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Abstract

Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of
renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production cap-
abilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other
‘‘omic’’ approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in
the development of genetically engineered microalgal strains with optimum lipid content. In this review, we sum-
marize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of ‘‘omics’’ in
optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics
resources available to gain a more complete understanding of lipid metabolism across algal species, along with the
recent contributions of ‘‘omic’’ approaches in the metabolic pathway studies for microalgal biofuel production.

Introduction

In recent years, research initiatives on renewable
bioenergy and biofuels have been gaining momentum, not

only due to fast depletion of finite reserves of fossil fuels but
also because of the associated concerns for the environment
and future energy security. Use of biofuels derived from
biomass feedstocks is considered to be promising transport
fuels to substitute petroleum products (Ravindranath et al.,
2011). According to a recent estimate (IEA, 2012) the world
production of biofuels grew from 16 billion liters in 2000 to
more than 100 billion liters in 2011, which accounted for 3% of
the global transport fuels. In the United States between the
period 2009 and 2011, the combined production of two prin-
cipal liquid biofuels viz., ethanol and biodiesel from non-re-
newable sources, registered an increase of over 30% from
11454 to 14915 million gallons (EIA, 2012). Presently, biofuels
contribute about 10 Mtoe (Million Tonnes of Oil Equivalent)
to the European Union road transportation of which 80% is
biodiesel, mostly derived from rapeseed, and the remaining is
bioethanol obtained from wheat, maize, sugarbeet, and sug-
arcane (EASAC, 2012). Global bioethanol and biodiesel pro-
duction are projected to the tune of 180 and 42 billion liters in
2021, respectively. While United States, Brazil, and the Eu-
ropean Union are expected to remain as top producers of

ethanol, the European Union is expected to retain its lead
position as the largest producer as well as consumer of bio-
diesel (OECD-FAO, 2012). Domestic policy incentives aiming
at energy security and reduction of CO2 emission, along with
mandatory blending targets (varying from 5%–20% of the
petroleum fuel) stipulated by many countries are considered
to be the driving forces for future higher demand of biofuels.
Besides, promotion of biofuel programs by several develop-
ing countries to support rural livelihood enhancement pro-
grammes, reclaimation of waste land, and local energy
security are expected to augment the growth of global biofuel
industry. Presently, while much of the first-generation biofuel
feedstock come from agricultural crops such as maize, sug-
arcane, sugarbeet, rapeseed, and oil palm, their large-scale
adoption for biofuel production is perceived to have adverse
impacts on security and agri-biodiversity (Chisti, 2008;
Schenk et al., 2008). On the other hand, second-generation
biofuel, including lignocellulosic biomass derived from agri-
cultural residues, and non-food dedicated energy crops
grown on marginal lands overcome some of the aforemen-
tioned limitations of the first-generation crops (Immerzeel
et al., 2013). However, the technologies for second-generation
biofuels have not fully matured, and despite several suc-
cessful pilot-scale operations, they are yet to be available
commercially (EASAC, 2012).
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In this context, many recent studies have conclusively ad-
vocated the oleaginous fast growing microalgae having
multiple advantages over land plants, as the most promising
alternative feedstocks for the production of third-, and next-
generation biofuels (Chisti, 2007; Lam and Lee, 2012, Mata
et al., 2010) (Fig. 1). Algae can be grown on waste land that is
unsuitable for cultivation and utilize a wide variety of water
sources including waste and saline water, thus mitigating the
problem of competition with agricultural resources. Algae
efficiently recycle carbon-rich flue emissions and are respon-
sible for more than 40% of global carbon fixation. Algal strains
have the potential to accumulate significant amount of neutral
lipids, particularly triacylglycerol (TAG), with a magnitude
higher than that of potential biofuel crops such as soybean,
jatropha, oil palm, and sunflower. In addition to oil accu-
mulation, the rate of microalgal biomass production is quite
high as compared to land plants. Furthermore, the low com-
plexity of the cell structure allows easier engineering of algal
strains for efficient production of biofuel precursors and other
valuable bioactive co-products (Chisti, 2007; Lam and Lee,
2012, Malcata, 2011; Mata et al., 2010; Schenk et al., 2008).

