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Abstract

Complex diseases (e.g., cardiovascular disease and type 2 di-
abetes, among many others) pose the biggest threat to human
health worldwide and are among the most challenging to in-
vestigate. Susceptibility to complex disease may be caused
by multiple genetic variants (GVs) and their interaction, by
environmental factors, and by interaction between GVs and
environment, and large study cohorts with substantial analyt-
ical power are typically required to elucidate these individual
contributions. Here, we discuss the advantages of both pow-
er and feasibility afforded by the use of extended pedigrees
of rhesus macaques (Macaca mulatta) for genetic studies of
complex human disease based on next-generation sequence
data. We present these advantages in the context of previous
research conducted in rhesus macaques for several represen-
tative complex diseases. We also describe a single, multigen-
eration pedigree of Indian-origin rhesus macaques and a
sample biobank we have developed for genetic analysis of
complex disease, including power of this pedigree to detect
causal GVs using either genetic linkage or association meth-
ods in a variance decomposition approach. Finally, we sum-
marize findings of significant heritability for a number of
quantitative traits that demonstrate that genetic contributions
to risk factors for complex disease can be detected and mea-
sured in this pedigree. We conclude that the development
and application of an extended pedigree to analysis of com-
plex disease traits in the rhesus macaque have shown promis-
ing early success and that genome-wide genetic and higher
order -omics studies in this pedigree are likely to yield useful
insights into the architecture of complex human disease.
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Introduction

P reventing or curing complex diseases such as cardio-
vascular disease (CVD), diabetes, addiction, macular
degeneration, and arthritis, among many others, poses

one of the biggest challenges to human health worldwide.
Susceptibility to these diseases is determined by genes, by
environmental influences, and by interaction both among
genes and between genes and environment. Given this com-
plexity, genetic analysis of complex disease aims to charac-
terize the contribution of additive genetic effects relative to
observed variation in the trait studied (i.e., heritability), to
identify the comprehensive set of genetic variants (GVs) and
their interactions that confer directional effects on the trait,
and to describe how GVs and environment interact to influ-
ence trait expression. However, achieving any of these goals
is no trivial matter because of the substantial analytical pow-
er required to detect the many GVs of varying effect size,
and the corresponding large number of interactions expected
to determine disease susceptibility. The need for sufficient
power to support these analyses typically requires very large
study cohorts of either unrelated (population-based) or relat-
ed (family-based) individuals, either of which can be chal-
lenging to develop in many human populations. In contrast,
large managed colonies of rhesus macaques (Macaca mu-
latta) with extensive pedigree information and close genetic
similarity to humans are readily available at many primate
research centers. Despite this obvious opportunity and the
widespread use of the macaque as a model for human disease
pathology, the application of pedigreed rhesus macaques to ge-
netic discovery in complex human disease is currently nonex-
istent. In this article, we discuss advantages of feasibility and
power gained when using extended pedigrees of rhesus ma-
caques for genetic discovery based on next-generation se-
quence (NGS) data. We also present highlights of research
conducted in rhesus macaques for selected complex human
diseases to demonstrate how genome-wide genetic discovery
in the rhesus macaque model would add to our knowledge of
these diseases. Finally, we describe the development of an
extended pedigree and sample biobank of Indian-origin
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macaques at the Oregon National Primate Research Center
(ONPRC) intended for genetic research in complex disease,
and the results of initial studies of heritability in this pedigree
for several quantitative risk factors for human disease.

Advantages of the Rhesus Macaque Model
for Genetic Discovery in Complex Human
Disease

Genetic Similarity to Humans and the Feasibility
of Developing Extended Rhesus Macaque
Pedigrees

Large, managed colonies of rhesus macaques such as those
found at many primate research centers have inherent advan-
tages that make developing extended pedigrees in macaques
a viable alternative to population-based human study co-
horts. These advantages start with a very close genetic and
physiologic similarity to humans. The most recent common
ancestor between macaque and human occurred approxi-
mately 25 million years ago. The rhesus macaque genome
exhibits synteny for 89% of human genes and shares 93%
mean sequence identity with the human genome (Rhesus
Macaque Genome Sequencing and Analysis Consortium
et al. 2007). This close degree of genetic similarity to hu-
mans, combined with the widespread use of rhesus ma-
caques in physiologic studies of complex disease, makes this
species an obvious choice for studying genetic effects on
disease that will translate easily to the human condition, par-
ticularly for early stages of disease that are difficult or impos-
sible to study in humans.

Rhesus macaques are also polygamous breeders and natu-
rally form multi-male, multi-female groups in which males
compete for access to females, a social grouping pattern re-
produced in the group-housed macaques at the ONPRC.
Male macaques can reproduce as early as 2 years of age, and
large paternal half-sibship cohorts are common. Compared
with the standard human generation time of 20 years,
the breeding strategies and generation times found in rhesus
macaques can produce very broad, multi-generational
pedigrees over a much shorter time span. Further, because
animals may live to their mid-20s in captivity, animals from
several successive generations may be available for sampling
and phenotyping at any single point in time. Combined with
the multiple years of pedigree information available for
many primate research center colonies, these advantages of
breeding patterns and generation time make it eminently fea-
sible to characterize very large and complex pedigrees with
substantial analytical power for genetic studies. Moreover,
because animals receive comprehensive veterinary care on
an ongoing basis throughout the year, blood samples and
whole-body phenotypes of interest may be collected on
hundreds of animals per year at nominal cost by working
closely with veterinary and animal care personnel during
routine exams. In contrast, the human generation time and
mobility common to many Westernized countries frequently

limit human studies to population-based study designs with
unrelated individuals. Such studies may require sample sizes
that are orders of magnitude larger in order to reproduce the
analytical power found in a smaller number of close relatives.

