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Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) have anti-inflammatory effects.
Preterm birth is an important problem in modern obstetrics and one of the main causes is an inflammation.
We here showed that abundance of omega-3 fatty acids reduced the incidence of preterm birth induced by
LPS with fat-1 mice, capable of converting omega-6 to omega-3 fatty acids. We also indicated that the gene
expression of IL-6 and IL-1b in uteruses and the number of cervical infiltrating macrophages were reduced
in fat-1 mice. The analyses of lipid metabolomics showed the high level of 18-hydroxyeicosapentaenoate in
fat-1 mice, which was derived from EPA and was metabolized to anti-inflammatory product named resolvin
E3 (RvE3). We finally showed that the administration of RvE3 to LPS-exposed pregnant wild type mice
lowered the incidence of preterm birth. Our data suggest that RvE3 could be a potential new therapeutic for
the prevention of preterm birth.

P
reterm birth is a major unresolved problem in modern obstetrics. It is the leading cause of neonatal mortality
and contributes to delayed physical and cognitive development in children. Over the last three decades,
several investigators have reported a significant association between preterm birth and exaggerated immune

cell activity within the womb1,2. Although preterm birth can have a variety of etiologies, inflammation is a
common and important cause. Acute chorioamnionitis (CAM), acute inflammation occurring within the chor-
ioamnion, is the principle antecedent of inflammation-associated preterm birth. The majority of cases of CAM
are caused by microbes residing in the cervicovaginal region, including those caused by normal microbiota
(bacterial vaginosis) and those resulting from colonizion by microbes from other sites3. The associated increases
in inflammatory cytokine and local prostaglandin production within the cervix and uterine body stimulate
uterine contractility and cervical ripening followed by initiation of premature labor in mice and humans
(reviewed in4). Preterm birth may therefore be more closely associated with the magnitude of local inflammation
accompanying microbial changes than with infection by a specific eliciting organism. Mechanistically, local pro-
inflammatory cytokines primarily induce the production of prostaglandins (PGs) in uterine tissues5. These PGs,
especially PGE2 and PGF2a, can promote cervical ripening6 and stimulate uterine contractility7.

The presence of bacterial lipopolysaccharide (LPS) has been associated with preterm birth in rodents8. LPS is a
constituent of the plasma membranes of many of the microbes known to be associated with acute chorioamnio-
nitis. Indeed, LPS-induced inflammation leads to the release of many of the pro-inflammatory cytokines and
chemokines that induce uterine contractions and injure amnionic membranes9. Therefore, exposure to LPS is
commonly used to induce preterm birth in animal models. Previous studies have described several agents that are
effective in preventing LPS-induced preterm delivery in mice, including: betamethasone9, cyclooxygenase inhi-
bitors10,11 and progestational agents12–14. However, the extension of these agents to clinical use in humans has been
hampered by known adverse effects on the pregnant womanand/or her fetus.
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Docosahexaenoic acid (DHA, 2256n-3) and eicosapentaenoic acid
(EPA, 2055n-3) are representative omega-3 polyunsaturated fatty
acids (PUFAs) that can block exaggerated inflammatory reactions.
In many inflammatory conditions, increased tissue levels of omega-3
PUFAs are considered to be beneficial. However, studies on the
effects of omega-3 PUFA supplementation on preterm birth have
provided conflicting results. Olsen, et al., demonstrated that women
taking fish oil capsules containing EPA and DHA had significantly
lower preterm birth rates when compared to those taking placebo15.
In contrast, Harper et al. concluded that among women receiving
17a-hydroxyprogesterone caproate for a history of preterm birth,
supplementation with omega-3 PUFA soffered no benefit in redu-
cing preterm birth16.

