analyzing metagenomic data has not yet been

developed.

It should be noted that this framework, although a step

beyond the type of analysis that is currently applied to meta-

genomic data, is probably insufficiently mechanistic for a the-

oretical ecologist. Alternatively, more detailed frameworks

exist that rather than modeling abundances directly model

species interactions using parameters such as species interac-

tion coefficients or even more detailed descriptions of inter-

actions (see, e.g., Holt 1977; Morin 2011). Ultimately, more

sophisticated models may be possible to envision applying to

metagenomic data as this type of ecological inference is

performed.

Analysis of Gene Content

Gene content, in combination with gene expression and the

exact amino acid sequence of underlying genes, can be used

to define an individual and the species that it belongs to.

Changes in gene content can be important to understanding

changing phenotypes of organisms. Evolution of gene content

along a species tree requires a model.

Several processes lead to gene trees that are different from

species trees. Incomplete lineage sorting is a process where

shared ancestral alleles partition differently from other genes

in the genome across two or more speciation events (Degnan

and Rosenberg 2009). Horizontal gene transfer involves the

transfer of DNA between two contemporaneously living or-

ganisms (or genomes). The organisms presumably must have

some ecological or spatial relationship to each other (Jain et al.

2003). Transfer of DNA from organellar genomes to nuclear

genomes is an increasingly well-characterized process

(Maruyama et al. 2011). Organisms that have speciated can

hybridize with each other, generating various signals in gene

trees (McDonald et al. 2008).

Now if we build a phylogenetic tree based on a gene or a

concatenation of genes, we may assume that this reflects the

history of the gene (ignoring any uncertainty in the construc-

tion of gene trees), but due to any of the processes described

earlier, the species tree may be different. Ideally, all of the

processes discussed earlier should be simultaneously modeled

to fully characterize the evolution of gene content and the

consequent evolution of species (Roth et al. 2007; Liberles

et al. 2010). Although much of the discussion will assume

that the species tree is known topologically, a mechanistic

framework has been proposed to infer species trees from

multiple genes in the context of incomplete lineage sorting

(Liu and Pearl 2007; Heled and Drummond 2010). The

Bayesian inference method is available within the BEST (Liu

2008) and *BEAST (Heled and Drummond 2010) software

packages. In essence, a model for speciation and extinction

with the growth of the species tree has to be assumed. Such a

model may be the coalescent or a birth–death model. Second,

population dynamics within the lineages of the species tree

are assumed, where the individuals of a species replicate and

die according to some model; typically, the dynamics are as-

sumed to follow the coalescent assumptions. Thus, a mecha-

nistic model for the species tree and the gene lineages

coalescing within the species tree is assumed, and the species

tree together with its gene trees is inferred. Ideally, the model

would not only consider incomplete species sampling when

performing species tree inference but also other processes

influencing gene content which have not been included in

species tree inference to date.

FIG. 2.—A set of ecological relationships with different nonindepen-

dence of species is shown. This includes the classic predator–prey cycles,

competition leading to anticorrelation, commensalism where the presence

of one species is beneficial to the other, mutualism where two species are

positively correlated as mutually beneficial, and amensalism, where the

presence of one species is deleterious to the other. The statistical signa-

tures of these relationships can be identified in metagenomic data, where

samples vary either across time or geographically.
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However, these other processes have been studied inde-

pendently of the species tree reconstruction problem and thus

in the future might be combined with species tree reconstruc-

tion. The remainder of this section will focus on a model for

one particular process of gene content evolution, gene dupli-

cation, and loss. The modeling discussion will be used to frame

the trade-offs between biological considerations and statistical

considerations in making biological inference.

Many models assume that gene duplication is an indepen-

dent process acting on one gene at a time at a constant rate.

Of course, models that enable rate variation and the simulta-

neous duplication of multiple genes (either that functionally

interact or that do not) are needed to deal with the violation of

the independence assumption at the level of the gene. Once a

gene is born, there is a complex process that describes if it is

retained. The probability of loss of a gene becomes reduced as

redundancy with other genes decreases. Modeling that pro-

cess will be described in the next section and in more detail

in a companion article (Zhao J, Teufel AI, Liu L, Liberles DA,

manuscript submitted). These models treat each gene inde-

pendently while acknowledging that the process is interde-

pendent, analogous to the common treatment of amino

acid substitution in a protein in Markov models.

Gene Loss

Genes are retained in genomes by several processes that pre-

vent gene loss. All of these retention processes play out

against a neutral backdrop leading to nonfunctionalization.