Notwithstanding these many advantages, the relatively
high cost of algal biofuels (US $300–2600 per barrel) compared
to petroleum (US $40–80 per barrel) indicates further im-
provements in technology are required to make it cost-
competitive and commercially scalable (Hannon et al., 2010;
Pienkos and Darzins, 2009; Singh et al., 2011; Wijffels and
Barbosa, 2010). One of the potential solutions to the above
problem is to enhance the lipid production capabilities of
microalgae by inducing nutrition-deficient conditions in or-
der to channel metabolic fluxes towards lipid biosynthesis.
However, several studies have reported that cultivating algal
strains under such controlled stress regimes have resulted in
impeded cell growth with low lipid productivity (Courchesne
et al., 2009). The recent advancements in molecular biology
techniques have led to speculation that lipid accumulation in
microalgae can alternatively be augmented without applying
the aforementioned stress by appropriately modifying their

genomes through genetic engineering (Radakovits et al.,
2010). Significant progress has been made towards the suc-
cessful overexpression or knock-out of genes from oleaginous
microalgal species with high potential for biofuel production
(Courchesne et al., 2009; Hu et al., 2008; Radakovits et al.,
2010). While such efforts demonstrate the feasibility of genetic
engineering in improving algal biofuels, its effectiveness will
be dependent on a deep understanding of the target genes and
metabolic pathways responsible for lipid accumulation in
microalgae (Khozin-Goldberg and Cohen, 2011).

However, compared with to higher plants and other eu-
karyotes, knowledge of lipid biosynthetic pathways in mi-
croalgae remains far from complete (Hu et al., 2008). Access to
multiple microalgal genome sequences now provides a
wealth of opportunities for application of ‘‘omic’’ approaches
to unravel algal lipid metabolism and identify gene targets for
the development of potentially engineered strains with opti-
mized lipid content (Fig. 2) (Beer et al., 2009; Georgianna and
Mayfield, 2012; Mukhopadhyay et al., 2008; Rodriguez-Moya
and Gonzalez, 2010; Yu et al., 2011). The term ‘‘omics’’ in
biological sciences widely encompasses genomics, tran-
scriptomics, proteomics, and metabolomics which refers to
the study of DNA, mRNA, proteins and metabolites, respec-
tively. While ‘‘omics’’ is now indispensable in the search of
novel biomarkers for drug and vaccine development (Hu
et al., 2011; Ozdemir et al., 2011), its application to microalgae
is just beginning to emerge in the last few years. Furthermore,
to date, no review attempt has been undertaken to evaluate
the successful integration of ‘‘omic’’ approaches in algal bio-
fuel research. This review is mainly focused on the role of
‘‘omics’’ in improving the development of sustainable biofuel
production from microalgae. First, a comprehensive overview
of the recent advances in algal genomics is presented, fol-
lowed by a series of bioinformatics resources available for
exploring lipid metabolic pathways in microalgae. Some re-
cent studies employing various ‘‘omic’’ approaches for iden-
tification and characterization of putative genes responsible
for microalgal biofuel production are also discussed.

FIG. 1. Schematic representation of the advantages and limitations of different biofuel
feedstock derived from renewable resources.
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Update on Sequenced Microalgal Genomes

Significant advances in next-generation sequencing tech-
nology have facilitated rapid accumulation of microalgal ge-
nomic sequences along with EST (expressed sequence tag)
and transcriptome data sets (Grossman, 2005; Radakovits
et al., 2010; Tirichine and Bowler, 2011). To date, the whole
genome sequences of more than ten microalgae have been
generated (Guarnieri et al., 2011; Liu and Benning, 2012;)
(Table 1). These includes the Cyanidioschyzon merolae 10D
(Matsuzaki et al., 2004), Phaeodactylum tricornutum CCP1055/1
(Bowler et al., 2008), Thalassiosira pseudonana CCMP1335
(Armbrust et al., 2004), Guillardia theta CCMP2712 (Curtis
et al., 2012), Chlamydomonas reinhardtii CC-503 (Merchant
et al., 2007), Ostreococcus tauri OTH95 (Derelle et al., 2006),
Ostreococcus lucimarinus CCE9901 (Palenik et al., 2007), two
strains of Micromonas pusilla, RCC299 and CCMP1545 (Wor-
den et al., 2009), Bathycoccus prasinos RCC1105 (Moreau et al.,
2012), Volvox carteri UTEX2908 (Prochnik et al., 2010), Chlorella
vulgaris NC64A (Blanc et al., 2010), Coccomyxa subellipsoidea