Dietary supplementation is the traditional approach to modifying
tissue nutrient composition in animal nutrition studies. However,
investigator-sepcific differences in baseline diets among the animals
studied may have induced confounders that make comparison
among studies difficult. Method descriptions among published stud-
ies often make exact replication of control and supplemented diets
difficult. Kang, et al., recently engineered a transgenic mouse that
carries a fat-1 gene from the roundworm, Caenorhabditis elegans17.
This gene encodes an omega-3 fatty acid desaturase that catalyzes the
conversion of oemga-6 to omega-3 PUFAs and that is absent in most
animals, including mammals. A remarkable difference in tissue
omega-6/omega-3 fatty acid ratios is seen in comparisons of wild
type and the fat-1 transgenic mice. Further, fat-1 mice have a
balanced ratio of omega-6 to omega-3 PUFAs in their tissues and
organs that is independent of diet and this allows carefully-controlled
studies to be performed in the absence of potential confounding
dietary factors18,19. These animals are therefore an exceedingly useful
model for investigating the biological properties of endogenous
omega-3 PUFAs.

The strong association between omega-3 PUFAs and protection
from inflammatory conditions led us to hypothesize that fat-1 mice
would have lower preterm birth rates when compared to wild-type
controls and that this would be the result of the local anti-
inflammatory effects of omega-3 PUFAs. In this study, using the
LPS-induced preterm birth mouse model, we investigated inflam-
mation-induced premature pregnancy loss in fat-1 mice and
determined the therapeutic potential of the recently-identified
EPA-derived anti-inflammatory lipid mediator, RvE3, in preventing
preterm birth.

Results
Comparison of the incidence of preterm birth between the fat-1
and wild type mice. The induction of local inflammation in the
murine uterus using LPS is the most commonly used method to
model preterm birth. In these models, pregnant mice are
commonly exposed to LPS via the peritoneal cavity, myometrium,
or cervix21. Preterm birth in humans is thought to result from
microbes, and/or microbe-induced inflammation, that enter the
pregnant woman via the cervicovaginal canal and spread to the
uterine cavity. We therefore chose to model this clinical mechanism
of preterm birth using transvaginal, intracervical injection of LPS into
pregnant mice. Animals were injected once into their cervices with
various doses (5–50 mg/head) of LPS. As an injection control, an
identical amount (200 ml/head) of saline was injected into the
cervices of pregnant mice. Control animals are indicated as the
0 mg/head group in Table 1. Fat-1 and littermate wild type mice
were injected with LPS using this protocol and comparisons were
made between the resulting fat-1 and wild type preterm birth
(PTB) rates (Table 1). No mouse injected with saline alone or with
low-dose LPS (5 to 10 mg/head) suffered preterm birth (0/10 in wild
type and 0/4 in fat-1 mice), demonstrating that the procedure of
transvaginal injection itself did not induce preterm birth. In
contrast, transvaginal injection with high-dose LPS (50 mg/head)

induced universal preterm birth in both fat-1 and wild type mice.
Among mice exposed to 15 to 30 mg/head of LPS, there was a
significant difference in the incidence of preterm birth between the
fat-1 and wild type mice. Preterm birth occurred frequently in wild
type mice exposed to these doses of LPS (14/23 5 60.9%) but
significantly less in similarly-exposed fat-1 mice (4/17 5 23.5%) (p
5 0.0267). The fat-1 mice injected with 15 mg/head of LPS also
displayed a significantly lower incidence of preterm birth when
compared with wild type mice injected with the same dose of LPS
(p 5 0.0461). We therefore chose an exposure dose of 15 mg/head of
LPS for transvaginal injection into the cervix for the following
experiments.

LPS-induced inflammatory cytokine production in the uteri of
fat-1 and wild type mice. The mechanisms underlying LPS-in-
duced preterm birth are reported to include LPS-induced local pro-
inflammatory cytokine production, cytokine-mediated elevations in
the production of PGE2 and PGF2a and, ultimately, uterine
contraction, cervical ripening and preterm delivery5–7. All of these
cascades occur in the placenta and the uterine myometrium. We
hypothesized that the anti-inflammatory effects of omega-3 PUFAs
may suppress LPS-induced local inflammation and PGE2 and
PGF2a production within the uterus. Pregnant fat-1 and wild type
mice were injected transvaginally and intracervically with 15 mg/
head of LPS or saline. The myometria of exposed animals were
collected six hours after injection. The local production of the pro-
inflammatory cytokines, IL-6, IL-1b, and TNFa, which are known to
be involved in the mechanism of preterm birth22–25, were quantitated
in all animals and compared between groups. As reported previously,
the production of IL-6, IL-1b, and TNFa was induced in the
myometria of all LPS-injected mice. IL-6 and IL-1b mRNA levels
in fat-1 mice were significantly lower than those in wild type mice,
but no differences in TNF-a mRNA levels were noted (Fig. 1). Fat-1
mice appeared to be at least partially resistant to the induction of pro-
inflammatory cytokine production in myometrial tissues upon LPS
exposure.

