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Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein
repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic
proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome
profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which
mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried
out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane
localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins
were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and
~90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to
be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were
not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic
membrane proteome reorganizationwas observed, including differential regulation of autotransporters, adhesins, and hemin
binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all
members of the VirB/D4 type IV secretion system, a key virulence factor.

[Supplemental material is available for this article.]

A major goal of the post-genome era is to understand how ex-

pression of the functional elements encoded by a genome is or-

chestrated to allow an organism to develop and adapt to life under

varying conditions. Transcriptomics and proteomics technologies

both provide important and complementary insights: The former

allow researchers to generate global quantitative gene expression

profiles and to study gene regulatory aspects like the impact of

short RNAs. However, due to the varying correlation of tran-

scriptomics and proteomics data reported in the literature (de

Godoy et al. 2008; de Sousa Abreu et al. 2009; Maier et al. 2011;

Marguerat et al. 2012), the direct measurement of protein expres-

sion levels is often desirable. For certain aspects, proteomics data

can provide more informative and accurate data, as it reflects the

effects of other important regulatory processes like protein trans-

lation rates and protein stability (Schwanhausser et al. 2011).

Furthermore, proteomics provides unique functional insights in-

cluding post-translational modifications, subcellular localization

information, and identification of interaction partners of proteins.

Due to enormous advances in mass spectrometry instrumen-

tation, biochemical fractionation methods, and computational ap-

proaches, proteomics has matured into a state where the description

of complete proteomes expressed in a specific condition is within

reach. So far, only one study has claimed the identification of a

complete proteome expressed in haploid and diploid baker’s yeast

(de Godoy et al. 2008), while extensive proteome coverage has been

reported for several prokaryotes (Jaffe et al. 2004; Becher et al. 2009;

Malmstrom et al. 2009) and archaea (Giannone et al. 2011). De-

scribing extensive proteome maps under different conditions with

a discovery proteomics approach is an important first step in de-

fining the protein expression landscape for an organism and facil-

itates a subsequent shift away from the discovery mode to a remea-

surement or scoring mode (Kuster et al. 2005; Ahrens et al. 2010).

Due to the lower transcriptome and proteome complexity

compared to eukaryotes, an exhaustive discovery proteomics ap-

proach is particularly amenable for prokaryotes. We describe here

a generic strategy to achieve an essentially complete coverage of

a prokaryotic proteome expressed under specific conditions. Key

elements of the strategy are the parallel extraction of RNA and
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protein from matched samples, and a saturated transcriptome

analysis by RNA-seq (Wang et al. 2009). This in turn allows the

generation of a condition-specific endpoint estimate of the num-

ber of actively transcribed protein-coding genes, which is a more

appropriate estimate than considering all annotated protein-cod-

ing genes. A combination of experimental and computational

strategies is then used to dig very deep into the proteome.

We apply the strategy to two conditions that mimic the

changing environment encountered by Bartonella henselae upon

transfer by its arthropod vector into its mammalian host. The

Gram-negative a-proteobacterium B. henselae is a hemotropic,

zoonotic pathogen that frequently causes cat scratch disease in

immuno-competent humans, as well as bacteraemia, endocarditis,

and vasoproliferative lesions in immuno-compromised patients.

Members of the genus Bartonella are considered re-emerging path-

ogens and are primarily being studied as models for host-pathogen

interaction (Harms and Dehio 2012). A particular emphasis was put

on achieving an extensive coverage of the important membrane

proteome (Savas et al. 2011). Membrane proteins carry out essential

functions as transporters, enzymes, receptors to sense and transmit

signals, and adhesion molecules. In light of the resurgence of

infectious diseases, membrane proteins are, furthermore, prime

candidates for the development of urgently needed novel anti-

infectives (Norrby et al. 2005).

Relying on a very stringent false discovery rate (FDR) cutoff,

we were able to identify 1250 of the 1467 annotated distinct

B. henselae proteins, i.e., a proteome coverage of 85%. Several lines

of evidence indicated that we have exhaustively measured the

expressed proteome and can claim to have identified a complete

membrane proteome. This included expression evidence—to our

knowledge for the first time—for all protein components of a bac-

terial type IV secretion system (T4SS) which spans the inner and

outer bacterial cell membranes.

Results and Discussion

Model system to explore complete proteome coverage

We chose B. henselae as a model system for several reasons: (1) Its

relatively small genome (1.93 Mbp) comprises 1488 predicted

protein-coding genes (Alsmark et al. 2004); (2) it is a facultative in-

tracellular pathogen that can be grown in pure culture; (3) protocols

for subcellular fractionation have been described (Rhomberg et al.

2004); and (4) in vitro conditions that mimic the pH-dependent

induction of virulence genes required for the successful interaction

with host endothelial cells, the likely primary niche for B. henselae

(Harms and Dehio 2012), have been established (Quebatte et al.

2010). The availability of a model system that eliminates the need

for coculture with human endothelial cells is critical to achieve

complete coverage of an expressed proteome.

Our in vitro model system relies on the induction of the

transcription factor BatR (BH00620) that is essential for the path-

ogenicity of B. henselae (Quebatte et al. 2010) (for details, see

Supplemental Methods; Supplemental Tables S1, S2). In the ab-

sence of IPTG (uninduced condition), the batR regulon is not in-

duced, resembling the situation encountered in the arthropod

midgut. In contrast, batR expression is up-regulated in the induced

condition, resulting in a marked induction of the batR regulon,

including the VirB/D4 type IV secretion system (T4SS), which is

required for infection of endothelial cells (Schulein and Dehio

2002). This state mimics the environment encountered by bacteria

in the mammalian host.