Power for Analysis of Rare Variants In Extended
Rhesus Macaque Pedigrees

In recent years, the focus of most gene mapping studies in
humans was on the contribution of common genetic variants
to common complex disease, an approach implemented by
the International HapMap Project (International HapMap
Consortium 2003) and aided by the design of commercial
technologies for surveying genetic variation in populations
of unrelated individuals. However, the very small proportion
of disease or trait heritability ultimately explained by this ap-
proach has led to much recent discussion of the basis for this
“missing heritability.” Although many hypotheses have been
proposed to explain missing heritability, including epigenetic
processes (Furrow et al. 2011), methodological deficiencies
(Ehret et al. 2012; Zuk et al. 2012), and gene–environment or
other interaction (Kaprio 2012), the hypothesis repeated most
frequently is the previously neglected contribution of rare or
low-frequency variation to heritability of complex disease
(Manolio et al. 2009). Concurrent with the realization that rare
variants may account for a substantial portion of missing heri-
tability in complex disease, the cost of sequencing a whole ge-
nome has plummeted, and the ability to afford sequencing of
whole or partial genomes for large numbers of individuals is
now within reach. With the rapid approach of the $1000 ge-
nome, the field of complex disease genetics is shifting from
genome-wide association studies (GWASs) based on common
variants assessed using microarray technology to analysis of
NGS data (exome and whole-genome), which reveals the en-
tire complement of genetic variation, both common and rare,
and allows the testing of contributions from rare variants to
complex disease.
Pedigree-based approaches to mapping causal rare vari-

ants for complex disease from NGS data have several signifi-
cant advantages over population-based approaches (Wilson
and Ziegler 2011). For variants of approximately 1–5% fre-
quency, population-based cohorts have been shown to have
lower power to detect causal variants than same-sized
family-based studies. This is due to the dilution of the effect
size at the level of the population caused by the low frequen-
cy of variants and their effects (even when severe) on rela-
tively small numbers of individuals. Thus, to the extent that
rare variants contribute to heritability in complex disease,
studies based on thousands or many thousands of unrelated
individuals may be required to identify them. In contrast,
rare variants are shared by many relatives in pedigrees, thus
increasing their frequency in the study. This enrichment for
rare variants in pedigrees results in increased locus-specific
heritability (a function of both allele frequency and effect
size) and improved power to identify causal variants. More-
over, pedigree-based studies are not only able to enrich for
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rare variants but also may enrich for phenotypes of interest
by focusing on lineages with many affected individuals or
with substantial trait variation (Wilson and Ziegler 2011).
Family-based studies in rhesus macaques have the poten-

tial for even greater power to detect causal rare variants than
such studies in humans because of the relative ease of devel-
oping very large and complex pedigrees that are not possible
in human populations. The increased mobility and genera-
tion time of human subjects frequently limits family-based
genetic studies in human populations to collections of nucle-
ar families or sibling pairs or groups, a study design with sig-
nificantly reduced power compared with the use of extended
pedigrees (Williams and Blangero 1999). Moreover, rhesus
macaque colonies may exhibit a level of coancestry similar
to that found in human genetic isolates as a result of limited
gene flow, and animals typically experience the same man-
aged environment (e.g., diet, housing), both factors that en-
hance power to detect genetic signal over noise. Given the
advantages outlined above, pedigree-based approaches
appear a far more desirable choice than population-based
approaches for the study of complex disease genetics in the
rhesus macaque model.

Value of Rhesus Macaque Pedigrees to
Preclinical and Translational Studies

Large rhesus macaque pedigrees may also provide unique
advantages in preclinical and translational studies, such as
the ability to estimate the relative contributions to disease
risk or response to therapeutics from inherited risk variants,
specified environments, and family history. The advantages
to conducting such studies in pedigreed rhesus macaques in-
clude the usual ones of power, feasibility, and genetic simi-
larity, and add knowledge of inheritance patterns, access to
detailed clinical family history, and the ability to rigorously
control environmental factors. The potential utility of de-
composing response or disease risk into underlying factors is
suggested by a recent study by Do and colleagues (2012)
that showed that family history may be a better predictor of
disease liability than single nucleotide polymorphism
(SNP)–based models for high frequency diseases with large
heritability (e.g., coronary artery disease, Alzheimer’s dis-
ease), whereas for diseases of low frequency (e.g., celiac dis-
ease, Parkinson disease), SNP-based models perform as well
or better than family history. Although differences in DNA
sequence and allele frequencies between rhesus macaques
and humans may preclude the application of genetic risk
models developed in monkeys to all clinical disease in hu-
mans, such approaches may have particular utility for diseas-
es influenced by genetic variants that are highly conserved
between macaques and humans. Another potential transla-
tional application of large rhesus macaque pedigrees is the
development of immortalized cell lines from animals of
known relationship. Such a resource would allow the estima-
tion of heritability and the application of gene mapping and
systems genetics approaches to molecular and cellular

response to experimental challenge and drug therapies mea-
sured in vitro.

General Challenges to Detecting Causal
Rare Variants from NGS Data

Given the interest in the contribution of rare variants to com-
plex disease, the enrichment for rare variants in pedigrees,
and the ability to comprehensively survey all genetic varia-
tion in the genome at ever-decreasing cost, it is not surpris-
ing that there has been renewed interest in family-based
designs in genome-wide studies. Both linkage analysis and
association methods, as well as approaches that incorporate
both types of information, may be applied in pedigrees with
genome-wide sequence data to narrow the region of interest
and to identify potentially causal variants. However, there
are considerably more variants discovered in a NGS study,
and because of this, there will be much greater correlation
among these variants than seen previously from studies
based on more sparse marker data, both within and across
linkage disequilibrium blocks (Thomas et al. 2011; Tintle
et al. 2011). This increased correlation may be caused by
linkage or gametic phase disequilibrium, quality of the se-
quence alignment, or simple random chance. Failure to ad-
dress this issue appears to inflate type I error and apparent
power for both family- and population-based methods when
there is a true but unknown genetic contribution to the
phenotype.

