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1Web Sciences Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China,

2 Institute of Information Economy, Alibaba Business College, Hangzhou Normal University, Hangzhou, People’s Republic of China, 3Department of Physics, University of

Fribourg, Fribourg, Switzerland

Abstract

Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such
as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding
hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree,
closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already
take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s
neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically
that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking
algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences,
but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant
infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale
short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such
as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority
of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only
making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with
about 107 nodes, more than 15 times faster than PageRank.
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Introduction

With great theoretical and practical significance, the studies on

epidemic and information spreading in biological, social and

technological networks become one of the most exciting domains

in many branches of sciences [1–4]. Therein how to control the

spreading process is of particular interests [5], where the

identification of influential nodes is a crucial issue according to

the assumption that highly influential nodes are more likely to be

infected and to infect a larger number of nodes [6–8].

A number of centrality indices have been proposed to address

this problem, such as degree centrality, closeness centrality [9],

betweenness centrality [10], and eigenvector centrality [11].

Degree centrality is a straightforward and efficient metric but less

relevant. Recent researches show that top-degree ranking nodes

have positive effects on cooperative behaviors in social networks

[12,13]. However, the location of a node in the network may play

a more important role than its degree. For example, a node

located in the center of the network, having a few highly influential

neighbors, may be more influential than a node having a larger

number of less influential neighbors. Considering this fact, Kitsak

et al. [6] proposed a coarse-grained method by using k-core

decomposition to quantify a node’s influence based on the

assumption that nodes in the same shell have similar influence

and nodes in higher-level shells are likely to infect more nodes.

This method may fail in some cases. For example, in a tree, all

nodes are in 1-core and thus expected to have the same influence

according to [6]. However, this tree may be hierarchically

organized (e.g., the binary tree) and nodes near the root have

much higher influence than leaves. Chen et al. [14] devised a semi-

local index by considering the next nearest neighborhood, which

can well identify influential nodes in a hierarchical tree and give

more elaborate division than k-core decomposition. Experimental

results demonstrated that the semi-local index performs as good as

global indices while has much lower computational complexity,

and thus it obtains a good trade-off on effectiveness and efficiency.

Recently, Chen et al. [15] considered the effect of path number

and path diversity while ranking the spreading ability of nodes in

networks and introduced two correction factors correspondingly.

The ranking accuracy is considerably increased compared with

some well-known ranking methods, such as PageRank and

LeaderRank.
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With explosive data growth, the design of efficient and effective

ranking algorithms on very large-scale networks is becoming a big

challenge nowadays [16]. The representative methods include the

well-known HITs [17] and PageRank [18], as well as some

recently proposed algorithms like LeaderRank [7,19] and

TwitterRank [20]. All these algorithms are diffusion based (or

say random-walk based), with a common assumption that a node is

expected to be of high influence if it points to many highly

influential neighbors (here, a link from i to j indicates that j is a

follower of i). It has been demonstrated that these methods

outperform out-degree centrality in terms of ranking effectiveness.

In addition to the direct influential scores of neighbors, the

interactions among neighbors may also play a significant role. The

density of interactions among neighbors can be characterized by

the local clustering coefficient [21], which has great impacts on

network dynamics, such as game theory [12,13,22–24], cascading

[25], synchronization [26,27] and spreading [28–31]. Empirical

analysis also shows that nodes with smaller clustering have higher

ability to attract new connections [32,33].

