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ABSTRACT

Biological networks often show a scale-free top-
ology with node degree following a power-law dis-
tribution. Lethal genes tend to form functional hubs,
whereas non-lethal disease genes are located at the
periphery. Uni-dimensional analyses, however, are
flawed. We created and investigated two distinct
scale-free networks; a protein–protein interaction
(PPI) and a perturbation sensitivity network (PSN).
The hubs of both networks exhibit a low molecular
evolutionary rate (P< 8�10�12, P< 2� 10�4) and a
high codon adaptation index (P< 2� 10�16,
P<2�10�8), indicating that both hubs have been
shaped under high evolutionary selective pressure.
Moreover, the topologies of PPI and PSN are in-
versely proportional: hubs of PPI tend to be
located at the periphery of PSN and vice versa. PPI
hubs are highly enriched with lethal genes but not
with disease genes, whereas PSN hubs are highly
enriched with disease genes and drug targets but
not with lethal genes. PPI hub genes are enriched
with essential cellular processes, but PSN hub
genes are enriched with environmental interaction
processes, having more TATA boxes and transcrip-
tion factor binding sites. It is concluded that biolo-
gical systems may balance internal growth signaling
and external stress signaling by unifying the two
opposite scale-free networks that are seemingly
opposite to each other but work in concert
between death and disease.

INTRODUCTION

Biological systems are often described as complex
networks whose vertex connectivities follow a scale-free

power-law distribution (1). Complex interactions of biolo-
gical building blocks, such as genes, proteins and metab-
olites, have been modeled with network graphs, such as
protein interaction, metabolic, signaling and transcrip-
tional regulatory networks. The scale-free topology of a
network may arise from ‘network growth’ and ‘preferen-
tial attachment’, endowing the network with robustness
against random errors owing to its relatively small
number of functional hubs and many peripheral nodes.
The so-called attack vulnerability, however, may also
arise when a few key hubs are precisely perturbed, splitting
the network into several smaller pieces (1,2).
Living cells finely balance internal growth signaling with

external stress signaling. Biologically, robustness against
random errors and attack vulnerability are associated with
the lethality of mutations in the protein–protein inter-
action (PPI) network. Deleterious mutations of highly
connected hub proteins in the PPI network of yeast are
three times more likely to be lethal than those of less con-
nected peripheral ones (3). Therefore, the scale-free
topology of PPI network seems to have been shaped by
evolutionary selection pressure, enabling organisms to be
robust against random mutations and lethal only from
disruptions of a few critical proteins with many interacting
partners. Each gene’s contribution to sustain internal
growth or ‘essentiality’ is well represented by the
connectivities of protein interactome.
Meanwhile, with the advent of large-scale gene expres-

sion profiling technologies like microarrays, expression
variability in different biological conditions has emerged
as an inherent trait of a gene. Expression variability is
reported to be associated with genomic and epigenomic
architectures. Genes with highly variable expression
patterns are more likely to have a TATA box and more
upstream regulatory elements and chromatin regulators
than those with less expression variability (4,5).
Recently, the view that genes with high expression vari-
ability or noisy expression are stress-responsive genes,
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expressed in tune with physiological needs, conferring re-
sistance to environmental perturbations, is gaining accept-
ance (6,7).
Expression variability in response to environmental per-

turbations, especially genetic perturbations, has been
modeled with the so-called ‘perturbation sensitivity
network (PSN)’ or ‘disruption network’ (8,9). The PSN
is a ‘directed bipartite’ graph between a ‘gene set’ and a
‘mutation set’ where an edge connects a deletion mutant to
a gene when the gene is significantly up- or downregulated
by the deletion mutant (8). Because a deletion mutant is
also a gene, the PSN can also be simply viewed as a
directed graph of genes. The perturbation sensitivity is
defined as the in-degree of genes in the bipartite graph,
reflecting the extent to which the transcription of each
gene is significantly affected by random genetic perturb-
ations (or deletion mutations). Hub genes of the PSN or
highly perturbation-sensitive genes are non-essential and
involved in biological processes like ‘interaction with
cellular environment’ and ‘metabolism’. Core genes of
the perturbation network code for the less-connected
proteins in the PPI network and are located in the periph-
ery of the protein interactome (8).
Each biological network usually models one aspect of