Macrophage infiltration into uterine myometria and cervices. Of
the leukocytes that may contribute to recruitment and amplification
of inflammatory reactions, macrophages are the predominant im-
mune cell subtype residing in the uterus26. Macrophages produce a
variety of factors, including prostaglandins and cytokines, that
regulate uterine contractile activity25,27. We therefore studied the
macrophages infiltrating the myometria and cervices of fat-1 and
wild type mice using immunohistochemical detection of F4/80-
immunoreactive cells (Fig. 2A). Infiltration of F4/80-immunoreactive
macrophages into the myometrium was observed in both wild type
and fat-1 mice exposed to LPS (Fig. 2A, left lower two panels).
Cervical infiltrating macrophages were also observed in LPS-
injected wild type mice (26 6 5.7 macrophages per 10 microscope
fields, n 5 3) but were quite infrequent in LPS-injected fat-1 mice
(11 6 2.0 macrophages per 10 microscope fields, n 5 3) (right, lower
two panels). F4/80 positive macrophages were quantitated and

Table 1 | Comparison of preterm birth rates between fat-1 and wild
type mice

PTB rate (%)

Dose of LPS (microgram/head)

0 5–10 15 30 50

Wild type 0/4
(0)

0/6
(0)

11/20
(55)

3/3
(100)

4/4
(100)

fat-1 0/2
(0)

0/2
(0)

3/15
(20)

1/2
(50)

1/1
(100)

PTB: preterm birth.
PTB rate: No. of delivered/total pregnant mice.
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comparisons were made between fat-1 and wild type mice (Fig. 2B).
No differences were detected in the number of myometrial
infiltrating macrophages in LPS-injected fat-1 and wild type mice.
In contrast, the number of cervical infiltrating macrophages in fat-1
mice was significantly lower than that in the wild type mice.

Responsiveness of peritoneal macrophages from fat-1 and wild
type mice to LPS. Next, we assessed the responsiveness of peri-
toneal macrophages to LPS and made comparisons between fat-1
and wild type mice. Peritoneal macrophages were isolated from the
peritoneal cells of untreated fat-1 or wild type mice. Collected
macrophages were exposed to LPS in the conditioned medium and
collected after 0, 1 and 3 hours of exposure. Macrophage IL-6 and IL-
1b mRNA levels were measured by RT-qPCR at each time point
(Fig. 3). At baseline (0 hours), macrophages derived from fat-1
and from wild type mice had equal IL-6 and IL-1b mRNA levels.
Macrophage IL-6 and IL-1b mRNA levels in wild type mice
increased in a manner dependent on LPS exposure time. No
significant increases in IL-6 and IL-1b mRNA levels were detected
in the macrophages derived from fat-1 mice. In fact, IL-1b mRNA
levels in the macrophage derived from fat-1 mice after 3 hours of
exposure were markedly lower than those in wild type murine
macrophages.

Mediator lipidomics in myometria from pregnant fat-1 and wild
type mice. We next assessed the profiles of PUFA-derived lipid
mediators in the myometria of LPS-exposed and control animals
using liquid chromatography coupled to tandem mass spectro-
metry. We hypothesized that the differences in lipid mediator
profiles between fat-1 and wild type mice may explain the resis-
tance of fat-1 mice to LPS-induced preterm birth. Myometria were

Figure 2 | Macrophage infiltration into myometria and cervices of LPS-injected fat-1 and wild type mice. (A) Immunostaining of the myometria

and cervices of LPS- or saline-injected mice for F4/80, a pan macrophage marker. Macrophages were detected using a specific anti-F4/80 mAb (15500)

(lower panels). An isotype-matched control mAb was used as a negative control (lower panels) (2003). Results are representative of two to ten normal

tissues for each site. (B) The number of F4/80-positive cells detected in all fields of the myometrium or cervix were counted for wild type (black) or fat-1

(white) mice. Asterisks indicate those comparisons (wild type vs. fat-1 mice) with statistical significance (p , 0.05).