C-169 (Blanc et al., 2012), Ectocarpus siliculosus EC32 (Cock
et al., 2010), Aureococcus anophagefferens CCMP1984 (Gobler
et al., 2011), Nannochloropsis gaditana (Radakovits et al.,
2012), and Bigelowiella natans CCMP2755(Curtis et al., 2012).
Other algal genomes in the sequencing pipeline are Os-
treococcus sp RCC809, Botryococcus braunii Berkeley strain,
Dunaliella salina CCAP19/18, Galdieria sulphuraria, Chondrus
crispus, Fragilariopsis cylindrus CCMP1102, Pseudo-nitzchia
multiseries CLN-47, Emiliana huxleyi CCMP1516 (Radakovits
et al., 2010; Tirichine and Bowler, 2011). Several organelle
(mitochondria or/and plastid) genomes in microalgae have
also been sequenced, including those for D. salina CCAP19/
18 (Smith et al., 2010), Botryococcus braunii (Weiss et al., 2010;
2011), Nephroselmis olivaceae (Turmel et al., 1999), Chaeto-
sphaeridium globosum (Turmel et al., 2002), Mesostigma viride
(Lemieux et al., 2000), Cyanophora paradoxa (Stirewalt et al.,
1995), Cyanidium caldarium (Glockner et al., 2000), Gracilaria
tenuistipitata (Hagopian et al., 2004), Porphyra purpurea (Reith
and Munholland, 1995), and Odontella sinensis (Kowallik
et al., 1995).

FIG. 2. Schematic overview of the ‘‘omic’’ approaches for improved algal biofuel
production.
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In addition to the assembled genomic sequences, a cornu-
copia of ESTs is currently available in public databases to
explore the functional characterization of microalgal genomes
(Table 2). ESTs represent tags of the expressed region of a ge-
nome and are extensively used for identification of protein
coding genes, prediction of gene structure, alternate splicing
analysis, and characterization of putative SNPs (Nagaraj et al.,
2006). There are a number of public resources that store the
sequenced ESTs from various algal species. A recently devel-
oped TBestDB provides complete information on ESTs obtained
from the genomes of Chlamydomonas incerta, Mesostigma viride,
Nephroselmis olivaceae, Cyanophora paradoxa, Glaucocystis nos-
tochinearum, Pavlova lutheri, Isochrysis galbana, and Scenedesmus
obliquus (O’Brien et al., 2007). Another EST database portal
dedicated only for diatom species presently contains 130,000
and 77,000 ESTs (as of November 2008) for P. tricornutum and
T. pseudonana, respectively (Maheswari et al., 2005; 2008). In
addition to these databases, ESTs for several other microalgae
are freely available in the NCBI (National Center for Bio-
technology Information) (http://www.ncbi.nlm.nih.gov/
dbEST) (Archibald et al., 2003; Bachvaroff et al., 2004; Crepi-
neau et al., 2000; Hackett et al., 2005; Henry et al., 2004; Lluisma
and Ragan, 1997; Nikaido et al., 2000; Scala et al., 2002; Wah-
lund et al., 2004; Weber et al., 2004).

It is pertinent to note here that, despite the aforementioned
progress in algal genomics, the rationale for sequencing these
algal strains was not in the context of their lipid synthesis and
hence, there still remains a paucity of biofuel-relevant geno-
mic information (Blankenship, 2010; Rismani-Yazdi et al.,
2011). The recently reported endeavours in algal tran-
scriptome profiling have successfully demonstrated the fea-
sibility of bypassing the bottleneck of genome sequencing and
have improved our understanding of lipid metabolism in
some unsequenced oleaginous microalgal species (Guarnieri
et al., 2011; Rismani-Yazdi et al., 2011). Transcriptomics is an
excellent tool to quantify the relative abundance of mRNA
levels in a single cell or a population of cells. Unlike a genomic
approach, it offers a more exhaustive view of the genes that