Keeping this in mind, in this paper, we propose a local ranking

method, named ClusterRank, to identify influential nodes in

directed networks by taking into account the effects of local

clustering on information propagation. Besides the localization of

our algorithm, another distinguishable difference from the above-

mentioned diffusion-based algorithms is that the clustering

coefficient is directly involved in the definition of a node’s

influence in ClusterRank. We apply the SIR spreading model with

constant infectivity to test the effectiveness of our method on four

real networks, including two large-scale directed networks (a social

network extracted from delicious.com consisting of 6|105 nodes and

a short-message communication network containing about 107

nodes) and two undirected networks (one is collaboration network

from condensed matter e-print archive consisting of about 3|104

nodes [34] and the other is an undirected version of the social

network from delicious.com). Experimental results show that

ClusterRank performs much better than the simplest degree

centrality, and the top-L influential nodes identified by Cluster-

Rank lead to much wider and faster spreading than those by

PageRank or LeaderRank. Besides, the computations of Cluster-

Rank on the network with 10 millions of nodes can be finished in

191 seconds by using C#.net language on a Core II 2.0 GHZ

CPU processor with 2 GB memory, more than 15 times faster

than PageRank algorithm.

Materials and Methods

1.1 Empirical Analysis
Many social networks can be represented by directed networks

where a link from i to j means j is a follower of i, indicating that j

receives information from i. We denote Ci as the set of followers of

i and the density of interactions among i’s followers can be

characterized by the local clustering coefficient of i. Based on the

original definition of clustering coefficient [21], the clustering

coefficient of node i in a directed network is extended as:

ci~
Dfejk Dj, k[CigD
kouti (kouti {1)

, ð1Þ

where kouti is the out-degree of i, namely the number of followers

of i, and fejk Dj, k[Cig is the set of links connecting two of i’s

followers. Let ci~0 if kouti ƒ1. According to Eq. (1), a reciprocal

link j<k is counted as two separate links j?k and k?j.

The local clustering has remarkable impacts on network

structure and functions. Studying the effects of clustering

coefficient on the network evolving can provide insights into the

understanding of growing mechanism and further help us to

design better link prediction algorithms [35–37] and to explain the

observation on information spreading through online social

networks [30]. Some literatures showed that the clustering has

negative correlation with degree in undirected networks [38] or

with total degree in directed networks [39]. Here, we take two real

evolving networks as examples to analyze the effect of clustering

coefficient. One is a collaboration network from condensed matter

e-print archive (Cond-mat for short) [34], the other is a short-

message communication network (SM for short) from a mobile

company in eastern China city. For each network, we consider two

snapshots which contain the data starting from a given date (T0)

but ending with different dates (i.e., T1 and T2 respectively).

Specifically, the first network of Cond-mat is from Jan. 1st, 1995

(T0) to Dec. 13th, 1999 (T1) containing 16264 nodes and 47594

links, and the second network of Cond-mat is from Jan. 1, 1995

(T0) to Jun. 30, 2003 (T2) containing 30460 nodes and 120029

links. Similarly, for SM, the first network consists of the data from

Dec. 8th to Dec. 17th, 2010 with 3612863 nodes and 7472808

links, and the second network is from Dec. 8th, 2010 to Jan. 6th,

2011 with 9193545 nodes and 22901318 links. Here, Cond-mat is

undirected and SM is directed where a link from i to j represents

that i has sent at least one message to j.

In the first network (from T0 to T1), we denote N(k) the set of

nodes with degree k. Without specific statement, a node’s degree

in a directed network stands for its out-degree. Note that, we here

only consider the nodes with degrees larger than 1. Denote Q(k)
the set of node pairs (i,j) such that civcj and ki~kj~k, clearly,

DQ(k)Dƒ 1
2
DN(k)D(DN(k)D{1). For each pair (i,j)[Q(k), there are

three cases according to i’s and j’s degrees (denoted by ~kki and ~kkj )

in the second network (from T0 to T2): (i) ~kkiw~kkj indicating that the

node with lower clustering coefficient attracts more connections

during the period T1?T2; (ii) ~kkiv~kkj indicating that the node with

higher clustering coefficient attracts more connections during the

period T1?T2; (iii) ~kki~~kkj indicating that these two nodes have

the same ability to attract new connections. Accordingly, we define

a score fk to see whether nodes with lower clustering coefficients

have higher ability to attract more connections. It mathematically

reads

fk~
1

DQ(k)D

X
(i,j)[Q(k)

hij , ð2Þ

where hij is the score depending on the aforementioned cases, as

hij~

1, ~kkiw~kkj

{1, ~kkiv~kkj

0, ~kki~~kkj

:

8><
>: ð3Þ

Obviously, fkw0 indicates that nodes having lower clustering

coefficients are more likely to attract new connections than those

(with the same degree) having higher clustering coefficients, while

fkv0 is the opposite situation. The correlation between fk and

degree k is shown in figure 1 where the area of a circle is

proportional to the number of nodes with the corresponding

degree. As shown in figure 1, in Cond-mat, fk is larger than zero

for 2ƒkv20 which covers 95% of all nodes with degree larger
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than 1 and in SM, fk is larger than zero for 2ƒkv5 which covers

60.3% of all nodes with degree larger than 1. In addition, for small

k, the statistics are more reliable since the number of samples is

large while fk displays large fluctuations for large k where the

statistics are less reliable due to the limited statistical samples. The

majority of node pairs with positive fk indicates that a node with

smaller clustering coefficient statistically has higher ability to

attract new connections. In figure 2, we show the increment of

degree, Dk, from T1 to T2. These nodes are of the same degree

(k~5) but different clustering coefficients at time T1. Generally

speaking, Dk decreases with the increasing of clustering. In a word,

the above empirical results (see figures 1 and 2) demonstrate that a

node with smaller clustering coefficient is likely to attract more

connections in the future.

1.2 Cluster Rank Algorithm
Based on the empirical observation, we here propose a local

ranking index, named ClusterRank, to quantify the influence of a

node by taking into account not only its direct influence (measured

by the number of its followers) and influences of its neighbors, but

also its clustering coefficient. Mathematically, the ClusterRank

score si of node i is defined as:

si~f (ci)
X
j[C i

(koutj z1), ð4Þ

where the term f (ci) accounts for the effect of i’s local clustering

and the term ‘+1’ results from the contribution of j itself. Usually,

the local clustering plays a negative role in spreading [28,29,40]

since if i’s followers closely interact with each other rather than

with other nodes, the spreading initiated from node i is more likely

to be confined in a local region. On the contrary, if i’s neighbors

are mostly connected with nodes other than i’s neighbors, the

information will quickly spread to a large scope. For example, in

figure 3, although node 0 has the same out-degree with node 37,

node 37, with lower clustering, is of higher influence than node 0,

since most of node 37’s neighbors point to nodes other than

themselves and thus can send the information to wide audiences.

We here adopt a simple exponential function, namely

f (ci)~10{ci , a decreasing function of ci. Actually, we can apply

a more complicated form by introducing a new parameter, such as

a{ci or cai . However, it adds little value to rank nodes but make

the analysis more complicated. Indeed, the perspective and results

of this paper are not limited by a very specific function of ci.

For comparison, we briefly introduce two benchmark ranking

algorithms on directed networks, PageRank [18] and LeaderRank

[7]. PageRank is depicted as a random walk on hyperlinked

networks. Each web page (i.e., a node) is assigned a score

according to its relative importance. A parameter c is introduced

as the probability for which a web page surfers to jump to a

random web page, and for probability 1{c a web page surfers to

continue browsing through hyperlinks. Therefore, in our case the

score si(t) for node i at time step t is given by:

si(t)~cz(1{c)
XN
j~1

aij

kinj
1{d

kin
j
,0

� �
z

1

N
d
kin
j
,0

" #
sj(t{1), ð5Þ

where kinj is the in-degree of node j (i.e., the number of leaders of

node j), N is the number of nodes of the network, aij~1 if there

exists a link from i to j (indicating the information flow is from i to

j), otherwise aij~0, and d
kin
j
,0
~1 if kinj ~0, otherwise d

kin
j
,0
~0.

Initially, si(0) is set to be 1 for each node i, and the parameter c is

always fixed as 0.15 in the experiments.