Figure 1 | Induction of pro-inflammatory cytokines by LPS intracervical
LPS. LPS (15 microgram) or saline was injected into the cervices of

pregnant fat-1 or wild type mice at 15 days of gestation. The uteri of

injected mice were harvested six hours after LPS-injection and total RNA

was extracted. mRNA levels of IL-6 (A), IL-1b (B), and TNF-a (C) were

measured using RT-qPCR. Comparisons were made between wild-type

(black) and fat-1 (white) animals. IL-6, IL-1b and TNF-a mRNA levels

were normalized to b-actin. Mean mRNA levels and standard deviations

were plotted. Asterisks indicate those comparisons (wild type vs. fat-1

mice) with statistical significance (p , 0.05). (n 5 4).
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resected from pregnant mice 6 hours after saline or LPS injection and
evaluated using LC-MS/MS-based lipidomic analyses (Fig. 4). Most
of the arachidonic acid (AA) metabolites in the myometrial tissues
were increased in LPS-injected wild type mice when compared with
saline-injected mice. Similar AA metabolite increases were not
observed in the myometria from fat-1 mice. In particular, PGE2
and PGF2a, which are representative AA metabolites that can
induce uterine contractions in pregnant fat-1 mice7 were signifi-
cantly lower than those in wild type mice (Fig. 4A). In contrast,
many of the EPA metabolites in the myometrial tissues were
markedly elevated in LPS-injected fat-1 mice but not in wild type
mice. Among those, EPA-derived 18-hydroxyeicosapentaenoic acid
(HEPE) and 17(18)- epoxy-eicosatetraenoic acid (EpETE) levels in
fat-1 mouse myometria were approximately ten fold higher than
those in wild type counterparts (Fig. 4B). No significant differences
in DHA metabolites were seen between LPS-injected fat-1 and wild
type mice. In summary, mediator lipidomics revealed higher levels of
the EPA metabolites, 18-HEPE and 17(18)-EpETE, and lower levels
of the AA metabolites, PGE2 and PGF2a, in fat-1 mice when
compared to wild type controls.

Preventing preterm birth by administration of resolvin E3 (RVE3).
Based on the mediator lipidomics, we hypothesized that 18-HEPE
and/or 17(18)-EpETE may play a role in protection against LPS-
induced preterm birth. We therefore administer these lipid me-
diators intravenously in a variety of doses (10–100 microgram) to
LPS-injected pregnant wild type mice. Such exposures did not
prevent preterm birth (data not shown). These PUFAs, however,
need to be converted to their active forms to exert effects at the
tissue level. The resolvins are important representative active meta-
bolites of PUFAs. The 18-HEPE-derived metabolites, resolvins
E1–E3 (RvE1, -E2, and -E3), are bioactive and can directly exert ro-
bust anti-inflammatory activities on inflammatory cells such as neu-
trophils and macrophages20. Among the resolvins, RvE3 has been
recently shown to inhibit neutrophil infiltration in zymosan-induced

peritonitis28. To test whether the resoolvin metabolites may be
responsible for the protective effects of PUFAs on preterm labor,
LPS-injected pregnant wild type mice were exposed twice to
10 ng/head of RvE3 or ethanol (vehicle) intravenously at 0 and 6–
12 hours after LPS injection. Preterm birth rates (Table 2) were
determined 48 hours after the LPS-injection by calculating the
number of delivered/pregnant mice. All mice (9/9) injected with
LPS delivered within 48 hours after injection. In contrast, seven of
12 RvE3-exposed mice did not develop preterm birth, giving a
preterm birth rate of 41.6% (Table 2). RvE3 administration in the
preterm birth model mice resulted in significant reduction of pre-
term birth (p 5 0.007). 36 of 37 fetuses remaining in implantation
sites (97.2%) were viable in the pregnant mice given RvE3 in addition
to LPS (data not shown).