are being actively expressed in response to particular envi-
ronmental conditions and thus can be employed to identify
putative gene targets that can be engineered to augment lipid
content in microalgae (Liu and Benning, 2012; Zhang et al.,
2010). In this regard, the first de novo transcriptomics study on
a potential biofuel algal feedstock, D. tertiolecta, revealed a
repertoire of enzymes involved in the biosynthesis and ca-
tabolism of fatty acids, TAG, and starch (Rismani-Yazdi et al.,
2011). Furthermore, the analyses revealed that the re-
constructed metabolic pathways of this particular organism
were similar to C. reinhardtii (Hu et al., 2008; Riekhof et al.,
2005) and higher plants (Durrett et al., 2008), and demon-
strated its inherent genetic ability of linking starch metabo-
lism with ethanol fermentation through the glycolysis
pathway.

Subsequently, the same approach was employed to un-
ravel the TAG biosynthetic pathway in one more un-
sequenced oleaginous microalga, C. variabilis UTEX395
under Nitrogen-replete and -deplete conditions (Guarnieri
et al., 2011). In addition to these studies, a plethora of tran-
scriptome information is readily available for the model
alga, C. reinhardtii under various genetic and physiological
stress (Boyle et al., 2012; Castruita et al., 2011; Fang et al.,
2012; Gonzalez-Ballester et al., 2010; Miller et al., 2010). For
example, Boyle et al. (2012) conducted genome-wide ex-
pression analysis to explore the molecular mechanisms un-
derlying the induction of TAG accumulation in C. reinhardtii.
They identified three vital acyltransferase genes including
DGAT1, DGATT1 and PDAT1 to be likely responsible for
TAG accumulation. Interestingly, they also observed that
following N-deprivation, Chlamydomonas cells switch their
metabolism from converting acetate to glucose into a more
direct incorporation of acetate into fatty acids by down-
regulating glyoxylate cycle activity and gluconeogenesis.
Likewise, Miller et al. (2010) confirmed the direct involve-
ment of NRR1 and PDAT genes in nitrogen assimilation and
TAG accumulation in C. reinhardtii. Taken together, these
analyses corroborate the significance of transcriptome

Table 2. Number of ESTs Available for Various Microalgal Species

Class Organism No of ESTs Reference

Chlorophytes Chlamydomonas incerta 5,124 O’Brien et al., 2007
Mesostigma viride 5,615 O’Brien et al., 2007
Nephroselmis olivaceae 126 O’Brien et al., 2007
Scenedesmus obliquus 6,615 O’Brien et al., 2007
Acetabularia acetabulum 941 Henry et al., 2004

Stramenopiles Laminaria digitata 500 Crepineau et al., 2000
Phaeodactylum tricornutum 130,000 Maheswari et al., 2005; 2008
Thalassiosira pseudonana 77,000 Maheswari et al., 2005; 2008

Rhodophytes Porphyra yezoensis 10,154 Nikaido et al., 2000
Galdieria sulphuraria 5,270 Weber et al., 2004
Gracilaria gracilis 200 Lluisma and Ragan, 1997

Glaucophytes Cyanophora paradoxa 9,867 O’Brien et al., 2007
Glaucocystis nostochinearum 8,475 O’Brien et al., 2007

Haptophytes Emiliania huxleyi 3,000 Wahlund et al., 2004
Pavlova lutheri 7,590 O’Brien et al., 2007
Isochrysis galbana 12,205 O’Brien et al., 2007

Chlorachniophytes Bigelowiella natans 3,472 Archibald et al., 2003
Dinoflagellates Amphidinium carterae 2,143 Bachvaroff et al., 2004

Lingulodinium polyedrum 1,012 Hackett et al., 2005
Alexandrium tamarense 6,723 Hackett et al., 2005
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sequencing as an emerging powerful approach for identifi-
cation of genes responsible for algal biofuel production.