A generic strategy for complete proteome coverage
by discovery proteomics

We rely on our previous definition of complete proteome coverage,

i.e., having identified protein expression evidence for the annotated

Figure 1. Overview of the complete expressed proteome discovery workflow. (A) Extraction of RNA and proteins from matched samples, transcriptome
analysis. Total RNA and proteins were extracted in parallel from bacteria grown either under uninduced or induced conditions (schematically shown by
black knobs representing the VirB/D4 T4SS). Protein extracts were subfractionated into cytoplasmic (Cyt), total membrane (TM), inner (IM), and outer
membrane (OM) fractions. To estimate an upper bound for the number of actively transcribed protein-coding genes, the transcriptome was sequenced to
saturation using RNA-seq. (B) Analysis-driven experimentation (ADE). In a first pilot phase, samples are analyzed by LC-MS/MS. Underrepresented pro-
teome areas are identified based on a statistical analysis comparing experimentally identified proteins to all expressed proteins (the estimated RNA-seq
endpoint indicated by the orange dashed line within an error envelope). All distinct annotated proteins are indicated by the black dashed line. Sub-
sequently, these areas are investigated by targeted experiments, aiming to overcome the saturation trend. (C ) Integrative data analysis. Data from the
expressed proteome are integrated with genomic, transcriptomics, orthology, and other information to enable further analyses.
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protein-coding genes actively transcribed in a given state (Ahrens

et al. 2010). A recent proteogenomics study of 46 prokaryotes

indicated that, on average, only 0.4% protein-coding genes were

missed in the original genome annotations (Venter et al. 2011),

justifying our focus on the reference genome. Our strategy to

achieve as complete as possible coverage of the expressed pro-

teome of a prokaryote consists of three stages.

In a first stage, RNA and proteins are extracted from identical

samples, and whole transcriptome libraries are sequenced to satu-

ration by RNA-seq (Fig. 1A). Thereby, the number of protein-coding

genes actively transcribed in a given state can be estimated, shown

here for the sum of protein-coding genes expressed in the unin-

duced and induced condition (orange dashed line, Fig. 1B). Based on

such an optimal endpoint estimate, in a second stage, several pilot

experiments are performed on cytoplasmic and total membrane

fractions of the respective conditions. Following a statistical com-

parison of the pilot phase proteome (green line, Fig. 1B) to the

predicted endpoint, areas of underrepresentation can be targeted by

the analysis-driven experimentation (ADE) feedback-loop strategy

(Brunner et al. 2007), which can help to overcome the premature

saturation of distinct protein identifications and sequence deeper

into the expressed proteome (blue lines, Fig. 1B). In a third stage,

evidence is presented that virtually no biases remain when com-

paring protein parameters of all identified proteins to those called

actively expressed, justifying the claim to have identified a complete

proteome expressed in a specific condition. Analysis of such a data

set is expected to provide novel insights regarding the achievable

membrane proteome coverage, differential protein expression, and

evolutionary conservation and genome structure (Fig. 1C).

Transcriptome exploration by RNA-seq

We relied on RNA-seq (Wang et al. 2009) primarily to generate an

endpoint estimate for the number of expressed protein-coding

genes. Whole transcriptome libraries of two biological replicates

per condition were generated using a protocol that enriches for

mRNA transcripts (see Methods). We sequenced very deep into

the transcriptome and obtained 55–87 million single end 50-mer

reads per sample. Of these, 10.7–26.7 million reads mapped un-

ambiguously, while the vast majority of remaining reads origi-

nated from multiple-copy rRNA genes (see Methods; Supplemental

Table S3). Reads per kilobase per million (RPKM) values (Mortazavi

et al. 2008) showed very high concordance of the biological repli-

cates (r > 0.97) (Supplemental Fig. S1).

To estimate how many protein-coding genes are actively

expressed in the two conditions, we plotted the number of distinct

expressed protein-coding ORFs as a function of the sum of uniquely

mapping reads. We required at least five distinct reads within a

50-nt window of the 59 end to deem a protein-coding gene actively

expressed (Supplemental Fig. S2), a cutoff similar to that used by

Wang et al. (2009). Saturation is characterized graphically through

flattening of the curves as the number of reads increases. Due to the

asymptotic nature of saturation curves, reaching complete cov-

erage is theoretically only possible with infinite effort. Therefore,

we define saturation as the number of discoveries from where,

based on nonlinear modeling and extrapolation, a doubling of

effort is expected to increase the number of discoveries only

marginally. Figure 2A indicates that doubling the number of

reads would increase the number of detected protein-coding

genes by <3.5% for sample uninduced2 and by ;1% for in-

duced2. Therefore, our analysis indicated that the transcriptome

was sequenced to saturation (Fig. 2A). We acknowledge that dif-

ferent library preparations might potentially identify additional

genes and that very low abundance transcripts (and proteins)

expressed in only a few cells of the population may not be

identified with this approach.

We also plotted the density of the RPKM values in order to

assess the distribution of transcription levels for all annotated

protein-coding genes: The resulting bimodal graph suggested that,

under the conditions studied, not all protein-coding genes are

actively expressed; RPKM = 10 might be considered a conservative

lower cutoff (Fig. 2B). The average RPKM values for members of the

virB/D4 operon in condition uninduced2 (30), where the operon is

expected to be expressed at low levels, versus induced2 (160)

support this observation.

Based on the combined thresholds, 1353 protein-coding

genes were expressed in the two conditions (uninduced 1254 and

induced 1349). An inter-replicate analysis revealed >95% overlap

of the expressed protein-coding genes (Supplemental Table S4). We

include an error envelope of 62.5% to account for uncertainty in

the thresholds (Fig. 3A).