Discussion
Fat-1 mice allow carefully controlled studies to be performed in the
absence of the potential confounding factors of diet. Numerous stud-
ies have utilized the fat-1 mouse to examine the role of omega-3
PUFAs and downstream anti-inflammatory mediators in retarding
inflammatory disease development. Here we have demonstrated that
fat-1 mice are protected against LPS induced-preterm birth by
PUFAs through anti-inflammatory pathways. Further, we describe
a potential therapeutic use for the EPA-derived bioactive mediator,
RvE3, in the prevention of preterm birth.

Prior epidemiological investigations have provided conflicting
results on the utility of omega-3 fatty acids in preventing preterm
delivery15,29–31. This controversy may reflect unintended confounders
inherent in study designs that do not control for differences in the
dietary habits of the selected patient cohorts. This potential confoun-
der may be particularly limiting for epidemiological investigation or
studies on the effects of PUFA supplementation in humans, although
comparisons of animal models studying PUFA supplementation
may be similarly affected. The dietary characteristics of study ani-
mals may differ fairly dramatically among investigative groups. Since
Kang et al. first engineered the fat-1 mouse, many insights have been
gleaned concerning the anti-inflammatory actions of omega-3
PUFAs using this model17,19. In hepatitis models, use of fat-1 mice
has uncovered a reduction in severe inflammatory liver injury that is
associated with reduced hepatic gene expression of TNF-a , IL-1b,
IFN-c and IL-632. Similar results have also been reported using fat-1
mice in studies on allergic airway responses33 and pancreatitis34.

In our preterm birth model, production of IL-6 and IL-1b after
LPS-injection in fat-1 mice was clearly lower than that in wild type
controls. IL-6 and IL-1b are known to be elevated after LPS injection
and are hypothesized to be pro-inflammatory markers of preterm
birth35,36. In human chorioamnionitis, high grade leukocyte infiltration
into placenta tissues is associated with elevated levels of IL-1b, IL-6,
IL-8, TNF-a, and C-reactive protein in umbilical serum37. IL-6 plays a
key role in controlling the progression of events culminating in par-
turition38. Cervico-vaginal concentrations of IL-6 are reported to be
excellent predictors of preterm birth39. Cervical fluid concentrations of
IL-1b are elevated in symptomatic women destined to have a spon-
taneous preterm birth40. The enrichment of omega-3 PUFAs in the
myometrium of fat-1 mice suggest that the reduced risk of LPS-
induced preterm birth in these animals may be the result of PUFA-
mediated inhibition of the local production of pro-inflammatory
cytokines, especially IL-1b. It has been shown that omega-3 PUFAs
regulate neutrophil and macrophage functions41,42. We therefore
hypothesized that the number of neutrophils and macrophages infilt-
rating in the uterus of the LPS-injected fat-1 mice may differ from that
of wild type controls. While the number of neutrophils and the
number of macrophages infiltrating the myometrium did not differ
between the fat-1 mice and wild type mice six hours after LPS injection
(data not shown) the number of macrophages infiltrating the cervix
was lower in fat-1 mice. Further, this difference appears to be

Figure 3 | LPS-responsivity in peritoneal macrophages isolated from the
fat-1 or wild type mice. Peritoneal macrophages were isolated from

untreated wild-type (black) and fat-1 (white) mice by positive magnetic

bead selection. Isolated macrophages were exposed to LPS in the condition

medium. Total RNA was extracted from the macrophages 0, 1, 3 hours

after LPS exposure. IL26 (A) and IL21b (B) mRNA levels were measured

by RT-qPCR, normalized to b-actin and plotted against time after LPS

exposure (0, 1, or 3 hours). Mean mRNA levels and standard deviations

are shown. Asterisks indicate those comparisons (wild type vs. fat-1 mice)

with statistical significance (p , 0.05). (n 5 8).

www.nature.com/scientificreports
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dependent on time from LPS-injection. At six hours after LPS injec-
tion, the macrophages that rapidly infiltrated the cervix may migrate
to the other sites such as draining lymph nodes. Alternatively, some
macrophages may still be present in the myometrium. Of course,
uterine stromal cells also produce pro-inflammatory cytokines and
these cells may play a complementary role in the suppression of
pro-inflammatory cytokine production observed in fat-1 mice.