Databases and Other Bioinformatics Resources
for Studying Lipid Metabolic Pathways in Microalgae

The growing compendium of genome sequences for an
increasing number of organisms have resulted in a concomi-
tant need for the development of bioinformatics resources that
will not only serve as a knowledge base of various metabolic
pathways but also facilitate comparative genomic analysis for
functional annotation and interpretation of newly identified
genes at proteomic and metabolic levels. Metabolic pathways
represent a programmed sequence of molecular events un-
derlying a specific biological activity. As discussed earlier,
elucidation of biological pathways, in particular lipid meta-
bolic pathways is useful for genetic engineering efforts di-
rected towards augmenting lipid accumulation in microalgae
(Georgianna and Mayfield, 2012; Khozin-Goldberg and Co-
hen, 2011; Yu et al., 2011). While several such databases spe-
cific for lipid pathway analyses have been constructed for
plants (Beisson et al., 2003; Caspi et al., 2008; Child et al., 2012;
Duvick et al., 2007; Mao et al., 2009; Mekhedov et al., 2000;
Sucaet and Deva, 2011), very few to date are available for the
study of microalgae (Lopez et al., 2011; May et al., 2009). It is
likely that the dearth of algal genomic data as compared to
higher plants has contributed to the present status of limited
pathway databases and web resources. However, integration
of plant lipid pathway databases in comparative genomic
analyses might reveal the homologous enzymes responsible
for lipid biosynthesis and regulation in microalgae (Beisson
et al., 2003; Misra et al., 2012). In this section, we provide a
brief overview of the various databases and bioinformatics
tools with particular reference to explore lipid metabolic
pathways in microalgae, along with few selected plant-spe-
cific databases relevant for microalgal biofuel research.

KEGG (Kyoto Encyclopedia of Genes and Genomes)
(http://www.genome.jp/kegg/) is one of the most widely
used comprehensive resource of metabolic pathways includ-
ing for several organisms (Kanehisa et al., 2010). The database
also provides reference pathways that serve as a framework
for construction of organism-independent biochemical path-
ways from the user input whole genome. To further enrich
the KEGG pathway information, KEGG ortholog prediction
tool is offered to categorize orthologous and paralogous
gene groups from evolutionarily related organisms. Recent
genome-wide studies have employed KEGG pathway data-
base to identify genes and reconstruct major lipid biosynthetic
pathways in various oleaginous microalgal species (Ha-
shimoto et al., 2008; Misra et al., 2012; Rismani-Yazdi et al.,
2011; Smith et al., 2012). MetaCyc (http://metacyc.org) is also
a popular database that contains experimentally verified
metabolic pathway information for more than 600 organisms
including species ranging from lower microorganisms, to
plants and human (Caspi et al., 2008). MetaCyc is also suitable
as a reference database to enrich functional characterization of
newly sequenced algal putative genes involved in lipid bio-
synthesis.

ChlamyCyc is the only available algae-specific web-based
database (http://chlamycyc.mpimp-golm.mpg.de), specialized
for the comprehensive analyses of metabolic pathways and
fundamental cellular processes in C. reinhardtii (May et al.,

2009). It was developed as a part of the GoFORSYS (German
Systems Biology research initiative) (http://www.goforsys.de)
project and currently provides curated experimental informa-
tion on a total of 253 pathways, 2851 enzymes, 1419 enzymatic
reactions, 1416 compounds, and 928 literature citations. The
web-portal also houses the known and predicted biochemical
pathways from other widely recognized pathway databases
such as PlantGDB (Duvick et al., 2007), PlnTFDB (Riano-Pachon
et al., 2007), Quantprime (Arvidsson et al., 2008), ProMEX
(Hummel et al., 2007), and MapMan (Usadel et al., 2005). To
facilitate phylogenomic analyses, Inparanoid (Remm et al.,
2001) and OrthoMCL-DB (Chen et al., 2006) databases are also
integrated into the tool. Further, to contribute towards the
functional annotation of uncharacterized genes and gene
products, a web version of the standard BLAST software (Alt-
schul et al., 1990) is provided within the ChlamyCyc.

Another web-based analysis suite known as Algal Func-
tional Annotation Tool (http://pathways.mcdb.ucla.edu) has
been recently developed for functional annotation of multiple
algal genome sequences (Lopez et al., 2011). Currently the tool
provides annotation for C. reinhardtii, the model green mi-
croalgae, with a provision to include additional algal ge-
nomes. Annotation includes assigning pathways, ontology,
and protein family terms to the predicted proteins by inte-
grating several bioinformatics resources including KEGG
(Kanehisa et al., 2010), MetaCyc (Caspi et al., 2008), Pfam
(Finn et al., 2010), Reactome (Matthews et al., 2009), Panther
(Thomas et al., 2003), Gene Ontology (Ashburner et al., 2000),
InterPro (Hunter et al., 2009), MapMan Ontology (Thimm
et al., 2004), and KOG (Tatusov et al., 2003). High-throughput
gene expression data for various environmental conditions is
also provided along with an integrated search tool to identify
the functionally related genes. Additionally, the tool enables
dynamic visualization of genes on KEGG pathway maps.