biological phenomena, like the physical binding relation-
ship between proteins, the transcriptional regulation
between transcription factors and target genes or the
chemical reaction between enzymes and metabolites. The
finding that perturbation network cores are located in the
periphery of the protein interaction network motivated us
to explore the architecture of the combined network rep-
resenting seemingly unrelated biological properties,
physical interaction among proteins and transcriptional
responsiveness to genetic perturbations.
We built a yeast PPI network from physical interaction

data in the Saccharomyces genome database (http://www.
yeastgenome.org) and a yeast PSN network from a
genome-wide transcriptional profiling study of 276 gene
deletion mutant strains of Saccharomyces cerevisiae (10).
The two networks differ from each other in that the PPI
network models the physical interactions between
proteins, whereas the PSN network represents the tran-
scriptional response of each gene to random genetic
perturbations.
In the present study, we investigated not only network

topology, evolutionary pressure, distribution of classified
genes (essential, disease, drug-target and TATA-contain-
ing genes), transcription factor binding site (TFBS) and
functional enrichment but also the interrelation of the two
networks, PPI and PSN. Finally, based on the results, we
propose an improved network model of biological
systems.

MATERIALS AND METHODS

Construction of PPI. Protein interaction data were
retrieved from the yeast genome database (http://www.
yeastgenome.org) and then filtered only for physical inter-
actions. The data consist of 5531 genes, with KPPI degrees
ranging from 1 to 2569 (Figure 2A).

Construction of PSN. PSN was constructed from the
mRNA expression profiling of 6326 yeast ORFs in 276
gene deletion mutant strains, excluding drug treatments
in S. cerevisiae (10). A PSN network is a directed bipartite
graph where one vertex set contains significantly up- or
downregulated genes in deletion mutants, which constitute
the other vertex set. A directed link is made from deletion
mutant j to gene i if the expression of gene i is significantly
altered in the deletion mutant j. Based on the ‘error model’
correcting for each gene measurement error and biological
noise, P-value was assigned for each pair of gene and
deletion mutant (10). In all, 4280 genes showed significant
expression changes in more than one deletion mutant, and
212 deletion mutants affected more than one gene
(P< 0.01). Finally, we corrected non-standard names
with standard names and removed merged or deleted
ORFs in the dataset by referencing the Saccharomyces
genome database (http://www.yeastgenome.org). A
matrix of 4226 genes and 212 deletion mutants,
D=<dij>, were created for gene i and deletion mutant j
where:

dij ¼
1,P < 0:01
0,P � 0:01

�

Perturbation sensitivity, Si, of gene i is defined as the in-
degree of the gene i in the directed bipartite graph, reflect-
ing the responsiveness of gene i to external perturbations.
It can also be denoted as KPSN, and the range was from 1
to 49.

Si ¼ KPSN ¼
X
j

dij

m-core. An m-core of a graph G is defined as a maximal
connected subgraph ofG in which all vertices have a degree
of at least m (8). Equivalently, it is one of the connected
components of the subgraph of G formed by repeatedly
deleting all vertices of a degree less than m. One can itera-
tively apply this ‘peeling’ procedure by increasing m to
produce subgraphs with more hub vertices of G.
Likewise, m-corePPI or m-corePSN is defined as a maximal
connected subgraph of a PPI or a PSN network, respect-
ively, in which all genes have a degree KPPI or KPSN of at
least m.

Excess retention. ‘Excess retention’ was proposed by
Wuchty et al. (11). It is defined as the degree to which
genes with a certain property A is over- or under-repre-
sented in ‘m-core’ compared with that in the whole gene
groups, i.e. 1-core. The fraction of genes with property A
in the whole group with N genes isEA ¼ NA=N. If m-core
containsNmgenes and the number of genes with prop-
ertyAin m-core isNA

m, then the excess retention of the
genes with property A in m-core is given by:

EA
m ¼

NA
m=Nm

� �
NA=Nð Þ

Enrichment of functional categories. We performed en-
richment analysis of functional categories for each of the
node-degree groups of KPPI and KPSN. The MIPS database
(http://mips.gsf.de) contains functional catalogs and is
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made of a functional annotation scheme for systematic
classification of proteins from the whole genome and
provides online tools (http://mips.gsf.de/proj/funcatDB)
for statistical testing of functional enrichment by using
hypergeometric distribution. Enrichment P-values for
each functional category of gene groups were corrected
for multiple hypothesis testing by calculating false
discovery rate (FDR)-adjusted P-values (<0.01).