Neofunctionalization describes a process where one gene ob-

tains a new function whereas the other copy retains the an-

cestral function (Ohno 1970). Subfunctionalization describes

the neutral partition of functions from a multifunctional

ancestral state through degenerate changes that are neutral

in the context of redundancy (Lynch et al. 2001). Dosage bal-

ance describes the co-retention of duplicate genes that are in

stoichiometric balance and deleterious when out of stoichio-

metric balance (Freeling and Thomas 2006). There are other

processes and many variations on these themes (Innan and

Kondrashov [2010] provide a useful review).

Many early characterizations of gene loss relied on an ex-

ponential distribution of retention (where the retention prob-

ability is 1� loss probability), implying a constant rate of loss

until all duplicates are lost (Lynch and Conery 2000; Lynch and

Conery, 2003; Arvestad et al. 2009). In the survival function in

equation (1), t is time measured in dS units and d reflects the

loss rate.

S tð Þ ¼ e�dt : ð1Þ

Of course, gene duplication is a biologically meaningful

process because duplicates diverge in function generating un-

equal rates of loss and genes that have never been observed

as lost from genomes (e.g., ribosomal RNA subunit genes and

other genes involved in translation). Several such mechanisms

have been described above. Many ancient duplicates, such as

those involved in translation that have never been lost, have a

hazard rate (the instantaneous rate of loss) that must be ex-

tremely close to zero, although probably not initially after the

duplication event. A first step toward changing this modeling

framework to enable rate variation used a Weibull distribution

with a concavely decaying loss rate (Hughes and Liberles

2007). In this context, the Weibull distribution mathematically

describes the loss process associated with a specific mecha-

nism but is not fully mechanistic (as in the DNA substitution

models described earlier) in that it does not consider other

biological processes (see both the following discussion and

the companion article [Zhao J, Teufel AI, Liu L, Liberles DA,

manuscript submitted]). In the expansion of equation (1) de-

scribed in equation (2), d2 enables a time-dependency to the

loss rate.

S tð Þ ¼ e�d1td2 : ð2Þ

The Weibull model was designed to characterize the retention

of duplicate genes on average according to a neofunctionali-

zation process against a backdrop of nonfunctionalization.

Concave decay was consistent with a waiting time for a

single event, such as a neofunctionalizing event. This is in

contrast to a convexly decaying loss rate that is not parame-

terizable with a standard Weibull and that would be consistent

with a waiting time for multiple events, such as subfunctiona-

lizing events. It was proposed that the dosage balance mech-

anism would be consistent with a concavely increasing loss

rate based on the expectation of stochastic loss of one partner

leading to cooperative loss of the remaining duplicates

(Hughes et al. 2007). Konrad et al. (2011) then derived a

more complex distribution that could accommodate all the

curve shapes consistent with the four mechanisms described

earlier (nonfunctionalization [constant loss rate], neofunctio-

nalization, dosage balance, and subfunctionalization).

The Konrad Model and Its
Implementation

The Konrad et al. (2011) model presented a set of hypotheses

derived from theory for the expected hazard functions asso-

ciated with different processes and derived survival functions

from the hazard function using the following formulae in

equations (3) and (4). The b and c parameters control the

loss rate and its time dependency, whereas the f and d pa-

rameters control the instantaneous and asymptotic loss rates.

h tð Þ ¼ fe�btc

+d, ð3Þ

S tð Þ ¼ e
�dt�f

P1
n¼0

ð�bÞntcn+1

cnðn!Þ+n!

: ð4Þ

In this case, the hazard function reflects the instantaneous

rate of loss of a duplicate gene in a genome, dependent

on the time it has survived in the genome. This modeling
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framework reflects a first step toward the development of

mechanistic models for duplicate gene retention (see fig. 3).

The models will need to be expanded to accommodate hybrid

processes, like initial dosage balance followed by either

subfunctionalization or neofunctionalization. In extending

the model to a phylogenetic framework, the retention/loss

model will need to be coupled to models that examine vari-

ability and complexity in the gene birth process. Further, the

robustness of population genetic assumptions about the fixa-

tion process will need to be tested with more realistic simula-

tions. Duplicate gene loss models represent an example where

mechanistic model development in computational genomics is

progressing but still at an early stage. As indicated, a more

detailed technical discussion of these models and their devel-

opment appears in a companion article (Zhao J, Teufel AI, Liu

L, Liberles DA, manuscript submitted).

How to Validate Mechanistic Models

With this call for mechanistic models, the question arises of

how to validate models for biological data. The question one

might address is how well a particular model fits the data. For

mechanistic models, it is at least as important to ask whether

the biological inference made by the model is both robust and

correct. The latter analysis to evaluate the biological interpret-

ability of the model can be completely orthogonal to good-

ness of fit of the model.