LeaderRank is also a random-walk-based ranking algorithm [7].

On the basis of PageRank, LeaderRank introduces a ground node

g, which has two directed links egi and eig to every node i in the

original network, so that the network will become strongly

connected. The score si(t) of node i at time t is given by

(according to a purely random walk process):

si(t)~
XNz1

j~1

aij

kinj
sj(t{1): ð6Þ

Initially, sg(0)~0 for the ground node g, and si(0)~1 for every

other node i. At the steady state, the score of the ground node is

equally distributed to all other nodes to conserve scores on the

nodes of interest. Therefore, the final score of node i, called its

leadership score, is defined as

Si~si(t?)z
sg(t?)

N
, ð7Þ

Figure 1. The correlation between fk and the degree in the first network k. The area of a circle is proportional to the number of nodes with
the corresponding degree.
doi:10.1371/journal.pone.0077455.g001
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where si(t?) is the score of node i in the steady state according to

Eq. (6). Notice that, although LeaderRank is similar to PageRank,

it is able to dig out more influential nodes and is more stable to

noise and more robust to attacks than PageRank [7]. More

significantly, LeaderRank is a parameter-free ranking method.

Comparing with PageRank, LeaderRank just introduces a small

modification yet leads to considerable improvements.

1.3 Data Description
To evaluate influences of different groups of top-ranked nodes

respectively obtained by out-degree centrality, PageRank, Lea-

derRank, k-core decomposition and ClusterRank, experiments are

carried out on two real directed social networks and two

undirected networks. (i) Delicious: a directed social network

extracted from the web site delicious.com, where the primary

function of users is to collect useful bookmarks with tags. Users can

select other users to be their ‘‘opinion leaders’’ of web browsing, in

the sense that the bookmarks of the leaders are often useful and

relevant. The subscriptions to leaders’ bookmarks can be made

automatically. Of course users who select their leaders can in turn

be the leaders of others. In that way, the users form a large-scale

directed social network with information flows from leaders to

followers. (ii) SM: a directed short-message communication

network of a mobile company in 31 days from Dec. 8th, 2010

to Jan. 7th, 2011. In this network, each node corresponds to a

mobile phone number, and a link from i to j means that i has sent

at least one short message to j during these 31 days. We are

interested in this data set because the information such as rumor

may spread out in this communication network via message

forwarding and influential spreaders play an important role in the

Figure 2. The increment of degree Dk in the period T1?T2 of nodes with the same degree (k~5) but different clustering coefficients
at time T1. Dk is the average value of a bin (size = 0.1) on clustering coefficient. For example, the value of Dk corresponding to c~0:1 is the average
value of Dk of the nodes with clustering coefficient in (0:05,0:15�. The error bars stand for standard errors.
doi:10.1371/journal.pone.0077455.g002

Figure 3. An example network with 38 nodes and 110 directed edges. Although nodes 0 and 37 have the same out-degree, node 37 is of
higher influence (subject to spreading dynamics) than node 0. The clustering coefficients of these two nodes are c0~0:4 and c37~0:2.
doi:10.1371/journal.pone.0077455.g003
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spreading process. (iii) Cond-mat: a collaboration network of

scientists who have posted preprints on the condensed matter

archive at www.arxiv.org between Jan. 1st, 1995 and Jun. 30th,

2003. In this network, a node represents an author, and an edge

connecting two authors if they have co-authorized at least one

paper. The academic perspectives and the news of academic

activities may propagate in this collaboration network and some

key authors play the central role in the propagation. (iv)

DeliciousUN: the undirected version of Delicious network where

the directed links are transformed into undirected links. Some

basic statistical features of these four networks, including the

number of nodes, the number of links, maximum out-degree (or

maximum degree for undirected network) kmax, average out-

degree (or average degree for undirected network) SkT and

average clustering coefficient ScT, are shown in Table 1.