Network visualization. There were a few double-deletion
mutant strains that we excluded from the dataset for the
purpose of PSN network visualization. PPI and PSN
networks have 3679 nodes with 26 088 edges and 3392
nodes with 9820 edges, respectively. The joint network
has 3756 nodes with 35 908 edges of which 98 edges are
in common in the joint network. We used the ‘igraph’
library (http://igraph.sourceforge.net) in the R statistical
package for network visualization and applied the
‘Layout.frutcherman.reingold’ function of the library for
three-dimensional network visualization.

dN/dS (evolutionary rate). dN/dS is the ratio of the
number of non-synonymous substitutions per non-syn-
onymous site (dN) to the number of synonymous substi-
tutions per synonymous site (dS), which can be used as an
indicator of selective pressure acting on a protein-coding
gene (12,13). We obtained 3036 adjusted dN/dS values as
evolutionary rate indicators from a previously published
dataset using four-way yeast species alignments for
S. cerevisiae genes (12). We were able to obtain adjusted
dN/dS values for 3006 of 5981 yeast genes (range from 0
to 0.523705) including 2947 of 5531 PPI and 2126 of 4226
PSN genes. Of the 3776 genes participating in both
networks, 2067 genes have adjusted dN/dS values.

Codon adaption index (CAI). Codon usage bias refers to
differences in the frequency of occurrence of synonymous
codons in coding DNA. The overabundance in the
number of codons allows many amino acids to be
encoded by more than one codon. Codon usage bias is
generally known to reflect a balance between mutational
biases and natural selection for translational optimization.
Codon adaption index (CAI) is one of the general
measures for codon usage bias. It is measured based on
the similarity of codon usage between a given gene and
highly expressed genes from a given organism (14–16). We
retrieved precalculated CAIs for 6623 yeast genes from the
Saccharomyces genome database (http://www.
yeastgenome.org). We were able to obtain CAI values
for 5903 of 5981 yeast genes (range from 0 to 0.924),
including 5454 of 5531 PPI and 4200 of 4226 PSN
genes. Of 3776 genes participating in both networks,
3751 genes have CAI values.

Human homolog genes. In all, 1498 human homologs of
5981 yeast genes were retrieved from the HomoloGene
(http://www.ncbi.nlm.nih.gov/homologene) database.

Lethal (essential) genes. Lethality information of 5448
of 5981 yeast genes was obtained from the MIPS
Comprehensive Yeast Genome Database (http://mips.
helmholtz-muenchen.de/genre/proj/yeast/). For the 1498
human homologs of yeast genes, lethality information
was available for 1492 yeast genes.

Disease genes. A total of 1498 yeast homologs were
searched against the Online Mendelian Inheritance in

Man (OMIM, http://www.ncbi.nlm.nih.gov/omim)
database. OMIM is a database of human disease pheno-
types and causal genetic mutations, mainly containing
genetic disorders with Mendelian inheritance (17). We
obtained 285 OMIM disease genes and 1213 non-disease
genes.
Drug target genes. Information on drug target of 1498

human homologs of yeast genes was obtained from the
DrugBank (http://www.drugbank.ca) database.
Number of TFBSs. We retrieved TFBS from the up-

stream sequence of yeast genes from the YEASTRACT
database (http://www.yeastract.com). The number of
TFBSs per yeast gene ranged from 0 to 58.
TATA-containing genes. TATA-box information of

5541 of 5981 yeast genes was obtained from the raw
data of Basehoar et al. (18).