Standard statistical approaches for model selection and val-

idation include comparison of the likelihood score with the

number of parameters to justify the model and prevent

overfitting, the identifiability of parameters, data simulation

under the model to evaluate how well the data are explained,

P–P plots, Q–Q plots, and other measures of goodness of fit

that have been reviewed elsewhere (see Jermiin et al. [2008]

for a discussion in a phylogenetic context). Under certain con-

ditions, these model selection criteria perform appropriately in

selecting models that explain the biological processes in the

data well, corresponding to a good fit. There are cases, how-

ever, in which these conditions are not met, and the use of

these criteria can lead to selecting inappropriate models. For

instance, when selecting a model using AIC, it should be

noted that AIC and its variants were developed to approxi-

mate the expected Kullback–Leibler divergence, which mea-

sures in the context of model selection the difference between

the target model and the true model. AIC works well under

certain conditions, but these conditions may not hold for com-

plex, say phylogenetic, models with complex parameters

including tree topology. Although AIC is not known to fail

in model selection in these contexts, it is of great interest

theoretically and practically to further investigate the perfor-

mance of AIC in selecting phylogenetic models. These topics

have been discussed elsewhere as well (see, e.g., Hurvich and

Tsai 1991; Posada and Buckley 2004).

It has been suggested that summary statistics, like those

from the previously discussed multinomial distribution describ-

ing sequence character distributions, can be used to evaluate

model fit (Goldman 1993), but it is important to also ask how

the summary statistics relate to the hypotheses being tested

with the model. This can be complex, as biological assump-

tions like the independence of evolution of sites in a protein

can generate patterns that are not well characterized by

amino acid frequencies and tree topologies that are inferred

from changes at individual sites. Goldman (1993) was aware

of these concerns but constrained by the state of modeling

in 1993.

Beyond these considerations, with mechanistic models

used for mechanistic inference (inference about the biological

process based on parameter values), there is the added im-

portance that the model does not just fit the data well but that

it enables robust mechanistic inference from the parameteri-

zation. Simulations of data using a plausible mechanistic ap-

proach that does not embed the simple inference model may

be a powerful approach for evaluating correctness of mecha-

nistic inference. In Konrad et al. (2011), both statistical iden-

tifiability of parameter values and mechanistic identifiability

using simulations under a different model were the

approaches applied to validate the inferential model, although

further mechanistic validation is clearly required. The simula-

tions involved a network of genes in a population, where

mutations affected the function of the genes and thereby

the fitness of the cells in the population. These simulations

involve a much more complex biological process that encap-

sulates as much of the underlying biology as realistically as

possible, but that would be difficult to describe

FIG. 3.—The hazard functions associated with the nonfunctionaliza-

tion, neofunctionalization (plus nonfunctionalization), subfunctionalization

(plus nonfunctionalization), and dosage balance (plus nonfunctionaliza-

tion) processes as described by sample parameterization from equation

(5) are shown. Equation (3) generates a similar set of curve shapes.
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mathematically in an inference framework. In these simula-

tions, the parameters (e.g., effective population size) and the

selective regimes are known and can be validated with the

simpler mechanistic statistical model. This would be impossible

on real data, where the underlying biology (including popula-

tion size, selective regime, and the precise biochemical func-

tion of a gene under selection) is typically not known.

The use of mechanistic simulations in this way that could be

turned into receiver operating characteristic curves rather than

fitting real data is controversial in statistics but worthy of ex-

ploration. The use of such simulations is, of course, dependent

on the closeness of the simulated processes to the actual pro-

cesses generating real data. In Konrad et al. (2011), there was

the added case that the models fit only a portion of the curve

where the model was mis-specified in cases where multiple

processes acted, but the mechanistic model forced the fit to a

single process. This was then validated by a priori knowledge

of the processes that acted, whereas it would have been re-

jected by a P–P or Q–Q plot test. With the addition of two

additional parameterization ranges (for the simultaneous

action of neofunctionalization and dosage balance as well

as the simultaneous action of subfunctionalization and

dosage balance), goodness-of-fit tests can also be applied

with tests for proper mechanistic inference.

There is a question that does emerge. Does the existence of

a model that explains the data better with fewer parameters

but that is mechanistically uninterpretable, invalidate a mech-

anistic model that needs more parameters to explain the data?

There are many explanations for the nonmechanistic simple

model fitting the data better, from the mechanistic model

being mis-specified to the mechanistic parameters not behav-

ing fully independently. The worse fit of the mechanistic

model does not necessarily invalidate mechanistic conclusions

from that model, but controls involving simulations under dif-

ferent conditions to evaluate the relationship between mech-

anism, parameters, and data are always a good idea. The

constraint on mechanistic model parameterization to mecha-

nistically interpretable ranges may in fact doom mechanistic

models to poorer fit for the number of parameters compared

with freely parameterized phenomenological models. Model

comparison between mechanistic and phenomenological

models in standard model comparison frameworks may there-

fore not be appropriate. Ultimately, there are famous quotes

from George Box and others that touch on this including,

“. . . all models are wrong, but some are useful” (Box and

Draper 1987).