Extended proteome coverage strategy: Experimental
and computational approaches

Our experimental strategy to reach very deep into the proteome

relied on four elements: first, we used a combination of subcellular

fractionation and additional biochemical fractionation regimens to

Figure 2. Transcriptome coverage by RNA-seq. (A) Saturated coverage of protein-coding genes. An estimate of the number of actively expressed
protein-coding genes based on the number of uniquely mapped RNA-seq reads is shown for both conditions and biological replicates. (B) Density
distribution of RPKM values. In addition, boxplots representing the expression level of the 11 members of the virB/D4 operon are shown for the uninduced
(black), and induced (red) condition. For clarity, we only show data for the sample pair uninduced2/induced2.
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reduce the overall sample complexity, a measure that had been key

to describing the complete expressed proteome of baker’s yeast (de

Godoy et al. 2008). Second, an exclusion list approach (Kristensen

et al. 2004) was applied, which helped to identify a significant

amount of low-abundance proteins (Supplemental Fig. S5). Third,

we relied on the analysis-driven experimentation feedback-loop

strategy (Fig. 1B; Brunner et al. 2007) to target underrepresented

areas of the proteome and overcome premature saturation. Fi-

nally, for all membrane-derived fractions, we used chymotrypsin

in addition to trypsin, thereby maximizing the per-protein se-

quence coverage and the overall membrane proteome coverage

(Fischer et al. 2006).

In terms of computational approaches, we combined results

from two database search engines, Mascot Percolator (Brosch et al.

2009) and MS-GF+, an updated version of MS-GFDB (Kim et al.

2010; see Methods), which employs the generating function

approach (Kim et al. 2008) to compute statistical significance of

peptide identifications (spectral probabilities). Based on these

spectral probabilities or the target-decoy option, one can esti-

mate and stringently control the FDR rate, a critical step for

a complete proteome discovery project. Otherwise, lower qual-

ity peptide spectrum matches (PSMs) will start to accumulate

false-positive peptide evidence for proteins in a random fashion

(Reiter et al. 2009). In addition, the error propagates and in-

creases from spectra to peptides and proteins (Nesvizhskii 2010);

a PSM level FDR of 1% can correspond to a protein level FDR of 8%–

11% (Balgley et al. 2007). We, therefore, chose a very stringent PSM

FDR cutoff of 0.01%, allowing us to report protein identifications

with an FDR below 1% (see below).

Identification of the complete expressed B. henselae proteome

The induction of batR and virB/D4 T4SS expression was more

pronounced for the sample pair uninduced2/induced2 than for its

biological replicate based on the RNA-seq data. Subcellular frac-

tions from this sample pair (i.e., cytoplasmic [Cyt], total membrane

[TM], inner [IM] and outer membrane [OM] fractions) were thus

analyzed in detail using different biochemical fractionations (see

Methods; Fig. 1A).

We first measured the Cyt and TM fractions of both conditions

using OFFGEL electrophoresis at the protein level (OGEprot). When

requiring at least two independent PSMs to identify a protein, 924

distinct proteins were identified in four experiments, i.e., 63% of all

1467 distinct annotated proteins or 68% 6 2% compared to the

RNA-seq endpoint estimate of 1353 6 34 expressed proteins (Fig.

3A). Analysis of the IM fractions from uninduced and induced

condition (IMu/i) and the OMu/i fractions contributed 130,000 ad-

ditional PSMs (72% more PSMs) but only added 22 previously not

identified proteins (Fig. 3A), indicating that we were already in the

saturation phase. We fitted a saturation curve to the eight OGEprot

experiments, which shows the anticipated trend of further protein

identifications assuming no change in the experimental approach,

and also calculated confidence intervals (see Methods; Fig. 3A).

Carrying out further OGEprot experiments is predicted to lead only

to a handful of new protein identifications.

Instead, we relied on the ADE strategy to break the saturation

trend. We computed several physicochemical parameters for all

distinct B. henselae proteins (see Supplemental Methods). The

statistical comparison of the parameters of 946 proteins identified

Figure 3. Overcoming the saturation of protein identifications using ADE-guided shotgun proteomics. (A) Increase of distinct identified proteins given
the number of PSMs observed in different experiments. We fitted an exponential curve (see Methods) to all experiments for a given biochemical frac-
tionation in order to find a saturation limit (see colored numbers on the right-hand side). We also approximated confidence bands for the fitted points (thin
lines; see Methods). The black dashed line at the top signifies the total number of distinct B. henselae proteins (1467); the orange dashed line below
represents the estimated RNA-seq endpoint of expressed distinct proteins (1353) including a 62.5%-error envelope (orange shaded area). (B) Density
estimates of four physicochemical protein parameters for different protein subsets. The parameter density for proteins newly identified by the ADE
approach is contrasted to that of all expressed proteins (orange) and those identified in pilot experiments using OGEprot (green). The most important
aspects of over- or underrepresentation can be seen on the abscissa; they indicate that the targeted experiments successfully add new protein identifi-
cations in areas of the proteome that were underrepresented in the pilot experiments. For details on the density estimation and the bootstrap confidence
bands (shaded areas), see Supplemental Methods.
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by OGEprot in the pilot phase versus the RNA-seq endpoint esti-

mate of 1353 expressed proteins in both conditions provided evi-

dence for a significant underrepresentation of short, low-abun-

dance, basic, and hydrophobic proteins. These areas of the

proteome were subsequently targeted by specific experimental

approaches (see Supplemental Methods). Underrepresentation

with respect to length was targeted using size exclusion chroma-

tography (gel filtration) (Brunner et al. 2007). These experiments

added 83 new protein identifications compared to the OGEprot

pilot phase (Fig. 3A, blue color). The enrichment for shorter pro-

teins can be appreciated in the upper left panel of Figure 3B. Low-

abundance proteins were targeted using ProteoMiner (Guerrier

et al. 2008; Fonslow et al. 2011). These experiments (Fig. 3A, gray)

helped to identify 42 additional proteins, which were preferen-

tially lower-abundance proteins as evidenced from the density

distribution of their Codon Adaptation Index (CAI) values (Fig. 3B,

upper right panel; Sharp and Li 1987). Basic and membrane-lo-

calized proteins were targeted using OFFGEL electrophoresis at the

peptide level (OGEpep). The 285 proteins newly added by the

OGEpep experiments (Fig. 3A, red) were highly enriched for basic

proteins (Fig. 3B, lower left panel) and membrane proteins (with

a high grand-average hydropathicity [gravy] value) (Fig. 3B, lower

right panel).