To analyze rare sequence variants, it is necessary to aggre-
gate them into new derived variables, and the success of var-
ious approaches to solve this problem can rely on
assumptions about the direction of effects and may be con-
strained by variable numbers of sequence variants within a
gene or other defined region of analysis (Ye and Engelman
2011). However, if there is prior information available on the
variants themselves or on their effects on the trait (e.g., non-
synonymous or synonymous substitution effects, candidate
genes, biological pathways, or gene networks) that reflects
the true underlying etiology of a trait, the use of this prior in-
formation may be used to aggregate variants informatively
and improve power to detect causal variants (Chen et al.
2011). The informative aggregation of variants may also al-
leviate the multiple testing burden in sequence-based stud-
ies, a problem that is greatly magnified by the sheer number
of variants discovered in these studies relative to the number
of markers used in a standard GWAS. A lack of prior infor-
mation on which to aggregate sequence variants, particularly
in intergenic regions, may prove a considerable challenge for
studies relying on whole-genome sequence data. These and
related problems are currently an active area of research.

The Rhesus Macaque Model for Common
Complex Human Disease

The rhesus macaque is a well-established model for patho-
logic processes in many complex human diseases, and a
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number of studies have employed a candidate gene approach
to explore genetic contributions to these pathologies. How-
ever, we currently lack appropriate study populations to en-
able a move beyond the candidate gene approach toward
genome-wide genetic discovery in this species. To under-
score the need for pedigreed study populations that will sup-
port genome-wide studies in the rhesus macaque model, we
briefly summarize key findings from studies of pathology
and genetic contributions to pathology in both humans and
macaques for a representative set of diseases with significant
impact on public health. For these and other human diseases
in which significant heritability is undisputed but for which
many contributing genetic factors remain unknown, an ex-
tended pedigree of phenotyped rhesus macaques can provide
a powerful resource for discovering new genetic variants that
influence disease risk, and for translating these findings to
the human condition.

Atherosclerosis

The rhesus macaque has a lengthy history as a nonhuman
primate model for human atherosclerosis, particularly in
response to experimental diets rich in fat and cholesterol.
Depending on the type and amount of dietary fat and choles-
terol and the length of time fed, rhesus macaques develop
either mild hypercholesterolemia similar to that commonly
seen in the general human population or the more extreme
hypercholesterolemia seen in familial human disease
(Bhattacharyya and Eggen 1987; Bond et al. 1980; Newman
et al. 1974; Pronczuk et al. 1991; Rudel 1997). Coincident
with this increase in plasma cholesterol and in direct propor-
tion to the length of time on the experimental diet, rhesus
macaques develop increasingly severe atherosclerosis that
is strikingly similar to that observed in humans. Observed
stages of lesion development include the retention of
lipid-rich macrophages (foam cells) and other immune cells
in the subendothelium, the appearance of fatty streaks in the
aorta and coronary arteries, the progression from fatty streak
to uncomplicated fibrous atheroma with proliferation of
smooth muscle cells, and eventually the progression to more
complicated lesions characterized by intimal necrosis, calci-
fication, and hemorrhage (Armstrong 1976; Bond et al.
1980; Davis and Wissler 1984; Gresham 1976). Of particular
note, rhesus macaques fed experimental diets have also been
observed to progress to clinically relevant stages of disease
(Williams et al. 1991), including ischemia with significant
stenosis of the coronary arteries and sudden death resulting
from occlusive thrombosis and myocardial infarction (Bond
et al. 1980).

Despite these observations and the indisputable contribu-
tion of genetics to CVD in humans (Roberts and Stewart
2012; Schunkert et al. 2011), virtually nothing is known
about the genetic basis of susceptibility to atherosclerosis or
associated risk factors in rhesus macaques. This is unfortu-
nate, given that the rhesus macaque model offers researchers

the ability to investigate rigorously aspects of atherogenesis
that may be difficult or impossible to study in humans, such
as genetic susceptibility to early disease processes and
gene-by-environment interaction. The likelihood that such
studies would be fruitful may be inferred from the virtually
complete identity between macaques and humans for a gene
known to influence proatherogenic lipid levels in humans,
LDLR, which codes for the low-density lipoprotein (LDL)
receptor. The rhesus macaque LDLR exhibits 95–100% iden-
tity with the human LDLR and its corresponding protein at
multiple levels of organization, including gene length, open
reading frame length, protein length, and mRNA sequence,
and 85–100% identity across functional domains in the pro-
tein (Kassim et al. 2011; Südhof et al. 1985). This degree of
genetic similarity in LDLR corresponds well with clinical
symptoms shared between macaques and humans with fami-
lial hypercholesterolemia (Kusumi et al. 1993), associated
with mutations in LDLR in both species (Hummel et al.
1990). Given the increases in circulating lipids, correlated in-
creases in atherosclerosis, and clinical symptoms of CVD in
rhesus macaques fed experimental diets, and the similarities
observed in macaques and humans for familial disease, it
seems likely that genome-wide studies conducted in rhesus
macaques will identify both known and novel genetic vari-
ants that increase susceptibility to atherosclerosis in both
species.

Obesity and Type 2 Diabetes Mellitus

Both spontaneous and induced obesity are well-known in
rhesus macaques, and, similar to humans, macaques with in-
creasing adiposity progress from dysregulation of glucose
metabolism to insulin resistance and ultimately to clinical
type 2 diabetes mellitus (T2DM). In studies of spontaneous
(noninduced) obesity in individually housed, male rhesus
macaques of middle age or older, only one-third could be de-
scribed as nonobese, whereas two-thirds were either moder-
ately or very obese, despite maintenance on a low-fat,
low-cholesterol chow diet (Kemnitz and Francken 1986;
Kemnitz et al. 1989). Obese macaques showed a pattern of
abdominal excess fat deposition very similar to that seen in
obese humans, with abdominal circumference accounting for
the largest differences in body dimensions between obese and
nonobese animals. Changes in body size are correlated with
age and sex, even in free-ranging macaques; body weight and
central fat deposition are greatest in females aged 10 to 14
years and in males aged 15 to 19 years (Schwartz and Kem-
nitz 1992). These findings suggest that rhesus macaques have
a natural propensity toward weight gain and obesity in middle
age and beyond, similar to observations in humans.
Obesity in rhesus macaques is associated with metabolic