There is something to worry about though, as it may be

that all parameters are needed to explain the process fully, but

different parameter combinations give rise to the same likeli-

hood, as the considered data are only a snapshot of the full

process. For example, this happens when looking at species

phylogenies. Clearly, we need independent speciation, extinc-

tion, and sampling parameters. However, if our data consist

of only extant species data, where fossils are ignored, the

three parameters are nonindependent and therefore non-

identifiable (Stadler 2009).

Model Complexity versus Priors

The phenomenological modeling has drawbacks in fitting and

interpreting complex biological data. One suggestion is to use

mechanistic information in generating informative priors

rather than generating complex models with mechanisms em-

bedded in the likelihood calculation. However, even if mixture

models (as an example of a strategy for using simpler off-

the-shelf distributions) are used to fit the data, mechanistic

information may not fit obviously into prior probabilities on

parameter values in phenomenological models. It is conceiv-

able that a priori inequality of mixture components through

the prior probabilities could be used to capture such mecha-

nistic information, but this would likely lead to more complex

models than simply building a mechanistic or theoretical

model where the parameters have clear scientific interpreta-

tion. It would be the equivalent of using a mixture of Jukes–

Cantor components in modeling codon evolution rather than

the Goldman–Yang model (Goldman and Yang 1994). In this

case, the differences in rates between synonymous and non-

synonymous sites and their relative frequencies in the data

might be used to inform priors about the rate and mixture

parameters. This is a clearer case of relationship between

model parameters in the different models than would occur

in purely phenomenological models, as the rate parameter in a

Jukes–Cantor model has some relationship to biological pro-

cesses being studied. The statistical argument might be to let

the data drive the model fit in preferring the mixture of Jukes–

Cantor models, but that only goes so far if the biological

hypothesis involves dS or omega values that are parameters

in the model. On the other hand, there is a potential advan-

tage to a mixture of simpler models that does enable discovery

if the process is not well understood and the mechanistic

model is mis-specified.

Problems with Hybrid Models for
Mechanistic Inference

In using simpler models that include a combination of phe-

nomenological parameters and mechanistic parameters

(hybrid models), the question emerges whether the parame-

terization of the two components can remain accurate if there

is not a clear separation between what is being fit by different

parameters. To examine this, a birth–death model was de-

scribed with a dampening periodic birth function (eq. 5) and

a Weibull death function (eq. 6).

B tð Þ ¼ 100+
sin x

250
x

500

� �
� 1=2, 000, ð5Þ

S tð Þ ¼ e�5t0:5

: ð6Þ
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This model was then fit with a mixture of Weibull distribution

probability density functions (the simulated data and the R

code used to fit the data are included as supplementary ma-

terials, Supplementary Material online). Two Weibull compo-

nents were found to be statistically justified. Neither the

mixture Weibull nor either of the individual Weibull

components showed parameters consistent with those used

in equation (6), which is a Weibull distribution (fig. 4).

Identifying such a case required little effort and generating a

reasonable fit was much more difficult, even with mixtures of

these flexible distributions.

Although it is possible that a better fitting model can

be identified, it still suggests that care should be taken in in-

terpreting the parameterization of models that are either

mechanistically mis-specified or are hybrid models containing

mechanistic and nonmechanistic parameters (part of the data

comes from a Weibull distribution and one Weibull compo-

nent can be considered mechanistic). In interpreting such pa-

rameterizations, it is important to examine what is being fit by

which parameter in addition to standard goodness-of-fit

evaluations.

Conclusions

Phenomonological models, including those based on statistical

associations, work well when the signal is clear and the mech-

anistic interpretation of the signal is unambiguous. In many

cases of biology, spanning from biomedicine to ecology, there

are complex mechanistic processes that underpin the gener-

ation of biological data. Analyzing and interpreting these data

FIG. 4.—Using the birth process in equation (5) and the death process in equation (6) (green curve), a survival function is simulated (black curve). This is fit

statistically with a mixture of two Weibull distributions (blue curve), where the individual components are shown in red. Neither recovers the Weibull loss

process of the green curve, with the decaying Weibull function following the data (black) more closely than the green generative process.
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in the absence of mechanistic insight is fraught with compli-

cations. Ultimately, as in physics, biology will need to push

down the path of becoming a theoretical science instead of

a purely data-driven one.

Supplementary Material

Supplementary materials are available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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