Overall, we identified 1250 distinct proteins requiring at

least two PSMs per protein (Supplemental Fig. S3) and only con-

sidering peptides that unambiguously identify one bacterial

protein (Table 1; Qeli and Ahrens 2010), i.e., 85% of the 1467

distinct protein sequences. The FDRs at the PSM, peptide, and

protein level are below 0.01%, 0.1%, and 1%, respectively (Table

1). Only a few among the 1228 proteins identified in the unin-

duced and the 1231 in the induced condition were selectively

expressed (Supplemental Fig. S4); these included several members

of the VirB/D4 T4SS in the induced condition. Compared to the

expressed transcriptome, the proteome coverage reaches 90% for

both the uninduced and induced condition.

Although each experimental and computational approach

contributed unique protein identifications to the final data set (see

Supplemental Fig. S5), for similar studies aiming to maximize

coverage of an expressed proteome with a minimum number of

experiments, we recommend use of subcellular fractionation (Cyt

and TM), and performing OGEpep and measuring each fraction

twice using the exclusion list approach. This approach would

identify 1153 proteins, i.e., 92%, while requiring only 15% of the

mass spectrometry runs needed to identify all 1250 proteins.

Evidence for having reached an expressed proteome endpoint

Several lines of evidence indicated that the 1250 distinct protein

groups are very close to the complete proteome endpoint that is

actively expressed under the investigated conditions.

First, a comparison of the total number of PSM identifications

showed that MS-GF+ added 67% more PSMs than Mascot-Percolator

(Supplemental Fig. S3A). Yet, at the level of distinct peptides, this

increase was smaller (+37%) (Supplemental Fig. S3B) and amounted

to a mere 3%, or 33 additional proteins at the protein level (Sup-

plemental Fig. S3C), despite having added several hundred

thousand additional PSMs. Using a third search engine, Sequest,

would have only added one additional protein for all experimental

spectra. This indicates that, similar to the transcriptome, we have

also measured the expressed proteome to saturation. The expo-

nential model fitted to the eight OGEpep experiments (Fig. 3A)

supports this: Doubling the number of PSMs on OGEpep samples

(roughly 305,000 additional PSMs, i.e., ;36% more PSMs overall)

would only identify five new proteins (red number on top of red

dashed line, Fig. 3A).

Second, our expressed proteome encompassed all proteins

identified in three previous B. henselae proteomics studies

(Rhomberg et al. 2004; Eberhardt et al. 2009; Li et al. 2011), while

adding many more low-abundance proteins (Supplemental Fig.

S6A–C).

Third and most importantly, a comparison of the protein

parameter distributions of the data sets expressed protein-coding

genes (1353) and final expressed proteome (1250) showed that

there is virtually no underrepresentation anymore in those areas of

the proteome that we had specifically targeted; i.e., ADE success-

fully eliminated these differences present in the OGEprot pilot

study (Supplemental Fig. S7). Two examples illustrate this point:

(1) For the parameter isoelectric point (pI), basic proteins are un-

derrepresented in the OGEprot data set. After carrying out the ADE

approach, there is only a small difference between the densities of

the data sets ‘‘final’’ and ‘‘expressed’’ (Supplemental Fig. S7, top

panels); and (2) for the parameter gravy, membrane proteins with

one or more predicted transmembrane domains (gravy values above

0.5) are underrepresented in the OGEprot data set. Again, after the

ADE approach, the densities for the data sets ‘‘expressed’’ and ‘‘final’’

are virtually identical (Supplemental Fig. S7, middle panels). This

comparison also showed that ADE could add proteins encoded by

genes that are expressed at lower levels under the conditions

studied (Supplemental Fig. S7, last panels). Two-dimensional

density plots of the gene expression level versus the parameters

length, pI, and gravy (Supplemental Fig. S8) for the data set final

expressed proteome (1250) versus not seen proteins (217) showed

that there is still a noticeable tendency for short and basic pro-

teins to be enriched among genes with expression levels close to

the threshold whose proteins were not identified (Supplemental

Fig. S8A,B). These are not expected to be detectable with the

shotgun proteomics approach since short and basic proteins have

fewer tryptic peptides in the detectable range of the mass spec-

trometer. In contrast, for the two-dimensional density plot with

the protein parameter gravy (values above 0.5 are found in pro-

teins with transmembrane domains), we observed no bias (Sup-

plemental Fig. S8C), indicative of a complete membrane pro-

teome coverage.

Table 1. Summary of identified PSMs, peptides, and proteins and
estimated FDR levels

No. of PSMs
No. of distinct

peptides
No. of distinct

proteinsa

Class 1a 747,352 43,193 1240
Class 3a 7356 283 10
Class 3b 12,161 663 n.a.
Total B. henselae 766,869 44,139 1250
Decoy hits 54 42 7

Estimated FDR <0.01% <0.1% <1.0%

The total number of PSMs, distinct peptides, and distinct proteins is
shown, further separated by peptide evidence class (Grobei et al. 2009).
We only considered proteins implied by class 1a and 3a peptides, not
those implied by ambiguous class 3b peptides (n.a.).
aProtein groups identified by 3a peptides are unique protein sequences
that can be encoded by two or more distinct gene models. The 1250
experimentally identified proteins are encoded by 1261 gene models; the
217 nonidentified proteins are encoded by 227 gene models (in total:
1467 distinct proteins are encoded by 1488 protein-coding genes).
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To correlate the gene expression level with the proteome

coverage, we binned the protein-coding genes according to gene

expression strength (RPKM values) and plotted for each bin the

respective percentage of proteins identified (Fig. 4). A clear corre-

lation between higher levels of gene expression with a higher

success rate of protein identification can be observed. However,

several proteins of highly expressed genes were not identified:

among 26 such cases from the five top expression bins, 23 had no

conserved ortholog in bartonellae, and 16 were located in a novel,

plastic genome region (see next section).