dysfunction. Obese macaques have elevated fasting serum
insulin, higher fasting plasma glucose levels, slower glucose
disappearance rates, and higher triglycerides than nonobese
monkeys (Kemnitz and Francken 1986). In particular, central
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obesity appears to be the most strongly predictive of meta-
bolic dysfunction; abdominal circumference, which together
with body mass index (BMI) explains 96% of variance in
body fat, is strongly correlated with fasting plasma insulin
levels and with insulin resistance. Central obesity in rhesus
macaques also appears to be an excellent predictor of
T2DM, which develops following increases in body weight
and fat, changes in plasma insulin, and acute response to glu-
cose challenge, and may ultimately include pancreatic islet
amyloid deposition and decreases in the number of islet β
cells (reviewed in Bauer et al. 2011; Bodkin and Hansen
1988; de Koning et al. 1993; Kahn et al. 2001).
The role of genetic influences on obesity in humans is

well-established, as indicated by very large recent GWAS of
BMI and waist-to-hip ratio, a measure of central obesity in
humans (Heid et al. 2010; Speliotes et al. 2010). One two-
stage GWAS conducted in a total 249,796 individuals found
new loci and replicated previous results for 32 variants asso-
ciated with BMI that accounted for 6–11% of genetic varia-
tion in this trait. Because the distribution of fat has a
different genetic etiology than that influencing BMI, a sepa-
rate GWAS of waist-to-hip ratio was conducted in 190,803
individuals. This study revealed 14 loci associated with
waist-to-hip ratio that explained approximately 1% of total
variance in this trait, with several of these loci exhibiting evi-
dence for sexual dimorphism. In rhesus macaques, despite
evidence supporting a relationship between central obesity
and metabolic dysregulation that predisposes animals to the
development of T2DM, no studies have yet investigated a
genetic basis for traits related to obesity.
In addition to spontaneous obesity featuring impaired glu-

cose tolerance, insulin resistance, and progression to T2DM,
the rhesus macaque also develops additional symptoms of
human metabolic syndrome when challenged with experi-
mental diets associated with insulin resistance in humans.
Bremer and colleagues (2011) recently tested the hypothesis
that rhesus macaques consuming beverages sweetened
with fructose (containing approximately 50% sucrose and
high-fructose corn syrup) would develop insulin resistance
and metabolic syndrome, with some progressing to overt
T2DM. After being fed fructose as a supplement to a
standard commercial monkey chow diet daily for 1 year, all
macaques developed components of the metabolic syn-
drome, primarily as increased adiposity, insulin resistance,
inflammation, and dyslipidemia, and 4 of the 29 macaques
developed overt T2DM.
Genetic studies of T2DM in rhesus macaques are only just

beginning. Notably, a recent exploratory GWAS conducted
in 14 macaques with prediabetes or T2DM and eight healthy
control macaques using a human SNP microarray (Hansen
et al. 2011) revealed a candidate causal genetic variant asso-
ciated with T2DM. Although a lack of power prevented re-
sults from achieving a standard threshold of significance,
Hansen and colleagues (2011) combined results from a low-
ered significance threshold with analysis of gene expression
in liver, heart, and skeletal muscle from 51 macaques to

identify CBLN2, a member of a gene family coding for a pre-
cursor protein CER, which is expressed in rat pancreas and
controls levels of plasma insulin. The association of this
gene with T2DM in rhesus macaques received independent
support from its association with insulin resistance in 1449
T2DM patients and 1482 matched control subjects from Fin-
land and Sweden. These results underscore the urgent need
for more powerful mechanisms of genetic discovery in the
rhesus macaque, and provide encouraging evidence that fur-
ther genetic study of T2DM in this species is likely to be pro-
ductive.

Macular Degeneration

Given the rapid expansion in the number of adults aged
65 years and older in the United States expected in the next
20 years, common late-onset diseases such as age-related
macular degeneration (AMD) will likely be the subject of
increasing investigation. Studies of AMD in humans have
demonstrated high heritability for both early and late forms
of disease and have repeatedly implicated SNPs in both
a gene coding for complement factor H (CFH) and in a
transcribed region of unknown function (age-related macul-
opathy susceptibility 2 [ARMS2]) (Holliday et al. 2013).
Rhesus macaques are an excellent physiologic model for
AMD based on the close resemblance between the macaque
and human eye (Francis et al. 2008; Hope et al. 1992). These
similarities include a macula with a foveal pit containing
structural characteristics important for spatial acuity, a fea-
ture shared only among the Old World monkeys, apes, and
humans. Macaques spontaneously develop both drusen
(yellow-white protein aggregates in the retinal pigment epi-
thelium) that accumulate with age and pigmentary changes
in the macula that mimic hallmarks of early to intermediate
human macular disease.

In humans, AMD is associated with two SNPs found in
ARMS2 and in the adjacent promoter region of HTRA1,
which codes for a serine protease and is known to be in
complete linkage disequilibrium with LOC3877145/
ARMS2 in white, Japanese, and Chinese populations
(Dewan et al. 2006; Yang et al. 2006). A recent sequencing
study of these two locations in rhesus macaques revealed
that, as in humans, these gene regions are adjacent, and
additionally described two SNP variants associated with
drusen in macaques, one variant in each region. Unlike in
humans, these two variants were in high but not complete
linkage disequilibrium. In macaques, the HTRA1 variant
has functional consequences for gene expression, but
the role of the ARMS2 variant is still not fully understood.
The replicated association of the ARMS2 and HTRA1 ge-
netic variants with drusen in macaques suggests that this
species is likely to be an excellent genetic model for AMD;
however, the ability to expand to genome-wide studies of
AMD in macaques is currently constrained by the lack of
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resources to enable such studies, including appropriate
study populations.

Alcohol Abuse and Dependence

Rhesus macaques share many features of alcohol abuse dis-
orders with humans, including behavioral and physiologic
responses to alcohol and genetic influences on these re-
sponses (Barr 2013; Grant and Bennett 2003; Schwandt
et al. 2010). For example, chronic alcohol consumption has
been shown to alter hypothalamic-pituitary-adrenal (HPA)
axis activity, the neuroendocrine stress response pathway
(Boschloo et al. 2011). Candidate gene studies testing this
hypothesis in rhesus macaques have demonstrated that
NPY (Lindell et al. 2010), DRD1 (Newman et al. 2009),
and CRH (Barr et al. 2008), genes coding for proteins
involved in neuroendocrine regulation of stress, are associ-
ated with HPA axis dysfunction and with alcohol consump-
tion in this species. The interaction between HPA axis
dysfunction and alcohol consumption in rhesus macaques
suggests that, as with humans, there may be common
genetic links between neuroendocrine stress response and
alcohol use.