To better understand how increased tissue levels of omega-3
PUFAs protect against LPS-induced preterm birth, mediator lipido-
mics were performed to monitor lipid mediator profiles in the myo-
metrium tissue. AA-derived PGE2 and PGF2a, which are known to
induce uterine contractions in pregnancy, were not increased in fat-1
mice even when LPS was injected in the cervix. This effect was
accompanied by a reduction in preterm delivery, possibly because
of a suppression of uterine contractions. In fat-1 mice, since the
production of pro-inflammatory cytokines and the activation of
inflammatory cells were suppressed, PGs production via cyclooxy-
genase should also be suppressed. Interestingly, pro-inflammatory
cytokines such as IL-6 are reported to act downstream of leukolysis in
the uterus to regulate genes involved in the prostaglandin-mediated
uterine activation cascade38. Omega-3 PUFAs also antagonize AA-
derived biosynthesis of PGs by competing with omega-6 PUFA for
the cyclooxygenase pathway43,44. In fat-1 mice, the suppression of
PGE2 and PGF2a seems to be the result of both inhibitory effects
of omega-3 PUFAs on the AA-metabolic pathway.

On the other hand, EPA metabolites such as 18-HEPE and 17(18)-
EpETE were found to be significantly increased in the myometria
from pregnant fat-1 mice exposed to LPS. These EPA metabolites

Table 2 | Administration of RVE3 to LPS-injected pregnant wild
type mice

PTB rate

RVE3 (10 ng/head) Vehicle (EtOH)

Exp. 1 1/3 N.D.
Exp. 2 2/5 5/5
Exp. 3 2/4 4/4
Total (%)* 5/12 (41.6%)* 9/9 (100%)*

*p , 0.01.
PTB rate: No. of delivered/total pregnant mice.
N.D.: not done.

Figure 4 | Lipid mediator analyses of the myometria from LPS/saline-injected fat-1 and wild type pregnant mice. Metabolites derived from omega-3

PUFAs were analyzed by LC-MS/MS-based lipidomic analyses. The content of AA-derived (A) and EPA-derived (B) metabolites in the myometria were

measured. Myometrial tissues were collected from saline-injected wild-type (dark gray), saline-injected fat-1 (light gray), LPS-injected wild-type (black)

and LPS-injected fat-1 (white) mice. Asterisks indicate those comparisons (wild type vs. fat-1 mice) with statistical significance (p , 0.05). LOX;

lipoxygenase, COX; cyclooxygenase.

www.nature.com/scientificreports
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serve as potent inhibitors of inflammation. In particular, 18-HEPE is
a common metabolic precursor of EPA-derived E-series resolvins.
RvE1 and E2 are biosynthesized by neutrophils via the 5-lipoxygen-
ase pathway, and elicit potent anti-inflammatory actions in
vivo41,42,45–49. Recently a novel EPA-derived anti-inflammatory medi-
ator, RvE3, was identified. RvE3 is biosythesized via the 12/15-lipox-
ygenase pathway, and has been shown to suppress neutrophil
infiltration in zymosan-induced peritonitis28.

Our data on the administration of EPA-derived metabolites sug-
gested that RvE3, rather than 18-HEPE, could suppress LPS-induced
uterine inflammation and protect against preterm birth. In our
investigations, repeated (twice) administration of RvE3 was effective
in mediating a 60% reduction LPS-induced preterm birth in wild
type mice. Although further studies will be required to define the
precise mechanisms of RvE3’s action on preterm birth, our results
suggests that this EPA-derived anti-inflammatory mediator has the
potential to treat and/or prevent preterm birth in humans.