Results

2.1 Evaluation on Directed Networks
The computation times of four ranking algorithms on Delicious

and SM networks are shown in Table 2. Out-degree is the fastest

with runtime less than a second. Comparing with the diffusion-

based methods (i.e., PageRank and LeaderRank), the time

complexity of ClusterRank is much lower (a magnitude reduction).

Therefore, the ClusterRank may be a promising method for very

large-scale networks.

Susceptible-Infected-Recovered (SIR) model is usually used to

mimic the spreading processes of disease where infected nodes will

either get immunity or die [41]. Individuals in SIR model are

classified in three classes according to their states: susceptible (will

not infect others but can be infected), infected (have infectivity),

recovered (recovered from the illness and got immunity thus will

not take part in the epidemic process, or died and thus removed

from the systems). The simulation runs in discrete time steps. At

each time step, every infected node randomly selects a follower

and transmit the information or disease to her with probability m if

this follower is a susceptible one. At the same time, each infected

node recovers with probability b, and the infected rate l is defined

as m=b. The simulation stops when there is no infected node

anymore. Notice that this model is slightly different from the

standard SIR model where all the followers of an infected node

have the chance to be infected. The present mechanism is usually

used to mimic the limited spreading capability of individuals

[42,43].

To investigate the ability of identifying influential nodes of a

ranking method, we focus on top-L ranked nodes by out-degree

centrality. Here we set L= 20 and 50 as two examples. The ranks

of these L nodes by other ranking methods can be obtained via

selecting them from the whole ranking lists. Then we can calculate

the correlation between each pair of ranking methods by Kendall’s

tau, as shown in Table 3. It can be seen that LeaderRank and

PageRank are highly correlated. The correlation between

ClusterRank and out-degree centrality is low in Delicious while

relatively high in SM, this is because of the small clustering

coefficient of SM which makes f (ci) play little role in Eq. (4). For

the L nodes with maximal out-degrees, we also investigate the

correlation between the ranking scores provided by different

methods and the real spreading abilities, see Table 4. The ratio

between the number of infected and recovered nodes and the total

number of nodes at time t, denoted by F (t), can be considered as

an indicator to evaluate the influence at time t. Clearly, F (t)
increases with t, and eventually gets steady. The final coverage

Fi(tc) of node i is used to represent the real spreading ability of i

where i is set to be infected initially. Higher Fi(tc) indicates higher

influence of node i. Overall speaking, the Kendall’s tau for

ClusterRank is the largest.

To investigate the influence of a group of nodes in information

spreading, we initially set these nodes to be infected. We use the

steady value, F (tc), to evaluate the eventual influence of these

initially infected nodes. Higher F (tc) indicates higher influence.

We choose the top-L (this paper considers L~20 and L~50)

ranked nodes, which are respectively identified by out-degree

centrality, PageRank, LeaderRank and ClusterRank, and set them

as initially infected nodes in the experiments. Figure 4 compares

F (t) with the top-L ranked nodes as the initially infected ones by

out-degree, PageRank, LeaderRank and ClusterRank for Deli-

cious and SM networks. From figure 4, one can see that the initial

seeds obtained by ClusterRank result in faster and wider spreading

than by other ranking methods.

Since there are a considerable number of overlapped nodes in

top-ranked lists of any two algorithms (see Table 5), we next

Table 1. Basic statistical features of Delicious, SM and Cond-
mat networks.

Network # nodes # links kmax Ækæ Æcæ

Delicious 582377 1686131 2767 2.8953 0.1459

SM 9330493 23208675 4832 2.4874 0.0043

Cond-mat 30460 120029 202 7.8811 0.6461

DeliciousUN 582377 1340910 11187 4.6063 0.2005

kmax is the maximum out-degree for directed networks or the maximum degree
for undirected networks, SkT is the average out-degree for directed networks
or the average degree for undirected networks, and ScT is the average
clustering coefficient over all nodes.
doi:10.1371/journal.pone.0077455.t001

Table 2. The CPU time (in seconds) of out-degree centrality,
PageRank, LeaderRank and ClusterRank for Delicious and SM
networks in a single run.