Numerous studies have also found strong similarities
between macaques and humans linking alcohol-related
behaviors to the function of neurotransmitters associated
with mood, emotion, and the experience of reward. Dys-
function in the pathway regulating serotonin has been
linked with a low response to alcohol, impaired impulse
control, and early-onset alcoholism in humans (Hinckers
et al. 2006). In support of a similar effect in macaques,
one recent study identified an additive effect on HPA axis
dysfunction in macaques from variants in two genes that
influence serotonin signaling (TPH2, involved in the bio-
synthesis of serotonin, and SLC6A4, which codes for the
serotonin transport protein), in addition to those found in
the CRH gene (Ferguson et al. 2012). Similar to humans,
rhesus macaques have a variable number repeat polymor-
phism in the transcriptional control region of the serotonin
transporter gene (SLC6A4), commonly known as 5HTT-
LPR, that influences its expression and predicts intoxication
in rhesus macaques reared without mothers, suggesting a
genotype-by-environment interaction effect on intoxication
(Barr et al. 2003). The endogenous opioid system in humans
is implicated in the experience of reward and has also been
linked to vulnerability to addiction (Oswald and Wand
2004). Similar to humans, macaques carry a nonsynonymous
mutation in OPRM1, the mu-opioid receptor gene, that has
been associated with increased alcohol-induced stimulation,
increased alcohol consumption, and increased frequency of
intoxication, particularly in males (Barr et al. 2007), also
consistent with findings in humans. These results suggest a
substantial genetic component to alcohol-related physiologic
response and behavior and highlight the need for genome-
wide genetic analysis of traits related to alcohol abuse and
dependence.

The Potential of the Rhesus Macaque as a
Model for Other Complex Human Disease

Acute and Chronic Colitis in Rhesus Macaques

In addition to serving as models for human disease, captive-
bred rhesus macaques also spontaneously develop disease
that appears similar to human disease but for which the
macaque-specific etiology and overlap with human disease
are not well understood. Colitis in rhesus macaques is char-
acterized by dehydration, lethargy, loose stool and/or dysen-
tery, electrolyte imbalance, and metabolic acidosis. Both
acute and chronic colitis represent a significant cause of mor-
bidity and mortality in managed colonies of rhesus ma-
caques. In 2010, among the 3181 outdoor-housed rhesus
macaques at the ONPRC, 250 animals accounted for more
than 700 clinical cases of diarrhea, an incidence rate of
7.8%. Of these, 103 animals were euthanized because of se-
vere, acute colitis or chronic colitis and wasting, resulting in
a mortality rate of 3.2% (Prongay et al. 2013). Similar rates
have been reported elsewhere (Hird et al. 1984; Schneider
et al. 1960).
Macaque colitis may have heterogeneous underlying etiol-

ogies, although evidence suggests a significant role for both
genetic and environmental factors, the hallmark of complex
disease. To date, most research has focused on environmen-
tal causes of colitis. Of note, some of the most successful
models of environmental colitis are developed around patho-
gens that can be isolated from both sick and healthy animals.
Of these, the rhesus model of acute bacillary dysentery, us-
ing oral administration of Shigella flexneri, is perhaps the
best characterized (Kinsey et al. 1976; Mulder 1971; Pucak
et al. 1977; Takeuchi et al. 1968) and provided early insight
into the microscopic features and cellular pathophysiology
of this syndrome. Bacterial models of chronic colitis, using
Camphylobacter species (Tribe and Fleming 1983) and
Escherichia coli (Kang et al. 2001), two bacteria commonly
isolated from healthy animals, have also been developed and
may prove to be useful models for human inflammatory
bowel disease (Sestak et al. 2003). In addition, the associa-
tion between viral infection and diarrheal disease remains a
dynamic area of research. Rhesus macaques experimentally
infected with simian immunodeficiency virus may develop
chronic colitis, similar to human immunodeficiency virus
patients. Disease severity and lesion location varies among
individuals, and these differences have recently been corre-
lated with interleukin 6 and SOC-3 gene expression (Mohan
et al. 2007). This variation in symptoms is also seen among
animals infected with adenovirus. Early studies implicated ade-
novirus in chronic colitis (Sestak et al. 2003; Stuker et al.
1979), but recent reports suggest the virus is also prevalent in
asymptomatic carriers (Roy et al. 2012). Among animals infect-
ed with the same bacterial or viral pathogens, substantial vari-
ability in symptoms suggests the possibility of genetic variation
among individuals in susceptibility or response to infection.
In addition to genetic susceptibility to environmental patho-

gens, genetic variation in response to other environmental
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stress may also contribute to colitis. Early weaning and so-
cial stress are both strongly correlated with disease. For ex-
ample, nursery-reared animals have diarrhea rates 7.5 times
higher than infants reared with mothers (Elmore et al. 1992),
and the rate of diarrhea among nursery-reared animals is 3 to
4 times higher than that for animals reared in any other hous-
ing type (Hird et al. 1984). Indoor, group-housed animals
and animals in single or paired housing have higher diarrhea
rates than outdoor, group-housed animals (Hird et al. 1984;
Sestak et al. 2003; Wolfensohn 1998). Historically, these dif-
ferences have been attributed purely to a lack of maternal or
other environmental influence, but associations are increas-
ingly made between genetic variation and environmental
factors likely to cause social stress. For example, polymor-
phisms in the gene coding for the serotonin transporter
(SLC6A4) have been implicated in differences in behavioral
response to stress between macaque infants with secure at-
tachments to their mother and infants lacking parental attach-
ment (Suomi 2011).
Dietary sensitivities also offer a new and potentially pow-

erful model of genetic susceptibility to colitis. A subset of
rhesus macaques with noninfectious chronic colitis appear to
have inherited gluten sensitivity, similar to human celiac dis-
ease, although genetic analysis is still ongoing (Sestak et al.
2011). This finding suggests that the rhesus macaque may be
a good model for genetic susceptibility to human celiac dis-
ease, which has been associated with variants in the TAGAP
gene (Eyre et al. 2010).