Although research over the past few years has led to sig-
nificant advancement in our understanding of lipid metabo-
lism in higher plants, much remains to be learned about these
processes in microalgae. Nevertheless, as the core metabolic
pathways are presumed to be conserved in microalgae and
higher plant species, particularly in the model plant Arabi-
dopsis thaliana (Hu et al., 2008), the homologous sequences and
the corresponding pathways responsible for lipid accumula-
tion in microalgae can be accurately inferred to the greatest
extent using the metabolic pathway information of plants as
reference. Towards this end, the Arabidopsis Lipid Gene
(ALG) database (http://www.plantbiology.msu.edu/lipids/
genesurvey/index.html) that provides a comprehensive cat-
alog of the Arabidopsis lipid biosynthetic genes will be highly
beneficial (Beisson et al, 2003). The ALG database is an up-
dated version of the previously determined repository of
plant lipid biosynthetic genes (http://www.canr.msu.edu/
lgc) (Mekhedov et al., 2000), and currently includes 600 en-
coded proteins that have been classified according to biologi-
cal function, subcellular localization, and alternate splicing.
The database uses TargetP (Emanuelsson et al., 2000) for
subcellular localization prediction. Additionally, information
of on 3700 ESTs stored in the database will certainly assist in
designing gene silencing or disruption experiments. The po-
tential of ALG database has been successfully demonstrated in
several comparative genomic studies where the putative genes
involved in lipid biosynthesis in Arabidopsis were used to
identify corresponding homologous genes involved in TAG
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biosynthesis in several oleaginous microalgal and plant spe-
cies for biofuel implications (Li et al., 2010; Misra et al., 2012;
Sharma and Chauhan, 2012). Other databases developed to
facilitate genome-wide investigations in plant biofuel feedstock
species are the BFGR (Biofuel Feedstock Genomic Resource)
and pDAWG. BFGR database (http://bfgr.plantbiology.msu
.edu) provides high-quality uniform and integrated functional
annotation of genes as well as transcripts sequences from 54
lignocellulosic biofuel feedstock species (Childs et al., 2012).
pDAWG (http://csbl1.bmb.uga.edu/pDAWG/) is a prototype
of a one-stop shop database that offers complete information on
plant cell wall genes/proteins, notably information related to
phylogenomic, sequence and structure-function (Mao et al.,
2009). Presently the database comprises complete genomes of 7
higher plants and 12 microalgal species, including 6 green algae
(O. lucimarinus, O. tauri, C. reinhardtii, V. carteri, M. pusilla strain
CCMP1545, and M. pusilla strain RCC299), 2 diatoms (T. pseu-
donana and P. tricornutum), 2 Stramenopiles (Phytophthora ra-
morum and P. sojae), brown tide algae (A. anophagefferens), and
red algae (C. merolae). The above databases, although designed
to expedite the process of functional annotation of genes puta-
tively involved in plant lipid biosynthesis, additionally provide
a platform for performing comparative genomic analyses in
order to identify corresponding homologous genes of algal lipid
metabolism. Further, they also serve as ideal templates to de-
velop and enrich the relatively less explored algae lipid path-
way databases and web resources.

Recent Application of ‘‘Omics’’ to Identify Genes
and Metabolic Pathways Involved in Microalgal
Biofuel Production