Integration of genome structure information and evolutionary
conservation

We projected transcriptomic and proteomic evidence, ortholog

predictions, and repeat regions onto the B. henselae genome se-

quence (Fig. 5), which contains a large prophage region and three

major genomic islands (Alsmark et al. 2004). Genes in such ge-

nomic regions are often subject to regulation and become actively

expressed only under specific conditions (Juhas et al. 2009). In-

triguingly, for 109 of the 198 genes that are located in these four

genomic regions, we could not detect any expressed proteins (Fig.

5, fourth ring). This is a significant enrichment, given that only

227 annotated protein-coding genes did not express any protein

(P-value < 10�9) (see Fig. 5).

We next investigated whether the products of evolutionarily

conserved protein-coding genes were enriched or selected against.

In a comparison with B. tribocorum, B. quintana, and B. grahamii,

1093 of the 1488 B. henselae protein-coding genes were predicted to

have an ortholog (Engel et al. 2011), while 395 were not (Fig. 5, third

ring, turquoise bars). We detected significant overrepresentation of

genes lacking an ortholog (187 of 395) among the 227 protein-coding

genes whose proteins were not identified (P-value < 10�9) (Fig. 5).

To extend the evolutionary conservation analysis beyond

members of the genus Bartonella, we relied on the eggNOG re-

source, which contains orthology information from 1133 or-

ganisms, including B. henselae (Powell et al. 2012). Among the 1488

B. henselae proteins, only 55 proteins lack any functional annota-

tion; they are a subset of the 395 without ortholog (black bars, third

ring, Fig. 5). Strikingly, 52 of these 55 were not detected, again

a significant enrichment (P-value < 10�9). A significant number of

the genes (16) encoding these 55 proteins clustered in a region

from 1612–1674 kbp that harbors 59 predicted ORFs (P-value <

10�9) (yellow box, Fig. 5). Location in this plastic, repeat-rich

genome region (orange bars, fourth ring) may lead to strong

transcription of genes that do not represent a bona fide protein-

coding ORF.

The evolutionary conservation information provided by

eggNOG, together with high-quality experimental proteomics

data, represents a particular useful combination to identify can-

didates for overpredicted protein-coding genes in genome anno-

tations: The densities of the protein length distribution of the

proteins not identified (217) were clearly separated from that of the

proteins seen (1250) (Supplemental Fig. S9A). Among the proteins

not seen, those that lack any functional annotation are consider-

ably shorter than those with a functional annotation (Supple-

mental Fig. S9B). Since we can detect short proteins with our set-up

(see density of the 150 shortest proteins detected compared to all,

Supplemental Fig. S9C), the proteins that lack an ortholog and any

functional annotation may either only be expressed under differ-

ent conditions or are potential overpredicted ORFs.

Coverage of the membrane proteome and the VirB/D4 T4SS

The membrane proteome serves many essential roles in cellular

communication, transport, adhesion to host cells, and evasion of

the host immune system. While accounting for up to one third of

the gene products, >50% of the druggable targets fall into this

category (Hopkins and Groom 2002). However, due to the am-

phipathic nature and low abundance of membrane proteins, they

are notoriously underrepresented in proteomics studies (Poetsch

and Wolters 2008; Tan et al. 2008; Helbig et al. 2010).

To reach a high protein sequence coverage for membrane

proteins, we used a combination of trypsin and chymotrypsin in

all membrane samples and, furthermore, applied proteolytic di-

gestion in 60% (v/v) methanol to improve cleavability of hydro-

phobic proteins (Fischer et al. 2006; Supplemental Methods).

Among 924 proteins identified in the first four pilot phase exper-

iments (63% of all distinct proteins), 182 contained predicted

transmembrane domains (54%) (Fig. 6A, left panel). However, the

ADE approach was able to eliminate this underrepresentation of

membrane proteins: among the final 1250 identified proteins

(85% of all distinct annotated proteins), 289 of the 338 distinct

proteins with one or more predicted transmembrane regions were

found, i.e., 86% (Fig. 6A, right panel; Supplemental Fig. S10A). No-

tably, the OGEpep fractionation regimen was particularly successful

in identifying membrane proteins. We also identified 54 of the 58

predicted secreted proteins (95%). These include many proteins for

which PSORTb (Yu et al. 2010) predicts localization in the membrane

space and where other studies could confirm their localization in

inner or outer membrane, periplasm, or the extracellular space

(Supplemental Fig. S10B). Together with the striking result that

transmembrane proteins with high gravy values are not over-

represented among the 217 nonidentified proteins compared to

1250 seen proteins (see Supplemental Fig. S8C), the data sug-

Figure 4. Correlation of gene expression strength and successful pro-
tein identification rate. Protein-coding genes are binned according to
strength of gene expression (the maximum RPKM value of both states).
The success rate in identifying the encoded proteins in each bin is rep-
resented by the blue area of the bars; orange dots above the barplot in-
dicate the respective percentage. The numbers above the bars show how
many proteins were not identified within a given bin (for a total of 217
distinct proteins).
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gested that we have identified a complete membrane proteome

expressed under two specific conditions.