RESULTS

Network topology analysis of PPI and PSN

According to the degree-distribution plots, both the PPI
and the PSN are scale-free with approximate exponents of
2.48 (gPPI) and 2.24 (gPSN), respectively (Figure 1A and B).
The scale-freeness of the joint network is further explored.
Figure 1C exhibits the three-dimensional degree-distribu-
tion plot where the vertical axis depicts log-transformed
joint-degree distribution and the horizontal axes depict
log-transformed degrees in each network. Figure 1D visu-
alizes the same plot in a different direction. The three-di-
mensional degree-distribution plot (Figure 1C and D) can
be fit with a regression plane, which we call ‘high dimen-
sional scale-free’. Interestingly, distribution of coordinates
in the horizontal plane in Figure 1C (or coronal plane in
Figure 1D) demonstrates that the degrees in each network,
i.e. KPPI and KPSN, are inversely proportional or ‘recipro-
cal’ (Pearson correlation coefficient, �0.039 with
P-value=0.0028). Genes highly connected in the protein
interaction network are least likely to be hubs in the per-
turbation network, and vice versa.

Evolutionary analysis of PPI and PSN

Hubs of PPI and PSN are both important genes for the
fitness of the organism, as they show a low protein evolu-
tionary rate and a high codon adaptation index (Figure 1E
and F). In the ‘neutral’ theory of molecular evolution (19),
evolutionary changes at the molecular level are caused by
drift and fixation of random mutations that do not affect
the fitness of the organism. Hence, the rate of evolution
should be lower in proteins whose deletions affect the
survival of the organism (20).
Protein evolutionary rate (dN/dS) is defined as the ratio

of non-synonymous divergence (dN) to synonymous di-
vergence (dS) (12). As previously reported (21), PPI
hubs evolve slowly; KPPI is negatively correlated with
dN/dS (P< 8� 10�12). PSN hubs also evolve slowly;
KPSN is negatively correlated with dN/dS (P< 2� 10�4).
Hubs of both PPI and PSN have evolved slowly and their
sequence divergences are constrained under high evolu-
tionary selection pressure, which suggests that they are
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Figure 1. Degree distribution and evolutionary conservation within biological networks. The (A) protein interaction and (B) perturbation sensitivity
networks are both scale-free with approximate exponents of 2.48 (gPPI) and 2.24 (gPSN), respectively. (C and D) The three-dimensional plots
demonstrate that the two distinct networks are reciprocally intertwined to constitute a curved surface. Nodes are coded with different colors
according to node degrees (KPPI and KPSN). Scatter plots between the node degrees (KPPI and KPSN) and (E) the protein evolutionary rate (dN/
dS) and (F) the CAI demonstrate that hubs of both networks are under high evolutionary selection pressure.

9212 Nucleic Acids Research, 2013, Vol. 41, No. 20



important genes that are crucial for the survival of the
organism.

Another indirect measure of evolutionary selection
pressure is the synonymous codon usage bias.
Synonymous codons for an amino acid are not used
randomly. It is experimentally confirmed that mRNAs
made up of preferred codons are translated faster than
those artificially modified to have rare codons (22). This
codon preference is the balance between mutational bias
and translational efficiency, reflecting selection pressure
for translational optimization. The CAI is a measure of
synonymous codon usage bias, and important genes have
high CAI, as their efficient translation may confer a
survival benefit (14). Both KPPI and KPSN are positively
correlated with CAI values (P< 2� 10�16 and
P< 2� 10�8, respectively); high evolutionary selection
pressure seems to act on both hubs of PPI and PSN, re-
flecting their important role in the fitness of the organism.

Lethal genes versus disease genes in PPI and PSN

Essential genes are known to have a strong tendency to be
located at the functional center of the protein interactome.
However, there has been much debate about the centrality
of disease genes. Disease genes from the OMIM database
are reported to show higher degrees in PPI than non-
disease genes (23). Recent study of complex trait-
associated loci also reported that they were located at
the core of PPI (24). But Goh et al. reported that
disease genes were located not in the hub but in the per-
iphery of protein interactome and attributed other studies’
results to the subset of disease genes that were also essen-
tial (25). They declined their initial hypothesis that disease
genes might be located at the functional hub of (a certain)
biological network (25). However, it seems that Goh et al.
overlooked the possibility of disease genes to be located at
the functional hub of another biological network other
than PPI. After all, PPI is not the only biological network.