The global synthesis pathway of TAG begins with the basic
fatty acid precursor, acetyl-CoA, and continues through fatty
acid biosynthesis, complex lipid assembly, and saturated fatty
acid modification processes until TAG bodies are finally

formed. A simplified overview of TAG biosynthetic pathway
is shown as Figure 3. Acetyl-CoA carboxylase (ACC) is the
initial rate-limiting enzyme that catalyzes carboxylation of
acetyl-CoA to produce malonyl-CoA in both eukaryotes and
prokaryotes (Sasaki and Nagano, 2004). Two physically dis-
tinct types of ACC enzymes have been reported to occur in
nature. Plastidic heteromeric ACC composed of four subunits,
including biotin carboxyl carrier protein (BCCP), biotin car-
boxylase (BC), and a, b monomers of carboxyltransferase
(CT), is common among prokaryotes. In contrast, the eu-
karyotic cytosolic homomeric ACC is composed of a single
polypeptide with each of these subunits functioning as dis-
tinct domains (Cronan and Waldrop, 2002; Huerlimann and
Heimann, 2012). Once malonyl-CoA is synthesized, the mal-
onyl group is transferred by malonyl-CoA:ACP transacylase
to the acyl carrier protein (ACP) of the fatty acid synthase
(FAS) multienzyme complex in order to form malonyl-ACP.
Fatty acid biosynthesis is catalyzed by two types of FAS. The
type I FAS as found in vertebrates, yeast, and some bacteria
contain all the active sites on one or two multifunctional
polypeptide, and in type II FAS of many bacteria and plants,
the active site resides in discrete gene products. The b-ketoa-
cyl-ACP synthase (KAS) components of the type II FAS en-
zyme complex carry out the condensation steps of the process.
FabH (KAS III) catalyzes the first elongation step of fatty acid
biosynthetic process using acetyl-CoA and malonyl-ACP as
substrates to produce acetoacetyl-ACP. The cycle is com-
pleted by the sequential action of b-ketoacyl-ACP reductase
(KAR), b-hydroxyacyl-ACP dehydratases (HAD), and enoyl-
ACP reductase (ENR) to form acyl-ACP. The subsequent two
carbon condensation steps are further carried over by FabB
(KAS I) and FabF (KAS II), producing palmitic (C16:0) or a
stearic acid (C18:0) as the final products (Gonzalez-Mellado
et al., 2010; Li et al., 2009).

Completion of the de novo fatty acid synthesis is accom-
plished in one of three ways. Either the newly synthesized

FIG. 3. Schematic overview of triacylglycerol biosynthetic pathway in microalgae.
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fatty acid is hydrolyzed by fatty acyl-ACP thioesterase (FAT)
enzymes, further modified by desaturases, or directly trans-
ferred to complex lipid formation using plastid acyl-
transferases (prokaryotic lipid pathway). Free fatty acids thus
produced from plastid eventually enters smooth endoplasmic
reticulum (ER) for further elongation, modification, or par-
ticipation in the synthesis of membrane lipids or storage
TAGs (eukaryotic lipid pathway). TAG biosynthetic pathway
involves sequential esterification of glycerol chain by a class of
acyltransferases. The initial esterification at the sn-1 position
of glycerol-3-phosphate is catalyzed by glycerol-3-phosphate
acyltransferases (GPAT), followed by esterification at the sn-2
position by lysophosphatidic acid acyltransferase (LPAT) to
form phosphatidic acid, subsequently dephosphorylated by
phosphatidic acid phosphatase (PAP), and finally esterifica-
tion at the sn-3 position by diacylglycerol acyltransferase
(DGAT) to form TAG (for an extensive review of plant and
microalgal lipid biosynthesis, refer to Courchesne et al., 2009;
Hu et al., 2008; Ohlrogge and Browse, 1995).

The use of high-throughput methods to evaluate gene ex-
pression and availability of whole genome sequences in
public domain has immensely facilitated characterization of
genes and enzymes underpinning various crucial metabolic
pathways of microalgae. However, the current understanding
of the underlying molecular mechanisms responsible for lipid
accumulation in microalgae is yet inadequate as compared to
higher plants (Hu et al., 2008).

Systems biology represents the ultimate approach for a
thorough understanding of metabolic pathways by harmoni-
ously integrating the various ‘‘omic’’ platforms. Instead of
focusing on individual genes, proteins, or metabolites one at a
time, it takes into account the interconnections between these
elements during regulation of a biological activity (Rodriguez-
Moya and Gonzalez, 2010). Recently, several studies have
successfully implemented ‘‘omic’’ approaches in parallel to
identify the differently expressed genes and enzymes under-
pinning the metabolic pathways that are likely to be involved
in algal lipid accumulation (Table 3). These genes and gene
products represent the most potential targets for metabolic
pathway reconstruction in order to develop engineered mi-
croorganisms with desired fuel-grade properties (Guarnieri
et al., 2011; Lei et al., 2012; Misra et al., 2012; Nguyen et al.,
2011; Radakovits et al., 2012; Riekhof et al., 2005; Rismani-
Yazdi et al., 2011; Smith et al., 2012; Valenzuela et al., 2012).