Network Out-degree PageRank LeaderRank ClusterRank

Delicious ,1 122 646 12

SM ,1 2954 2118 191

We use C#.net language on a Core II 2.0 GHZ CPU processor with 2 GB
memory.
doi:10.1371/journal.pone.0077455.t002

Table 3. Ranking correlation measured by Kendall’s tau
between different methods.

Network CR-DR CR-LR CR-PR LR-DR LR-PR PR-DR

Delicious
Top-20

0.2211 0.6000 0.4842 0.5789 0.8632 0.5895

Delicious
Top-50

0.3420 0.5711 0.4531 0.5559 0.8237 0.5722

SM Top-20 0.8895 0.9211 0.9105 0.8158 0.9895 0.8053

SM Top-50 0.6490 0.7992 0.7257 0.5510 0.9233 0.5918

Here we focus on the ranks of the top-L (L= 20 and 50) nodes with maximal
out-degrees. We abbreviate ClusterRank, LeaderRank, PageRank and Out-
degree centrality by CR, LR, PR and DR, respectively.
doi:10.1371/journal.pone.0077455.t003

Identifying Influential Nodes in Directed Networks

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e77455



compare the spreading processes resulted from non-overlapped

nodes in the top-ranked lists. That is, each time when we compare

the ClusterRank and another algorithm, the nodes appeared in

only one list are set to be the initially infected ones. For example,

for Delicious, considering the top-20 lists for out-degree centrality

and ClusterRank, there are 8 non-overlapped nodes, we compare

the spreading processes respectively resulted from the 8 nodes

appeared only in the list by ClusterRank and the 8 nodes appeared

only in the list by out-degree centrality. Figure 5 shows the ratio

between the total number of infected and recovered nodes of

ClusterRank and those of the other ranking algorithms, namely

FClusterRank(t)=F�(t), where FClusterRank(t) is the ratio of the total

number of infected and recovered nodes to all nodes at time t for

ClusterRank, and F�(t) stands for the corresponding quantity of

the compared algorithm (i.e., out-degree centrality, PageRank or

LeaderRank). Therefore, the degree to which FClusterRank(t)=F�(t)
exceeds 1 indicates how much better ClusterRank performs than

other methods. From figure 5, one can see that in most cases the

ratio is obviously larger than 1.

Figure 6 shows F (tc) resulted from the top-50 most influential

nodes at different infected rates l. It can be seen that F (tc) resulted

from the top-50 most influential nodes by ClusterRank is larger

than that by other ranking algorithms. Figure 7 shows the ratio of

the number of ever infected (i.e., finally recovered) nodes resulted

from top-ranked nodes by ClusterRank to those by other ranking

algorithms at different infected rates l. Note that, in figure 7, only

non-overlapped node appeared in the top-50 lists by ClusterRank

and other ranking algorithms are initially set to be infected. The

ratio is up to 2 when l~1:4 for Delicious network (see figure 7(a))

and it approaches 20 (surprisingly high) when l~1:9 for SM

network (see figure 7(b)). In fact, some nodes in the SM network

are of very large out-degree but the out-degree of their followers

are very small. These nodes are not as important as their out-

degrees indicate, and ClusterRank could dig out really influential

Table 4. Kendall’s tau between ranking scores provided by
different methods and the real spreading abilities.

Network CR LR PR DR

Delicious
Top-20

0.4632 0.1263 0.0737 20.0632

Delicious
Top-50

0.2784 0.0482 20.0596 20.1004

SM Top-20 0.2474 0.2368 0.2263 0.1421

SM Top-50 0.2620 0.2922 0.2253 20.0580

Here we focus on the ranks of the top-L (L= 20 and 50) nodes with maximal
out-degrees. We abbreviate ClusterRank, LeaderRank, PageRank and Out-
degree centrality by CR, LR, PR and DR, respectively.
doi:10.1371/journal.pone.0077455.t004

Figure 4. F (t) for top-L ranked nodes by out-degree centrality (squares), PageRank (diamond), LeaderRank (triangle) and
ClusterRank (circles). We set l~1:2 and b~1=SkoutT. Each data point is obtained by averaging over 100 independent runs.
doi:10.1371/journal.pone.0077455.g004
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nodes and assign the high-degree-yet-low-influence nodes low

ranks.