We plotted the proportion of lethal genes in each degree
bin of KPPI and KPSN (Figure 2B and C). Consistent with
the previous study (3), the PPI core that is under high
evolutionary selection pressure is increasingly enriched
with lethal genes than its periphery (Figure 2B).
However, the PSN core that is also under high evolution-
ary selection pressure is inversely enriched with lethal
genes (Figure 2C). Instead, non-lethal disease genes are
highly enriched in the PSN core, whereas they are very
sparse in the PPI core (Figure 2C). A biological network
may not be singular. Lethal genes and disease genes show
inversely proportional (or reciprocal) degree distributions
between the two biological networks. We propose that
disease genes are located in the functional hub of PSN
but not in that of PPI, which is a reciprocal network
to PSN.

The grid diagram that consists of pie charts in Figure 3
clearly demonstrates the reciprocal degree distribution of
lethal (in red) versus disease (in green) genes in two per-
pendicular degree axes of the joint network (Figure 1C
and D), made up of 1040 yeast genes with human homo-
logs whose lethality and disease annotations are available.
Vertices (or genes) are classified into four groups: lethal

disease, lethal non-disease, non-lethal disease and non-
lethal non-disease genes. Lethal non-disease genes (in
red) and non-lethal disease genes (in green) are symmet-
rically distributed around the space diagonal Y=X axis,
which means that lethal non-disease genes have high
degrees in PPI but low degrees in PSN, and non-lethal
disease genes are much connected in PSN but less con-
nected in PPI.
The marginal pie-chart arrays along with the vertical

and horizontal axes also clearly demonstrate that lethal
non-disease genes are increasingly enriched in the PPI
core and non-lethal disease genes in the PSN core and
that PPI and PSN are reciprocally intertwined. Please
notice that the vertical marginal pie-chart array success-
fully replicates Goh et al.’s finding that disease genes (in
green and purple) are located at the functional periphery
(i.e. 1� 105 PPI degrees) of the protein interactome (25).
As reported by Goh et al., non-lethal disease genes cannot
be found at the very hub of PPI (i.e. beyond 105 degrees in
our study), although they overlooked the other network of
perturbation sensitivity, which is represented in the hori-
zontal counterpart of the grid diagram.
The plots from excess-retention analysis (Figure 3B–E)

clearly demonstrate that PPI hubs are enriched with lethal
genes (Figure 3B), whereas PSN hubs are enriched with
disease genes (Figure 3E). PPI hubs are inversely enriched
with disease genes (Figure 3C), whereas PSN hubs are
inversely enriched with lethal genes (Figure 3D). We
suggest that disease genes are not simply located at the
periphery of PPI but at the highly connected core of
another network, i.e. PSN. Disease genes are closely
associated with perturbation sensitivity, and highly per-
turbation-sensitive genes are mostly disease genes.

Drug-target, TATA box and TFBS of PPI and PSN

Moreover, the yeast homologs of drug-target genes ex-
tracted from the DrugBank database (http://www.
drugbank.ca) are similarly located at the core of PSN and
in the periphery of PPI, although there is an exceptional
enrichment of drug-target genes among the PPI hubs with
very high degrees (Figure 3F–J and Supplementary Figure
S1). PSN hubs are also highly enriched with more tran-
scription factors and TATA boxes in their promoter
region (Supplementary Figures S2 and S3).

Functional annotation analysis of PPI and PSN

Gene Ontology-based functional annotation enrichment
analysis with the online tool of the MIPS database
(http://mips.gsf.de/proj/funcatDB) demonstrates a
mutually exclusive enrichment pattern between the hubs
of PPI and PSN. PPI hubs are enriched with essential
cellular processes, whereas PSN hubs are enriched with
environmental interactions (Figure 4, FDR-adjusted
P< 0.01). Although the PPI hubs are enriched with ‘cell
cycle and DNA processing’, ‘transcription’, ‘protein syn-
thesis’, ‘protein fate’, ‘protein with binding function or
cofactor requirement’, ‘cell fate’ and ‘cell type differenti-
ation’, the PSN hubs are enriched with ‘metabolism’, ‘cell
rescue’, ‘defense and virulence’, ‘interaction with the en-
vironment’, ‘transposable elements’ and ‘development’.
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Network visualization of PPI and PSN