Despite these commendable efforts, it is important to note
that many of these studies were focused on the model or-
ganism C. reinhardtii or on single algal strains that are not
potential biofuel feedstock (Fan et al., 2011). Thus, species
representing different clades will probably have to be further
explored in order to gain a comprehensive understanding of
microalgal lipid metabolism. In addition, comparative ge-
nome-wide analyses of algal species showing variations in
their fatty acid composition and accumulation will unveil the
target genes and underpinning evolutionary processes re-
sponsible for the different phenotypes. Furthermore, a com-
parative analysis of lipid biosynthetic pathways in microalgae
and higher plants is another promising area that is relatively
underexploited. Although the core fundamental pathways
are found to be largely conserved, recent molecular and bio-
chemical studies have reported striking dissimilarities re-
garding the biosynthetic origin of TAG between microalgae
and plants (Fan et al., 2011; Liu and Benning, 2012). In view of

these observations, genome data of microalgae is beginning to
be mined using phylogenomics approach to determine the
variation in gene contents and differential subcellular locali-
zation of TAG synthesis between algal species and higher
plants such as Arabidopsis, thereby resolving several funda-
mental questions on algal evolution (Misra et al., 2012; 2013;
Sato and Moriyama, 2007).

The ever increasing accumulation of genomic data has
changed our perspective of the complexity of pathways in-
volved in microalgal biofuel precursor production. Although
the TAG biosynthetic pathway still appears to be the principal
lipid metabolic process, it is now clear that other carbon fix-
ation pathways such as autophagy comes into play and
eventually signifies alternative pathways for lipid accumula-
tion. Whereas considerable information is available on pro-
cesses involving metabolic fluxes towards lipid accumulation,
less is known about the autophagy genes and corresponding
enzymes responsible for carbon fixation in microalgae. Only
one such analysis has been recently performed for a green
microalga, Chlorella ( Jiang et al., 2012). Hence, a thorough
knowledge of these additional routes and their precise role in
biofuel precursor production will be useful.

The majority of the omic-based studies undertaken so far
have primarily addressed identification of gene targets for
improving lipid production in microalgae Now it is apparent
that modification of the fatty acid profile to include more
stearic acid (C18:0) and oleic acid (C18:1) is also indispensable
for improving the algal-derived biofuel properties (Knothe,
2009). As a fundamental step in their direction, in silico studies
aimed at prediction of candidate genes whose combination
determines the inherent fatty ester composition of microalgae
has been reported (Chi et al., 2008; Hashimoto et al., 2008).
These studies conclusively highlight the potential utility of the
emerging ‘‘omic’’ approaches in providing greater insights
into genome structure and lipid metabolism of various mi-
croalgal species.

Conclusion

A comprehensive understanding of metabolic pathways
that direct carbon flux towards lipid accumulation is central
in establishing genetic engineering strategies for optimizing
biofuel production in microalgae. Several recent studies have
employed omic-based approaches to unravel the funda-
mental genetic and cellular processes involved in the syn-
thesis of biofuel precursors from diverse species of algae.
Despite these efforts, several challenges still remain to be
addressed to make algal-derived fuels cost-competitive with
petroleum. For instance, a majority of the genomic studies
has been reported for microalgal species of low oil content,
particularly for the model microalga C. reinhardtii. This is
perhaps due to the paucity of biofuel-relevant genomic data
for other oleaginous microalgae. Therefore, access to more
algal genomes is required to facilitate identification of
novel genes and gene products in the metabolic pathways
that could be appropriately harnessed for optimum biofuel
production. Undoubtedly, with the progress in genome
sequencing and ‘‘omics’’ technologies, appropriate bioin-
formatics resources including databases must also be made
available to organize, visualize, and logically interpret the
large datasets. Integration of complementary ‘‘omic’’ ap-
proaches is envisaged to provide the much needed insights
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into the algal lipid metabolism for making biofuel production
commercially scalable.
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