2.2 Evaluation on Undirected Networks
Above analyses show that ClusterRank is more effective than

other well-known ranking methods such as out-degree centrality,

PageRank and LeaderRank, in directed networks. In this

subsection, we will further show the superiority of ClusterRank

on undirected networks by comparing it with degree centrality and

k-core decomposition. Here, we don’t consider PageRank and

LeaderRank because they all degenerate to degree centrality in

undirected networks. We use two types of initialization for SIR

experiments. In the first case, we directly set the top-L (we set

L~50 in the experiment) ranked non-overlapped nodes to be

initially infected regardless of how they connect with each other.

The selection method for initial seeds is similar to what we have

used in figure 5. In the second case, we only consider a group of

nodes with no connection between any two of them as initial seeds.

Specifically, there are two steps. In the first step, for each ranking

method, we select L nodes who are highly ranked nodes but not

connected with each other according to the following process: (i)

Select the top ranked node v in the current network; (ii) Remove v
and all her neighbors from the network; (iii) Repeat step (i) and

step (ii) until L nodes have been selected. The second step is to

identify the non-overlapped nodes between ClusterRank and other

compared methods. For more details of how to select the initial

seeds, readers could refer to Ref. [44].

Figure 8 shows the dependence of FClusterRank(tc)=F�(tc) on l
for the undirected Delicious network and Cond-mat network,

where FClusterRank(tc) is the ratio of the total number of infected

and recovered nodes to all nodes at time tc for ClusterRank, and

F�(tc) stands for the corresponding quantity of degree centrality or

k-core decomposition. For the first case, see figures 8(a) and 8(c),

the eventually infected size of ClusterRank is larger than that of

degree centrality and k-core decomposition. In DeliciousUN, the

Figure 5. The ratio of the number of infected and recovered nodes by ClusterRank to those by out-degree centrality, PageRank and
LeaderRank. Initially only non-overlapped nodes in the top-L lists obtained by ClusterRank and other ranking algorithms are set to be infected. We
set l~1:2 and b~1=SkoutT. Each data point is obtained by averaging over 100 independent runs.
doi:10.1371/journal.pone.0077455.g005

Table 5. The number of different nodes in the top-L lists
between ClusterRank and other three methods for Delicious
and SM networks.

Delicious SM

top-20 top-50 top-20 top-50

Out-degree 8 20 19 43

PageRank 11 25 14 34

LeaderRank 7 17 17 37

doi:10.1371/journal.pone.0077455.t005
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largest value for k-core decomposition is 3.97 which is about 2.5

times larger than that for degree centrality. This reminds us that as

a group of initial infected nodes, k-core decomposition may

perform even worse than degree centrality [6], since the selected

nodes identified by k-core decomposition are usually in the same

core and thus densely connected with each other while the nodes

selected by degree centrality or ClusterRank are usually located at

different cores and thus sparsely connected. Apparently, Cluster-

Rank is much more advanced than degree centrality. Similar

results are also found in Cond-mat network, see figure 8(c). Note

that, Cond-mat network is highly clustered with clustering

coefficient ScT~0:6461, because there are many cliques each of

which is constituted by a group of co-authors of a paper. Therefore

the authors whose collaborators closely collaborate with each other

will be highly depressed by ClusterRank due to their high

clustering coefficients. The researcher with diverse collaborators

who are usually belong to different communities will be more

influential than those who only collaborates with people in one

community. For the second case, with the consideration of the

nodes that are not directly connected with each other the

performance of k-core decomposition is improved. Specifically,

in DeliciousUN, ClusterRank performs much better than degree

centrality especially for the middle region of l and better than that

of k-core decomposition for 1:0ƒlƒ1:7. In Cond-mat network,

the results of ClusterRank are still better than degree centrality

and k-core decomposition in the middle region of l, and for other

region, their performances are comparable. The investigations for

very small or very large infected probability l are meaningless.