Methods
Animals. Procedures that involved mice were approved by our Institutional
Committee on Animal Use and Care and were conducted in strict accordance with
guidelines for the use and care of laboratory research animals promulgated by the
National Institutes of Health. Fat-1 breeders were obtained from Dr. Jing Kang at
Harvard Medical School. These animals were mated with WT C57BL6 female mice
(CLEA Tokyo, Japan) to obtain female fat-1 positive C57BL6 mice (fat-1) and fat-1
negative C57BL6 mice (WT) as identified by genotyping using a KOD FX PCR kit
from TOYOBO LIFE SCIENCE (Osaka, Japan). Weight-matched mice were housed
in an animal care facility in cages and fed semi-purified AIN-76A diets containing
10% safflower oil. The fat-1 or wild type female mice were mated with C57BL/6J male
mice for 48 hours. The day of vaginal plug detection after the first day of mating was
designated as day 0 of gestation. Animals were maintained at room temperature in a
humidity-controlled room with a 12 h-light/12 h-dark cycle and were given sterilized
solid food and water ad libidum during the entire experimental period.

LPS-injection into the cervix of the pregnant mice. Pregnant fat-1 and wild type
mice (C57BL/6J) were chosen for LPS-induced preterm birth on day 15 of gestation.
LPS derived from Escherichia coli (055;B5, Sigma-Aldrich Japan, Tokyo, Japan) was
injected into the murine cervices as follows. A small guide tube was inserted
approximately 10–12 mm into the vaginas of the pregnant mice. A long needle
attached to a syringe was threaded through the guide, into the vagina and advanced
3 mm into the cervix. Two hundreds microliters of saline containing various doses
(5–50 mg/head) of LPS was injected through the needle and into the cervix. After
injection, animals were recovered in individual cages and observed every 12 hours for
48 hours following LPS injection to check for signs of morbidity and/or birth. The
delivery time of the first fetus was recorded and defined as a preterm (,19 days) or
term (19–21 days).

Tissue collection. Pregnant fat-1 and wild type mice that had been exposed to saline
or LPS were sacrificed 6 hours after intracervical injection and the uterine myometria
and cervices were collected. Total RNA was extracted from the tissues using RNAlater
(Life Technologies Japan, Tokyo, Japan) and frozen for group analyses. Peritoneal
fluids and cells were collected by washing the peritoneal cavities with 5 ml PBS.
Peritoneal cells were isolated by centrifugation, dissolved in MACS buffer (Miltenyi
Biotec K.K., Tokyo, Japan) and exposed to anti-mouse CD11b antibody (Miltenyi
Biotec K.K.). Peritoneal macrophages were isolated separately using magnetic beads
and positive selection.

RT-quantitative PCR (RT-qPCR). Mice were sacrificed 6 hours after LPS injection
and murine uteri were removed immediately. To measure TNF-a, IL-1b, and IL-6
mRNA levels in the uterine myometrium, total RNA was extracted from the
myometrium using a QIAGEN RNeasy Mini Kit (QIAGEN, Tokyo, Japan). One mg of
total RNA and random primers were used for the reverse transcriptase (RT) reaction
(TOYOBO, OSAKA, Japan) according to the manufacturer’s specifications. Total
cDNA reaction samples were used as templates for amplification of each gene
fragment using the LightCycler 480 PCR machine (Roche Diagnostics K.K., Tokyo,
Japan). Primer pair sets for each gene were purchased from Sigma-Aldrich, Japan.
The primer pairs and the universal probes corresponding to the each primer that were
used in amplifications were as follows: mouse b-actin, 59- ATTGAAACATCA-
GCCAAGACC-39 and 59-CCGAATCTCACGGACTAGTGT-39 probe88; mouse IL-
1b, 59-TTGACGGACCCCAAAAGAT-39 and 59- GAAGCTGGATGCTCTCAT-
CTG-39 probe26; mouse IL-6, 59- GCTACCAAACTGGATATAATCAGGA-39 and
59- CCAGGTAGCTATGGTACTCCAGAA-39 probe6; mouse TNF-a, 59-TCTTC-
TCATTCCTGCTTGTGGA-39 and 59-GGTCTGGGCCATAGAACTGA-39

probe49. The universal probes were chosen from a universal probe library (Roche
Diagnostics K.K.). The mRNA levels of TNF-a, IL-1b and IL-6 were normalized to
those of b-actin, the internal control.