This includes all 11 protein members encoded by the virB/D4

operon in the induced condition (Fig. 6B). To our knowledge, this

is the first complete coverage of this important molecular ma-

chinery spanning both inner and outer membrane by a shotgun

proteomics approach. We also detected all seven Bartonella effector

proteins (Beps), which are secreted by the VirB/D4 T4SS into

eukaryotic host cells (Fig. 6B). In contrast, many proteins of the

Trw complex, a second B. henselae T4SS that is essential for the

infection of erythrocytes (Vayssier-Taussat et al. 2010) but dis-

pensable under the conditions studied, were not detected (nine of

24, 38%) (Fig. 5, first and fifth ring), nor was their expression

regulated (Supplemental Fig. S11).

When we assessed the level of induction at the RNA and

protein level, we observed that the induction of virB/D4 and bep

operons, which are direct targets of the transcriptional regulator

BatR, seemed to be more prominent at the protein level. They

also included more cases with statistical significance of the up-

regulation (Fig. 6B, log2 fold changes, left panel). A comparison

of the log2 fold changes at the RNA level versus those at the

protein level indicated that several of the virB/D4 and bep genes

appear to be regulated preferentially at the post-transcriptional

level, indicated in Figure 6C by their position close to the vertical

axis.

The ability to identify complete membrane proteomes of

prokaryotes has important implications for studying their expres-

sion under different conditions in a quantitative fashion. Ideally,

such a task would be performed with the more sensitive targeted

proteomics approach (Schmidt et al. 2011), which typically re-

lies on predicted proteotypic peptides (PTPs) using tools like

PeptideSieve (Mallick et al. 2007). Our data indicate that a com-

prehensive discovery proteomics approach adds clear value with

respect to experimentally identified PTPs, as we could identify

peptides for 145 proteins for which PeptideSieve predicted no

PTP (see Supplemental Methods). We provide the proteomics and

transcriptomics data with results of several prediction algorithms

(Supplemental Table S5A), and all experimentally identified pep-

tides (Supplemental Table S5B), from which the best-suited PTPs

can be selected using available guidelines (Picotti and Aebersold

2012).

Identification of differentially expressed proteins

Our in-depth proteome analysis precluded the measurement of

biological replicates. We thus relied on DESeq to identify the most

significantly differentially regulated proteins between induced

and uninduced states (see Methods). The top 10% differentially

expressed proteins (Supplemental Table S6), including 68 up-

regulated (red dots), and 57 down-regulated proteins (green dots)

in the induced condition, are highlighted in Figure 7.

Among these 125, 36 transmembrane and 12 secreted pro-

teins were found, a significant enrichment (P-value < 0.0018)

compared to 343 membrane and secreted proteins among the

1250 proteins. A striking feature was the strong regulation of dif-

ferent families of autotransporters, which rely on the type V se-

cretion pathway for their delivery to the surface of Gram-negative

bacteria (Leyton et al. 2012). These included two representatives

Figure 5. Integration of expression evidence with structural genome information and evolutionary conservation. Genes whose proteins were not
identified cluster in specific regions of the B. henselae genome. Outer ring: Genes whose proteins were identified (light blue) or not identified (red). Second
ring: Protein-coding genes classified by the RNA-seq analysis as expressed (gray) or not (dark green). Third ring: Genes without a detectable ortholog
among species of lineage 4 of the genus Bartonella (Engel et al. 2011) (turquoise) and genes without any functional annotation by the eggNOG classi-
fication (black). Fourth ring: Repeat regions identified by RepSeek (orange) (Vallenet et al. 2006) and rRNA repeat regions (light orange). Fifth ring:
Location of a prophage region (ochre), three genomic islands (blue), the virB/D4 and trw operons (sky blue), and a novel genomic region enriched in
repeats as well as highly expressed genes whose encoded proteins were not identified (yellow). The results of hypergeometric tests for selected data sets
are also shown (asterisks indicate statistically significant enrichment; see text). For the hypergeometric test, we used all possible protein-coding genes for
the identified ‘‘seen’’ proteins (1250 distinct proteins encoded by 1261 gene models) and ‘‘not seen’’ proteins (217 distinct proteins encoded by 227 gene
models). The circular plot was generated using DNAPlotter (Carver et al. 2009).
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of the trimeric autotransporter adhesins (BH01490, BH01510), a

class of virulence factors essential for Bartonella pathogenicity

(Franz and Kempf 2011). Furthermore, seven of 10 proteins with

an autotransporter beta domain (as predicted by SMART version 7)

(Letunic et al. 2012) were among the top 10% differentially regu-

lated proteins (six up-regulated, one down-regulated) (yellow

dots, Fig. 7; Supplemental Table S6), i.e., a significant enrichment

(P-value < 4 3 10�7). BH13020, BH13180, and BH13010 were the

top three up-regulated proteins, which ranked even higher than

members of the virB/D4 operon. While less is known about the role

of this family of autotransporters in Bartonella, they were found to

be up-regulated during infection of endothelial cells (Quebatte

et al. 2010) and may be involved in adhesion to host cells (Litwin

et al. 2007). Finally, two of the four outer membrane proteins of the

hemin binding protein family (HbpC and HbpB) were found.

HbpC was shown to protect B. henselae against hemin toxicity and

to play a role during host infection (Roden et al. 2012).

The top 10% regulated proteins included six of the seven Beps

and all VirB/D4 T4SS proteins except VirB3. For this small protein

(103 amino acids) with one predicted transmembrane domain, we

only found four spectra, all in the induced condition. This indicates

that a large experimental effort is required to detect proteins that

combine several parameters which complicate their mass spectro-

metric identification with shotgun proteomics, i.e., they are short,

basic, and hydrophobic. Another protein exclusively identified in

the induced condition is BH13250, a hypothetical protein with

a transmembrane domain (Supplemental Table S6). Its location just

upstream of the virB/D4 operon is conserved in other Bartonella,

suggesting that it may potentially carry out a yet to be determined

function as a virulence factor. Finally, another interesting up-regu-

lated protein is RpoH1 (BH15210), an alternative RNA-polymerase

sigma factor 32. A role in virulence has been documented for its

gene in an in vivo mouse infection model for the closely related

Brucella (Delory et al. 2006).

