
Perspective

Playing the Field: Sox10 Recruits Different Partners to
Drive Central and Peripheral Myelination
Ben Emery*

Department of Anatomy and Neuroscience and Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia

Within the vertebrate nervous system,

specialized glial cell types ensheath the

axons of neurons with multiple wraps of

membrane (myelin) in order to increase

the speed and efficiency of nerve conduc-

tion. In the central nervous system, this

role is fulfilled by oligodendrocytes;

Schwann cells carry out the equivalent

function within the peripheral nervous

system. In spite of their common func-

tion, there are some substantial differenc-

es between oligodendrocytes and

Schwann cells. For starters, they have

different embryonic origins, arising from

the neural tube and neural crest respec-

tively. Each oligodendrocyte may myeli-

nate anywhere from 1 to 50 axons,

whereas a myelinating Schwann cell will

devote its energy to a single axon. Even

the major protein components of myelin

in the peripheral and central nervous

systems are a somewhat inexplicable

mix; both incorporate the Myelin Basic

Protein (MBP), but the major peripheral

myelin protein, Protein Zero (P0), is

replaced in the central nervous system

with Proteolipid Protein (PLP). The

transcription networks underlying differ-

entiation and myelination in each cell

type are also largely distinct, although

one consistency is that the HMG-domain

transcription factor Sox10 is required for

successful myelination by both cell types

[1,2].

In this issue of PLOS Genetics, Hornig

and colleagues [3] give another striking

example of two very different genes being

co-opted by Sox10 to drive the myelina-

tion process in each cell type.

Within the Schwann cells, Sox10 is

known to directly induce the transcription

of another transcription factor, Krox20

(also known as Egr2) [4]. Sox10 and

Krox20 subsequently act in concert at

myelin gene enhancers [5,6] (Figure 1).

Unlike Schwann cells, oligodendrocytes

do not express Krox20, however recent

work has identified a putative functional

replacement, Myelin Regulatory Factor

(Myrf, previously known as C11Orf9,

MRF, and GM98). Just as Krox20 is

upregulated in myelinating Schwann

cells, Myrf is upregulated during

oligodendrocyte differentiation and is re-

quired for them to myelinate [7].

Hornig and colleagues now demon-

strate that Krox20 and Myrf not only

have an analogous role in driving myeli-

nation in their respective cell types, they

also share a remarkably similar relation-

ship with Sox10. Just as Sox10 directly

regulates Krox20 in Schwann cells, they

find it is also required for the induction of

Myrf during terminal oligodendrocyte

differentiation in vivo. This regulation by

Sox10 was mapped to an enhancer in the

first intron of the Myrf gene containing

several Sox consensus motifs. They show

this enhancer is bound by Sox10 and is

sufficient to drive gene expression in

developing oligodendrocytes.

Perhaps equally strikingly, the Sox10

and Myrf proteins were found to subse-

quently physically interact and act syner-

gistically at key myelin gene enhancers,

including upstream of the MBP gene.

This corroborates recent ChIP-Seq data

indicating that the two bind to partially

overlapping genomic regions within oli-

godendrocytes [8]. This, once again,

closely mirrors the functional relationship

between Sox10 and Krox20 in the PNS,

where they act synergistically in the

myelinating Schwann cells to regulate

myelin gene expression [5,6]. Intriguing-

ly, both Hornig et al. and Bujalka et al.

find that although there is some clear

overlap and synergy between the myelin

gene regulatory regions bound by Sox10

and Myrf, there are also some distinct

differences, with many regulatory ele-

ments being targeted by just one factor

[3,8]. This suggests that the two do not

necessarily act as part of an obligatory

protein complex, instead sharing overlap-

ping but subtly distinct roles.

These findings further cement the

central role of Sox10 in the regulation of

the differentiation of both Schwann cells

and oligodendrocytes and their subse-

quent myelination. Indeed, its role is

remarkably well-conserved in peripheral

and central glia given how few other key

transcription factors are common be-

tween the two. As Hornig et al. point

out, on the surface Myrf appears to be an

unlikely functional replacement for

Krox20. Krox20 is a fairly well charac-

terized zinc finger transcription factor,

with a variety of roles in development. In

contrast, Myrf is something of the eccen-

tric elderly uncle in the transcription

factor family. It has few close homologs

but shows homology to the yeast tran-

scription factor Ndt80 [9], also incorpo-

rating structural domains from bacterio-

phage proteins [8,10]. Within vertebrates,

its roles outside central nervous system

myelination remain undefined. Neverthe-

less, the parallels between Krox20 and

Myrf, as well as the relationship they

share with Sox10, are clear.

A number of questions are raised by

these findings.

As Hornig et al. note, Sox10 is present

within the oligodendrocyte precursors for

some time before it acts to promote the

expression of Myrf. This indicates the

presence of additional regulatory mecha-

nisms. Recent work suggests that chro-

matin remodeling by Brg1 and Olig2

alters the accessibility of key genes,

including Myrf, at the onset of terminal
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differentiation [11]. It is highly feasible

that other factors such as Nkx2.2 and

YY1 will also have a direct role in this

regulation. The broader cellular events

and molecular partners that direct

Sox10 to the Myrf intronic enhancer at

the critical point of oligodendrocyte

differentiation will be important to

determine.

Secondly, Hornig and colleagues

found that Sox10 physically interacts

with the C-terminal region of Myrf.

Several groups have recently reported

that the Myrf protein is cleaved as a

prerequisite for its transcription factor

function and that the C-terminal domain

appears to be excluded from the nucleus

[8,10,12]. The functional role of this

physical interaction between Sox10 and

the C-terminal of Myrf (and indeed the

role of the C-terminal domain of Myrf

more generally) will therefore be impor-

tant to clarify.

Finally, and perhaps most intriguing-

ly, the question of how Schwann cells

and oligodendrocytes have come to

perform essentially the same function

(ensheathing nerve cells) during verte-

brate evolution while using overlapping,

but clearly discrete, sets of transcription

regulators remains to be resolved. Do

they share a common cellular ancestor,

or (as Hornig and colleagues speculate),

has the myelination process evolved

independently in the central and periph-

eral nervous systems with Sox10, the

common element in an otherwise largely

mixed bag of genes? It seems possible

that careful analysis of the neural cells

that co-express Sox10, Krox20, and

Myrf in our evolutionary distant rela-

tives may hold the key to the origins of

these cells and their relationship to each

other.
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