Degenerative and Inflammatory Arthritis
in Rhesus Macaques

Rhesus macaques spontaneously develop both degenerative
and inflammatory arthritis, and similarities in structural,
mechanical loading, and connective tissue properties in
the joint make this an attractive model for human disease
(Châteauvert et al. 1989; Châteauvert et al. 1990). Naturally
occurring osteoarthritis and spondyloarthropathy has been
extensively studied in a troop affiliated with the Cayo Santia-
go colony at the Caribbean Primate Research Center in Cayo
Santiago, Puerto Rico. Spondyloarthropathy was identified
in 20% of the animals aged 8 years or older and, similar to
humans, females had higher disease incidence (Pritzker et al.
1989; Rothschild et al. 1997). A metabolically associated
degenerative osteoarthritis similar to human calcium
pyrophosphate dihydrate crystal deposition disease was also
identified in this population (Pritzker et al. 1989; Rothschild
et al. 1999). Additionally, estrogen-depleted bone loss has
been confirmed in studies of aging adult female macaques at
the Wisconsin National Primate Research Center (Colman
et al. 1999). More recently, age-associated disc space
narrowing and osteophytosis was confirmed in a cohort of
animals followed for 11 years at the same center (Duncan
et al. 2011).

The heterogeneous and progressive nature of these various
arthropathies suggests significant similarities to human dis-
ease, and their pathology has been explored experimentally
in rhesus macaques. For example, type II collagen-induced
arthritis (CIA), a model for rheumatoid arthritis, is induced
in 70% of animals inoculated with type II collagen (Bakker
et al. 1990). Genetic susceptibility to CIA has been implicat-
ed in rhesus macaques by association of CIAwith the major
histocompatibility complex (MHC) class I region (Bakker
et al. 1992), and further studies demonstrated that the MHC
class 1 allele Mamu-B26 was protective for CIA (Vierboom
et al. 2005; Vierboom et al. 2007). A similar pattern of
immune-mediated resistance to CIAwas noted in 2000 at the
Wisconsin National Primate Research Center after an out-
break of Shigella bacteria. Similarly, a cohort of macaques
was reported to develop reactive arthritis, an inflammatory
spondyloarthropathy, in response to infectious enterocolitis
(Rothschild 2005), and a protective effect of the MHC A lo-
cus allele, Mamu-A*12, was associated with resistance to
this arthropathy (Urvater et al. 2000). Further research in rhe-
sus macaques aimed at clarifying the heterogeneity among
arthropathies, characterizing genetic susceptibility and envi-
ronmental influences on disease, and exploring overlap with
human disease is urgently needed.

The ONPRC Research Pedigree and Sample
Biobank

Development of an Extended Pedigree at the
ONPRC for Genetic Analysis of Complex Traits in
the Indian-Origin Rhesus Macaque

Based on the advantages described in this paper, we aimed
to develop a single, extended pedigree of Indian-origin rhe-
sus macaques for the purpose of genome-wide genetic analy-
sis of quantitative risk factors for complex human disease.
This pedigree was characterized by developing custom Py-
thon scripts to select a set of animals from the approximately
4500-member colony of rhesus macaques housed at the
ONPRC that optimized several criteria. Animals must (1) be
of pure Indian ancestry, (2) have parentage assignment based
on genotypes at 12 to 28 microsatellite loci, (3) be a member
of a minimum three-generation vertical lineage, (4) be avail-
able for sampling, (5) have no ancestors in common outside
the pedigree, and (6) form a single pedigree configuration.
The resulting pedigree contains 1289 rhesus macaques, in-
cluding 800 females and 489 males, and spans six genera-
tions (see Figure 1). This pedigree represents approximately
29% of the total population of rhesus macaques found at the
ONPRC. Animals range in age from 1.6 to 28.5 years, corre-
sponding to a developmental age range of 4.8 to 85.5 human
years (the distribution of age by sex in this pedigree is sum-
marized in Figure 2). Table 1 summarizes the most frequent
relationship classes found within this pedigree; these
relationships provide hypotheses of excess alleles shared
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identical by descent among macaques, and the large number
and complexity of these relationships is the source of power
in genetic analysis conducted in extended pedigrees.

Sample Biobank andWhole-Body Phenotypes

To enable extensive phenotyping of pedigree members, we
collected whole blood samples on these macaques under
an approved institutional animal care and use committee proto-
col. All samples were collected after an overnight fast and at a
consistent time of day (approximately 10:00 AM) (see Table 2).
Whole blood was processed for serum, plasma, leukocytes,
and peripheral blood mononuclear cells and aliquoted sepa-
rately in RNAlater (Ambion) to support transcriptome analysis
and for storage in liquid nitrogen to enable viable cell assays.
As of this writing, approximately 95% (n = 1229) of the ma-
caques in this pedigree have at minimum a source of high-
quality DNA that will enable analysis of NGS data, and ap-
proximately 66% (n = 852) have at least banked serum and
plasma to support multiple biomarker assays. We have also
collected multiple measures of morphometry and adiposity on
approximately 730 of the same animals, including crown–heel,
rump–heel, and crown–rump lengths, chest circumference,
maximum girth, abdominal circumference, circumference of
the upper arm and thigh, and measures of skin-fold thickness
at the subscapular, upper arm/triceps, and thigh. Importantly,
the vast majority of these samples and phenotypes were col-
lected during routine processing of animals in group housing

Figure 1 Diagram of the 1289-member research pedigree of Oregon National Primate Research Center rhesus macaques

Figure 2 Distribution of age and sex among the 1289 rhesus ma-
caques in the Oregon National Primate Research Center research
pedigree.
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and did not require the assignment of animals to research. This
approach minimizes costs and increases feasibility of large-
scale phenotyping efforts and does not interfere with animal
assignment to other research projects.