Supplementary Figure S4 visualizes the individual (Sup-
plementary Figures S4A–D) and joint (Supplementary
Figure S4E–H) networks in three-dimensional space
with edges visualized (Supplementary Figure S4A, C and
E) or omitted (Supplementary Figure S4B, D and F). The
edges of the joint network are made up of two distinct
edge sets: the undirected edge set of PPI and the
directed edge set of PSN. It is a mixed graph G=(V,
EPPI and EPSN), and the degree of vertex V is a vector of
two elements (KPPI, KPSN). The proportion of the shared
edges (in black, Supplementary Figure S4G) between
two networks is only 0.3% (n=98) of the 35 908 edges
of the whole joint network. The connectivities of the
joint network are not independent but inversely propor-
tional to each other. The perturbation network is the
disease network, whereas the protein interaction network
is the essentiality network, and the two reciprocal
and separate halves seem to constitute a more comprehen-
sive model for the yeast gene network (Supplementary
Figure S4E–H).

DISCUSSION

In a biological sense, the cellular transcriptome has been
suggested to be bipolar (‘internal growth’ versus ‘external
stress response’). Living cells have to balance two import-
ant biological conditions. In a nutrient-rich condition,
yeasts activate a transcriptional program to spend most
of their energy and metabolic substrates for maximal pro-
liferation, although they become labile to external stress.
In a nutrient-deprived environment, however, they enter a
quiescent state and a reciprocally distinct set of transcrip-
tional program is recruited for high stress resistance and
the transcriptome for proliferation and growth is sup-
pressed (6,26). The internal growth signal is to lethality
as the external stress response signaling is to disease.
The two programs are equally important, and living cells
with a defect in growth program do not ‘survive’, whereas
those with a dysfunctional stress response do not ‘thrive’
in environmental stress.

One limitation of the current study is the comparability
between PPI and PSN, which are physical interaction
and functional responsiveness networks, respectively, of

Figure 2. Distribution of the proportion of lethal and disease genes in biological networks. (A) The Venn diagram shows the distribution of yeast
genes in protein interaction and perturbation networks. Distributions of lethal- and disease-gene proportions are plotted according to their degrees,
KPPI and KPSN, in (B) protein interaction and (C) perturbation networks. Lethal genes are increasingly enriched in the hub of the protein interaction
network but decreasingly enriched in the hub of perturbation network. In contrast, disease genes are increasingly enriched in the hub of perturbation
network but decreasingly enriched in the hub of protein interaction network. Lethal and disease genes constitute the two opposite hubs of the
reciprocally scale-free biological networks, PPI and PSN, respectively.
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Figure 3. Inversely proportional degree distributions between lethal genes and disease genes or drug-target genes in the joint network of protein
interaction and perturbation sensitivity. (A) A grid diagram that consists of pie charts that demonstrate the proportion of four groups of genes (lethal
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different kinds. In graph theory, however, the two
networks can be represented as a mixed graph with two
different edge types. Although the edges come from differ-
ent (i.e. physical and relational) classes, we were able to
demonstrate that the hubs of both networks uniformly
showed evolutionary conservations (Figure 1E and F).
The fact that the evolutionary selection pressure, which is
a fundamental process working on all biological systems,
has consistently impacted both networks suggests that the
two networks of different kinds may be considered
together at the systems level of biological understanding.
Physical interaction of genes may restrain their func-

tional interaction and vice versa. The PPI hub genes
are directly connected to many genes, and too much

‘fluctuation’ of them beyond a certain degree may
severely disrupt the biological system (or the cell). Thus,
many of them are highly lethal genes. Both PPI and PSN
hubs may receive many inputs. PPI hubs may respond to a
variety of inputs in a mildly modulated fashion, impacting
many genes. On the other hand, PSN hubs may show a
strong response to specific sets of signals but the impact
may be restrained to limited sets of genes. PSN hubs have
many regulatory genes like transcription factors (see
Supplementary File of PPI and PSN core gene lists). A
singular network may not be sufficient for autonomous
biological systems.