Figure 6. Membrane proteome coverage and dynamics. (A) Comparison of the membrane proteome coverage achieved in four pilot experiments (left
panel) and the final data set (right panel). Membrane proteins are binned according to the number of predicted transmembrane domains; the percentage
of proteins identified per bin is shown above each bar. The legends summarize the respective coverage achieved comparing the respective data set (pilot
phase/final) against all distinct proteins and for the subset of proteins with transmembrane domains. Membrane proteins are underrepresented in the pilot
phase but not in the final data set. (B) Transcript and protein expression changes of the virB/D4 T4SS and downstream bep operon. Operon structures
(upper panel) are drawn to scale. The lower left panel shows the log2 fold changes at the transcript and protein level for the induced versus uninduced state
(the N indicates that the protein was only identified in the induced condition). Fold changes and significance were calculated with DESeq. Regulation at
the protein level appears to be more pronounced compared to the transcript level. The lower right panel visualizes the protein expression changes upon
induction onto a schematic representation of the assembled VirB/D4 T4SS using different shades of blue. (C ) Comparison of expression changes at
transcript and protein level. The respective log2 fold changes based on the RPKM values and normalized spectral counts are shown. Members of the VirB/
D4 T4SS are shown in blue (BH13360 in light blue), Bartonella effector proteins (Beps) in dark blue. Three proteins that exhibited the most significant
differential expression (Supplemental Table S6; Fig. 7) are also shown with their identifiers.
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Conclusion

Using a discovery proteomics approach, the expressed proteome

of B. henselae was exhaustively studied under two conditions that

mimic those encountered in different hosts. The saturated tran-

scriptome analysis of RNA extracted from matched samples provided

the best possible endpoint estimate for the number of actively tran-

scribed protein-coding genes. ADE was able to virtually eliminate

the biases of commonly underrepresented short, basic, and partic-

ularly lower-abundance and membrane protein classes, all of which

are experimentally tractable. Based on a very stringent FDR at the

PSM level, we identified 85% of all distinct, annotated proteins, and

;90% compared to the expressed protein-coding genes in the two

conditions. Several lines of evidence indicated that this is very close

to all proteins that can be identified by a discovery proteomics ap-

proach with current technology. This is best illustrated by the

complete membrane proteome coverage, including evidence

for all members of the important VirB/D4 T4SS. The analysis of

the genome organization revealed that genes whose transcripts

were detected, but not their corresponding protein products, were

highly enriched in genomic islands. Information regarding evo-

lutionary conservation provided evidence for preferential expres-

sion of genes with a predicted ortholog. In contrast, genes that

lacked an ortholog and functional annotation were mostly not

observed at the protein level, suggesting possible overprediction in

genome annotations.

Our report is the second complete

expressed proteome reported (de Godoy

et al. 2008). Using a similarly extensive

fractionation strategy, our matched tran-

scriptomics and proteomics data corre-

lated quite well (r = 0.57) while identifying

the VirB/D4 T4SS as a prominent target of

post-transcriptional regulation. The rigor-

ous approach to sequence transcriptome

and proteome to saturation and to provide

proof for having eliminated observed bia-

ses at the protein level is unique. It sup-

ports a recent perspective article showing

that up to 90% of an expressed proteome

(‘‘nearly complete’’) can be measured

quite quickly (Mann et al. 2013), but the

remaining 10% require extensive effort.

It also underscores that the difference

between ‘‘comprehensive’’ and ‘‘com-

plete’’ can be quite large, in particular with

respect to coverage of the membrane

proteome (Beck et al. 2011). The higher

coverage of distinct annotated proteins

(85%) compared to the proteome expressed

by haploid and diploid yeast (67%) sug-

gests that prokaryotes express a higher

fraction of the encoded proteins, poten-

tially reflecting their need to quickly

adapt to changing conditions. This frac-

tion may be lower for more complex

prokaryotes.

The data attest to the value of a dis-

covery proteomics approach in providing

experimentally identified PTPs beyond

those predicted in silico. The sensitive

quantitative measurement of such PTPs

by SRM holds particular promise to be able to screen entire bacterial

surfaceomes and to identify targets for novel anti-infectives. Ideally,

such studies would be carried out using in vivo infection models.

Enabled by the consideration of organism-specific peptide in-

formation (Delmotte et al. 2010), they will bring the analysis of

mixed in vivo proteomes within reach and complement the power

of dual RNA-seq (Westermann et al. 2012) for this task. We expect

that the strategy described here will be useful for some of these ex-

citing applications.

Methods

Bacterial growth and subcellular fractionation
The B. henselae strain MQB307 harbors a deletion of the response
regulator batR (BH00620) and its cognate sensor histidine kinase
batS (BH00610) and carries a plasmid-encoded copy of batR under
the control of an IPTG-inducible promoter (for details, see Sup-
plemental Methods; Supplemental Tables S1, S2). MQB307 was
grown on Columbia blood agar (CBA) plates supplemented with
30 mg/L kanamycin with (induced condition) or without (unin-
duced condition) 500 mM IPTG at 35°C and 5% CO2 for 60 h. The
subcellular fractionation was performed as previously described
(Rhomberg et al. 2004; Supplemental Methods). To maximize the
recovery of membrane proteins, the total membrane fraction (TM)
was further separated into inner membrane (IM) and outer mem-
brane (OM) fraction.