Power of the Pedigree to Detect Heritability
in a Quantitative Trait

Our intended focus is primarily on the study of quantitative
endophenotypes related to disease risk because they are

closer to genetic regulation than clinical diagnoses and thus
likely to be more informative for gene mapping. Given this
focus, we assessed the power of this pedigree to detect
significant heritability in quantitative traits across a wide
range of true heritabilities (0.15–0.80) under the assumption
that all individuals are phenotyped, using a maximum likeli-
hood–based variance decomposition approach implemented
in SOLAR software (Sequential Oligogenic Linkage Analy-
sis Routines, v.4.2.0, Texas Biomedical Research Institute,
San Antonio, TX). These results indicate that the power to
detect an additive genetic contribution to quantitative trait
variation using this pedigree is excellent, with approximately
85% power to detect trait heritabilities as low as 0.08 and
100% power to detect trait heritabilities as low as 0.16 (see
Figure 3).

Power of the Pedigree to Detect Linkage to
a Locus Influencing a Quantitative Trait

Because linkage analysis can reduce the genomic search
space, lower the multiple testing burden, and provide prior
information that may increase power to fine-map causal ge-
netic variants, we examined the power of the pedigree to de-
tect linkage to a locus influencing a quantitative trait (i.e., a
quantitative trait locus [QTL]) using the same variance
decomposition approach. Power to detect a locus with a log-
of-odds (LOD) score of 3 was examined for QTL heritabili-
ties up to 0.75, assuming that all individuals are phenotyped,

Table 1 Summary of the most frequent relationship classes found within the single, 1289-member pedigree
described

Relationship No. Relationship No.

Unrelated 890,106 Half-2nd cousins 1284

Parent–offspring 1966 Half-siblings and half-1st cousins 371

Siblings 165 Half-siblings and half-avuncular 73

Grandparent–grandchild 2150 Double half-avuncular 193

Avuncular 222 Double half-1st cousins 358

Half-siblings 6954 Half-2nd cousins, once removed 128

Great-grandparent–grandchild 1027 Half-1st cousins, twice removed 209

Grand-avuncular 56 Half-great-grand avuncular 98

Half-avuncular 13,179 Half-1st cousins and half-avuncular 142

1st cousins 156 Half-avuncular and half-grand avuncular 30

Great-great-grandparent–grandchild 84 Half-avuncular and half-1st cousins, once removed 330

Half-grand avuncular 3079 Half-1st cousins and half-2nd cousins 139

1st cousins, once removed 128 Parent–offspring and half-avuncular 16

Half-1st cousins 10,413 Half-1st cousins, once removed and half-2nd cousins, once removed 14

Half-1st cousins, once removed 6740 Half-sibs and half-2nd cousins 24

2nd cousins 27

Table 2 Summary of sample inventory collected
on the 1289-member pedigree

Sample type

Pedigreed macaques

with samples/measures

Serum 854

Plasma 852

Leukocytes (for high-quality
genomic DNA)

852

PBMCs for gene expression 708

PBMCs for viable cell assays 713

Measures of body
morphometry

732

Measures of adiposity 725

See text for description of measures of body morphometry and
adiposity. PBMC, peripheral blood mononuclear cell.
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in two situations in which total heritability of the trait is 0.25
and 0.75 and residual heritability contributes to the power to
detect the QTL (see Figure 4). The power of this pedigree to
detect a QTL with an LOD score of 3 (i.e., indicating
genome-wide significant evidence) is very good across this
range of trait and QTL heritabilities. For example, consider-
ing a trait with a total heritability of 0.25, this pedigree pro-
vides greater than 80% power to detect a QTL heritability of
0.15; as total trait heritability increases to 0.75, we have
greater than 80% power to detect a QTL heritability of 0.13.
These QTL heritabilities are smaller or equivalent in magni-
tude to those reported in several previous QTL and eQTL
mapping studies conducted in a large pedigree of baboons
for LDL cholesterol levels, lipoprotein-associated phospholi-
pase A2 levels, and transcript levels implicated in immune

response (Vinson, Mahaney, Cox et al. 2008; Vinson, Maha-
ney, Diego et al. 2008; Vinson et al. 2011).

Power of the Pedigree to Detect Association
between a Quantitative Trait and a Common
Causal Variant

We also investigated the power of a measured genotype anal-
ysis conducted in our extended pedigree of rhesus macaques
to detect association between a quantitative trait and a com-
mon, causal genetic variant or a genotyped marker in com-
plete linkage disequilibrium with a causal variant.
Simulations were conducted to derive expected χ2 statistics
based on a trait with a mean and variance similar to that for
high-density lipoprotein (HDL) cholesterol levels in the ba-
boon (Papio hamadrayas, ssp.), a total trait heritability of
0.20, and a SNP with a minor allele frequency of 0.20. The
mean effect of the SNP was varied to account for 0.5–5% of
the total trait variance at 0.5% intervals, and χ2 was evaluat-
ed at each interval. Results from this analysis indicate that
the pedigree has 80% power to detect associations account-
ing for 1.5–2.0% of the total variance in a similar trait (M.
Mahaney, Texas Biomedical Research Institute, personal
communication, 2013). These results indicate that this pedi-
gree also has substantial power to detect effects of common
variants on quantitative traits.