Immunohistochemistory. For immunohistochemical studies, uterine corpi and
cervical tissues were paraffin-embedded, cut into 5-mm sections, mounted on
microscope slides, dewaxed and rehydrated. Antigen retrieval involved 5 min of
exposure to microwaves in target buffer (DAKO Japan, Tokyo, Japan) and
subsequent treatment with 3% H2O2 for 5 min. After a 10 min block at room
temperature with protein blocking buffer (DAKO), the tissues were stained with Rat
anti-mouse macrophage F4/80 (1-mg/ml; Abcam, Cambridge UK). Horseradish
peroxidase-labeled goat anti-rat secondary antibody (Nichirei, Tokyo, Japan) and
aminoethylcarbazole (AEC) (Nichirei) substrate were used to develop the reactions.

Culture and characterization of macrophages. Peritoneal cells were collected from
fat-1 and wild type mice by washing peritoneal cavities with 5.0 ml of PBS and
collecting the resulting peritoneal fluids. Macrophages were isolated from the
collected peritoneal cells using a magnetic cell sorting kit (MACSH, Miltenyi Biotec
K.K.). Briefly, CD11b1 cells were magnetically labeled with CD11b MicroBeads, the
cell suspension was loaded onto a MACSH column and the column was placed into
the magnetic field of a MACS separator. The magnetically labeled CD11b1 cells that
were retained on the column were then eluted as a positively-selected cell fraction.
Macrophages were cultured overnight in RPMI with 10% FBS and exposed to LPS
(1 microgram/ml). Total RNA was extracted from macrophages at 0, 1 and 3 hours
post-exposure and used for RT-qPCR for IL-6 and IL-1b.

Mediator lipidomics, product isolation and extractions. Whole uterine myometria
were obtained from fat-1 and WT mice 6 hours after intracervical LPS or vehicle
injection and were immediately frozen in liquid nitrogen. Samples were kept freeze
for batched analyses. LC-MS/MS-based mediator lipidomics was performed as
described previously20. Briefly, samples were extracted by solid-phase extraction
using Sep-Pak C18 cartridges (Waters, Milford, MA, USA) with deuterium-labeled
internal standards (PGE2-d4, LTB4-d4, 15-HETE-d8, arachidonic acid-d8). LC-MS/
MS-based lipidomic analyses were performed on Acquity UPLC BEH C18 columns
(1.0 mm 3 150 mm 3 1.7 mm) using an Acquity UltraPerformance LC system
(Waters Co.) coupled to an electrospray (ESI) triple quadrupole mass spectrometer
(QTRAP5500; AB SCIEX). The MS/MS analyses were performed in negative ion
mode, and the eicosanoids and docosanoids were identified and quantified by
multiple reaction monitoring. Calibration curves between 1 and 1000 pg and the LC
retention times for each compounds were constructed with synthetic standards.

Intravenous administration of resolvin E3 in wild type preterm birth models.
Pregnant wild type mice (C57BL/6J) were subjected to LPS-induced preterm birth on
day 15 of gestation as described above. Resolvin E3 (RvE3; 17R, 18R-dihydroxy-
eicosapentaenoic acid) was chemically synthesized as described in50, and was
provided from Shionogi Co. Ltd. (Osaka, Japan). 10 ng of RvE3 diluted in 100 ml of
saline was administered intravenously two times in the LPS-injected mice via the tail
vein at 0 and 6–12 hours after LPS injection. Ethanol alone was administered
similarly to pregnant wild type mice as a control for RVE3 exposure. These mice were
carefully observed every 12 hours over 48 hours following LPS injection to detect
preterm birth and any signs of morbidity. The preterm birth rate was calculated as the
number of delivered/pregnant mice at 48 hours after LPS-injection. All mice were
sacrificed at 48 hours post-exposure, and the number of viable fetuses and
implantation sites in a pregnant uterus was recorded. Intrauterine fetal deaths were
identified by white fetal discolorations, markedly smaller fetal size, and lack of blood
flow in umbilical cords. Fetal viability rates were determined by the number of viable
fetuses/total implantation sites.

Statistical analyses. Pregnancy outcomes were statistically analyzed using the
Cochran-Armitage-trend test and Fisher’s exact test. Changes in mRNA expression
and changes in lipid mediators as detected by LC/MS/MS were analyzed using Mann-
Whitney U testing. Differences were considered significant when p was , 0.05.
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