Figure 7. Differential protein expression analysis. The log2 fold change of the expression of all ex-
perimentally identified B. henselae proteins in the induced versus uninduced condition is shown against
the mean normalized spectral count (MA plot). The 10% most significant differentially expressed pro-
teins are highlighted, including 68 up-regulated proteins (red dots) and 57 down-regulated proteins
(green dots). Selected regulated proteins are highlighted in different colors: members of the VirB/D4
T4SS (blue dots), Beps (dark blue dots), and several proteins containing autotransporter beta-domains
(yellow dots). Proteins in these categories that rank below the 10% cutoff are shown as open circles.
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RNA extraction and whole transcriptome sequencing

RNA was isolated from bacterial cells as described (Quebatte et al.
2010). Whole transcriptome libraries were produced using the
RiboMinus Bacterial Transcriptome Isolation Kit (Life Technolo-
gies), and the SOLiD Total RNA-seq kit (Applied Biosystems). Briefly,
cDNA libraries were size-selected and amplified for 18 cycles of PCR.
The whole transcriptome library was used for emulsion-PCR based
on a concentration of 0.5 pM. Sequencing beads were pooled and
loaded on a full SOLiD-4 slide; between 55–87 million 50-base se-
quencing reads were generated per library (Supplemental Table S3).
For details, see Supplemental Methods.

RNA-seq data processing and transcriptome coverage analysis

The sequenced reads were mapped to the genome sequence of
the B. henselae Houston-1 strain using the BioScope 1.3.1 mapping
pipeline. Among all uniquely mapping reads, those of lower
quality were removed (for more detail, see Supplemental Methods;
Supplemental Fig. S12). The count data summary for annotated
B. henselae ORFs was generated using the HTSeq package. To create
Figure 2A, the filtered reads were shuffled and sequentially mapped
to the genome; a protein-coding ORF was classified as expressed
when accumulating five or more distinct reads in the 59 end of the
ORF. Based on this data, nonlinear regression models were con-
structed to estimate the effect of doubling the number of reads. For
details, see Supplemental Methods.

Protein and peptide fractionation and mass spectrometry

The subcellular fractions (Cytu/i, TMu/i, IMu/i, OMu/i) were further
fractionated biochemically, including OFFGEL electrophoresis at
the protein (OGEprot) and peptide level (OGEpep), and size ex-
clusion chromatography (SEC, ‘‘gel filtration’’). To enrich for low-
abundance proteins, we used the ProteoMiner approach (Guerrier
et al. 2008). More detail on the biochemical fractionations, digest
conditions, and the mass spectrometry set-up is given in the
Supplemental Methods and in Supplemental Figure S13. Samples
were injected into a NanoLC HPLC system (Eksigent Technolo-
gies) by an autosampler, separated on a self-made reverse-phase
tip column packed with C18 material, and acquired on an LTQ
Orbitrap XL or LTQ FT Ultra mass spectrometer (both Thermo
Scientific).

Database searching and data processing

To minimize the chance for false positive assignments, spectra
were searched against a combined database (1488 B. henselae
proteins, 3336 sheep proteins, a positive control [myc-gfp], and
sequences of 256 common contaminants [keratins, trypsin, etc.])
either with Mascot (version 2.3.0, Matrix Science) or with MS-GF+
(MS-GFDB v7747). For Mascot, data were further post-processed
with Percolator (Brosch et al. 2009). Based on the target-decoy
search approach, a Percolator/MS-GF+ score cutoff was deter-
mined that resulted in an estimated 0.01% FDR at the PSM level.
All PSMs above this cutoff were classified with the PeptideClassifier
software (Qeli and Ahrens 2010), and only peptides (tryptic or
semitryptic) that unambiguously imply one bacterial protein se-
quence were considered (Table 1). For details, see Supplemental
Methods.

ADE analysis

Exponential curves were fitted to each block of experiments with
a shared biochemical fractionation regimen to find a saturation

threshold (Fig. 3A). We then used this fit to predict the saturation
beyond the point of experimentally observed PSMs for each bio-
chemical fractionation regimen (Fig. 3A, dashed lines). For details
on the exponential model, approximating confidence bands,
density estimation of physicochemical parameters, and computa-
tion of physicochemical parameters and other protein sequence
features, see Supplemental Methods.

Statistical analysis

Statistical tests were performed using the statistical software
R 2.15.2 (www.R-project.org). All reported P-values are from hyper-
geometric tests and are adjusted for multiple testing controlling the
corresponding FDR (Benjamini and Hochberg 1995). Significance
is based on an alpha level of 5%.

Transcript and protein abundance estimation

Transcript abundance was estimated via RPKM values calculated
similar to Mortazavi et al. (2008). The sum of mapped and filtered
reads per gene was divided by its length (in kilobases) and the sum
of reads for all B. henselae protein-coding genes (in million reads).
Relative protein abundance (in ppm) (see Supplemental Fig. S6C)
was estimated based on spectral counts as described (Schrimpf et al.
2009).

Orthologs, sequence repeats, and functional protein
classification

Orthologous genes conserved in B. henselae, B. tribocorum, and
B. grahamii were taken from Engel et al. (2011). To find duplicated
regions of 50 nt or longer in the B. henselae genome, we used
RepSeek (version 6.5) (Achaz et al. 2007). For functional protein
classification, we relied on the eggNOG resource (http://eggnog.
embl.de). For details, see Supplemental Methods.

Differential expression analysis

Differential transcript and protein expression analysis was carried
out with the R package DESeq (version 1.6.1) (Anders and Huber
2010). Our description of condition-specific complete expressed
proteomes precluded the analysis of biological replicates. Since
DESeq ranks proteins according to statistical significance, i.e., the
top-ranked proteins are observed by many spectra, we minimized
the potential to erroneously identify differentially expressed pro-
teins by chance. On the other hand, without replicates, we lack the
power to detect lower expressed, truly differentially regulated
proteins.

Data access
RNA-seq data have been submitted to the NCBI Genome Ex-
pression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under the GEO Series accession number GSE44564. Proteomics
data associated with this manuscript can be downloaded from
ProteomeXchange (http://proteomecentral.proteomexchange.
org/) under accession number PXD000153.
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