When l is too small (e.g., lv1), it will be hardly spread out from

any group of initial nodes, and for large l, most of the nodes will

get infected and thus the difference resulted from initialization will

become less significant. The results shown in figure 8 demonstrate

that ClusterRank also performs better than degree centrality and

k-core decomposition in undirected networks.

Discussion

Identifying most influential nodes in very large-scale directed

networks is a key issue in network analysis, disease control, and so

on. An effective and efficient ranking algorithm is proposed in this

Figure 6. The dependence of F (tc) on parameter l. The initially infected nodes are the top-50 nodes obtained by out-degree centrality
(squares), PageRank (diamonds), LeaderRank (triangles) and ClusterRank (circles). We set b~1=SkoutT. Each data point is obtained by averaging over
100 independent runs.
doi:10.1371/journal.pone.0077455.g006

Figure 7. The ratio of the number of final recovered nodes by ClusterRank to those by out-degree centrality, PageRank and
LeaderRank. The non-overlapped nodes in the top-50 lists are initially infected. We set b~1=SkoutT. Each data point is obtained by averaging over
100 independent runs.
doi:10.1371/journal.pone.0077455.g007
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paper which emphasizes the negative effects of local clustering on

spreading dynamics. Experimental results on Delicious and SM

networks demonstrate that the information can spread more

quickly and broadly from top-L nodes obtained by our method

than that by out-degree centrality, PageRank or LeaderRank.

Furthermore, the method presented in this paper can be easily

extended to undirected networks, for which PageRank and

LeaderRank all degenerate to degree centrality. Experiments on

the Cond-mat and undirected Delicious networks show that the

performance of our method is also better than that of degree

centrality and k-core decomposition for undirected networks.

How to effectively and efficiently identify influential nodes in

very large-scale networks is a long-standing challenge. Lastly we

list some open issues that may become the near-future focuses in

this field. (1) Algorithms from general to specific. With

different motivations and requirements, the ranking methods

should be different. In our paper, we applied SIR model to

evaluate the ranking performance, which actually implies that we

want to find influential nodes for this specific dynamic process–the

information spreading in the SIR matter. With this motivation, we

find that ClusterRank is very effective. Some recent studies [30,45]

showed that in the presence of social reinforcement, the clustering

may to some extent accelerate behavior propagation in online

social networks. In this case, or the cases asking for critical nodes in

synchronization and transportation, the ClusterRank may not be

as effective as in the current case (or may be even more powerful).

In real systems, users may have different preference on different

topics, a topic-related ranking method will be more appropriate

[46]. Furthermore, different individuals may influence other

individuals through different relationships, how to make use of

profiles of individuals in ranking algorithms is also interesting and

challenging [8]. (2) Algorithms on disparate types of
networks. With different network structures, suitable ranking

methods might also be different. Besides the simple undirected and

directed networks, ranks are required for more complicated

networks including weighted networks [47], bipartite networks,

multi-level networks, temporal networks [48], networks with

community structure [49], and so on. Some progress has been

made in this direction [50], but systematic analyses are still

lacking.
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Figure 8. The dependance of FClusterRank(tc)=F�(tc) on parameter l in undirected Delicious and Cond-mat networks. We set b~1=SkT. In
(a) and (c), the initial infected nodes are those non-overlapped nodes in the top-50 places regardless of whether they are connected or not. In (b) and
(d), the initial infected nodes are the non-overlapped nodes in top-50 places under constraint that any two of them are not connected. Each data
point is obtained by averaging over 100 independent runs.
doi:10.1371/journal.pone.0077455.g008
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