We considered the genes that were most ‘perturbed’ to
be PSN hubs, whereas Rung et al. (9) considered the most

Figure 3. Continued
disease, lethal non-disease, non-lethal disease and non-lethal non-disease genes) at each degree bin. Pie charts at higher-degree bins of PPI (left upper
diagonal) exhibit larger proportion of red (i.e. lethal non-disease) genes, whereas those at higher-degree bins of PSN (right lower diagonal) exhibit
smaller proportion of red genes. On the contrary, green (i.e. disease non-lethal) genes are highly enriched at the right lower diagonal and sparse at the
left upper diagonal. The marginal pie charts along with the vertical and horizontal axes also clearly demonstrate that lethal non-disease genes are
increasingly enriched in the PPI core and non-lethal disease genes are enriched in the PSN core and that PPI and PSN are reciprocally intertwined.
The background-color density of each cell of the grid diagram denotes the number of genes, and higher density means more genes in the cell (see
Figure 1D). It demonstrates that the hubs of the protein interaction network are enriched with lethal genes but are inversely enriched with disease
genes, whereas hubs of the perturbation network are enriched with disease genes but are inversely enriched with lethal genes. The excess-retention
plots (b-e) of lethal genes and disease genes shown according to the m-cores of PPI and PSN clearly demonstrate the inversely proportional
enrichments of (B) lethal genes in the PPI core and (D) disease genes in the PSN core, respectively, and (C and E) vice versa. (F) A grid
diagram that consists of pie charts demonstrates that the hubs of protein interactome are (G) highly enriched with lethal genes (in red) but (H)
inversely enriched with drug-target genes (in orange). The only exception is found with those hubs with extreme high degrees (>180). The hubs of
perturbation sensitivity network are (J) highly enriched with drug-target genes but (I) inversely enriched with lethal genes. (G–J) Excess retention
plots of lethal genes and drug-target genes are shown according to m-cores of the networks. Background color density of each cell denotes the
number of genes.

Figure 4. The distribution of functional annotation categories (FDR-adjusted P< 0.01, see ‘Materials and Methods’ section) in each group of
m-corePSN (m� 6) and m-corePPI (m� 40). If a functional category is significantly overrepresented in a group, then the corresponding rectangle is
colored in orange for the protein interactome and in blue for the perturbation sensitivity network. The hubs of the protein interactome are enriched
with ‘cell cycle and DNA processing’, ‘transcription’, ‘protein synthesis’, ‘protein fate’, ‘protein with binding function or cofactor requirement’, ‘cell
fate’ and ‘cell type differentiation’, whereas those of the perturbation sensitivity network are enriched with metabolism, ‘cell rescue’, ‘defense and
virulence’, ‘interaction with the environment’, ‘transposable elements’ and ‘development’. Two hubs have mutually exclusive functional annotations.
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‘perturbing’ genes to be hubs of their disruption network.
They found that the most ‘perturbing’ genes were mostly
‘regulatory genes’ like transcription factors. The most
severely perturbing genes, however, must be the essential
genes themselves because disturbed essential genes may
cause complete cell death, hence impacting all genes.
Therefore, bias to non-lethal genes is inevitable. In
contrast, the definition of the most perturbed genes is
unbiased because the effect of lethal mutation can
equally be applied to all genes. Because there are only
273 genes that can be mutated without lethal effect out
of the whole yeast genes in the original experiment, we did
not further characterize their lethal disease relationship
for the ‘perturbing’ genes whose deletion affects the ex-
pression of other genes.

Unlike artificial networks, biological networks do not
grow indefinitely. The hitherto ever-growing singular
network model lacks a way to model the self-autonomous
and self-constrained features of actual biological systems.
Network growth by preferential attachment in physical
interaction may be constrained by the connectivity in tran-
scriptional interaction and vice versa. The negative correl-
ation seems to organize the joint network into two
reciprocal cores, where preferential attachments of nodes
are self-constrained between lethality versus disease,
growth versus stress response or survival versus thrival.
Integrating two scale-free networks that are reciprocal to
each other but work in concert for the same goal might
provide a realistic model of biological systems. Life is
maintained self-autonomously by the unity of opposites,
yin and yang, or ‘conjunctio oppositorum’.
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