Heritability of Quantitative Risk Factors for
Human Disease in the ONPRC Rhesus
Macaque Pedigree

To confirm the power of the pedigree to detect genetic influ-
ences on quantitative traits, we investigated heritability for
multiple quantitative risk factors of human disease, including
endophenotypes and whole-organism level traits. Because
lipid levels are well-established risk factors for CVD in hu-
mans and because they are significantly heritable in both hu-
mans and in baboons (Vinson, Mahaney, Cox et al. 2008),
we assessed the heritability of fasting plasma lipids in a sam-
ple of 193 pedigreed rhesus macaques enriched for paternal
half-siblings. We found heritability of similar or greater mag-
nitude than that described in large human populations for all
lipids in a standard lipid panel, including levels of total
cholesterol, LDL cholesterol, HDL cholesterol, very-low
density lipoprotein cholesterol, and triglycerides (Vinson,
Mitchell, Toffey, Silver et al. 2013). Moreover, based on the
standard use of these measures in studies of human obesity
and risk for CVD both in the general population and in
T2DM, we assessed heritability for abdominal circumfer-
ence (normalized by crown–rump length), BMI (based on
animal weight at sampling and crown–rump length), and ani-
mal weight in kilograms from measures in approximately
475 pedigreed macaques; these traits were also characterized
by significant, although more moderate, heritability (Vinson,
Mitchell, Toffey, Raboin 2013). Finally, we also assessed
heritability for complete blood cell counts and related

Figure 4 Power of the pedigree to detect linkage to a locus influ-
encing a quantitative trait with a log-of-odds score of 3 across a
range of quantitative trait locus heritabilities using a maximum like-
lihood–based variance decomposition approach. Power for two
traits with total heritabilities of 0.25 (blue) and 0.75 (red) is consid-
ered. Analyses conducted in SOLAR (v.4.2, Texas Biomedical Re-
search Institute, San Antonio, TX).

Figure 3 Power of the pedigree to detect heritability for a quantita-
tive trait using a maximum likelihood–based variance decomposi-
tion approach. Analysis conducted in SOLAR (v.4.2 Texas
Biomedical Research Institute, San Antonio, TX).
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parameters collected during the course of clinical treatment
(i.e., not for research purposes) on 995 pedigreed macaques;
white blood cell, red blood cell, and platelet counts, as well
as measures of mean cell volume, mean cell hemoglobin,
mean cell hemoglobin concentration, hematocrit, and hemo-
globin, were all significantly heritable, with heritabilities
ranging from modest to substantial (Vinson, Mitchell, Toffey
2012). These results confirm that additive genetic contribu-
tions to important risk factors of human disease can be de-
tected and measured in this pedigree. Based on these initial
results, analyses of multiple additional endophenotypes im-
plicated in risk for human disease are underway, including
insulin, cortisol, vascular cell adhesion molecule 1 (VCAM-1),
interferon γ, tumor necrosis factor α, interleukin 2, interleu-
kin 6, interleukin 12p70, ghrelin, osteocalcin, and lipid sub-
particle size concentrations.

The Future: Next-Generation Sequencing
in Pedigreed Rhesus Macaques

Recent advances in next-generation sequencing provide new
avenues for genome-wide genotyping in the rhesus macaque,
sidestepping the alternative requirement to generate macaque
SNP genotyping arrays. As sequencing costs continue to de-
cline rapidly, whole-genome sequencing is becoming an in-
creasingly viable option for large study cohorts, including
extended pedigrees, particularly when combined with impu-
tation of genetic variants in unsequenced individuals. The
yield of genetic variant data from whole-genome sequencing
is expansive; for example, we have recently identified ap-
proximately 3.1 million high-quality SNPs per genome in
six unrelated Indian rhesus macaques from 30–45X genome
coverage (R Ramakrishnan, unpublished data). This amount
of data may be collected in a small number of individuals se-
lected from an extended pedigree and potentially combined
with low-coverage sequence data to impute genotypes
throughout the remainder of the pedigree (Pasaniuc et al.
2012; Uricchio et al. 2012).
As an alternative to whole genome sequencing, selective

DNA enrichment techniques can reduce the amount of se-
quencing required and thus decrease both genotyping costs
and data management requirements. Although such ap-
proaches will not necessarily identify all causative variants,
the application of studies based on selectively reduced se-
quence data for analysis of complex disease has already been
envisioned (Do et al. 2012; Kiezun et al. 2012). Avariety of
selection techniques is available. A combination of transcrip-
tome sequencing (RNA-seq) and chromatin immunoprecipi-
tation enriched sequencing (ChIP-seq) was recently used to
selectively sequence gene-linked genomic regions in rhesus
macaques. This approach yielded at least one SNP in each of
the 16,797 annotated rhesus macaque genes and a total of
462,802 SNPs in all 14 individuals investigated (Yuan et al.
2012). Alternatively, we and others have found that human-
based exon capture designs can recover 80–95% of the
macaque-equivalent exons (Jin et al. 2012; Vallender et al.

2011). This “exome-seq” approach can be used for identify-
ing SNPs and insertions/deletions and for defining haplo-
types in 95% of coding genes. These genotype datasets can
then be leveraged for subsequent genetic studies.

Conclusion

In this article, we have discussed advantages of both feasibil-
ity and analytical power when using extended pedigrees of
rhesus macaques for genetic analysis of complex disease
traits. These advantages include (1) close genetic and physi-
ological similarity to humans; (2) the availability of very
large populations with pedigree information at many primate
research centers; (3) the ability to conduct large-scale sam-
pling at nominal cost in managed colonies; (4) mating pat-
terns and short generation times in rhesus macaques that can
produce large cohorts of informative relative types, with ani-
mals in overlapping generations available for simultaneous
sampling; (5) the environmental homogeneity and semi-
isolation of managed rhesus macaque colonies that increases
power to detect genetic signal over noise; and (6) the enrich-
ment of rare variants in pedigrees, which increases power to
detect influential rare variants in pedigrees compared with an
equivalent number of unrelated animals. We have also pre-
sented short summaries of several representative human dis-
eases investigated using the macaque model that highlight
our current limited knowledge of genetic effects on these
diseases. Throughout this paper, we have used these discus-
sion points to make the case for the development and use of
extended pedigrees for studying genotype–phenotype rela-
tionships in the rhesus macaque. Finally, we describe the re-
sults of our own efforts to develop a single, extended
pedigree and corresponding biobank of Indian-origin rhesus
macaques at the ONPRC, including a discussion of the pedi-
gree design and power, and initial results of significant heri-
tability for quantitative risk factors of CVD and metabolic
disease. We conclude that the development and application
of extended pedigrees to analysis of complex disease traits in
the rhesus macaque show great promise for genome-wide
genetic and higher order -omics studies in this valuable
research model.
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