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Purpose: To present a computer-aided detection tool for identifying, quantifying, and eval-
uating tuberculosis (TB) cavities in the infected lungs from computed tomography (CT)
scans.
Methods: The authors’ proposed method is based on a novel shape-based automated detection al-
gorithm on CT scans followed by a fuzzy connectedness (FC) delineation procedure. In order to
assess interaction between cavities and airways, the authors first roughly identified air-filled struc-
tures (airway, cavities, esophagus, etc.) by thresholding over Hounsfield unit of CT image. Then,
airway and cavity structure detection was conducted within the support vector machine classi-
fication algorithm. Once airway and cavities were detected automatically, the authors extracted
airway tree using a hybrid multiscale approach based on novel affinity relations within the FC
framework and segmented cavities using intensity-based FC algorithm. At final step, the authors
refined airway structures within the local regions of FC with finer control. Cavity segmentation
results were compared to the reference truths provided by expert radiologists and cavity forma-
tion was tracked longitudinally from serial CT scans through shape and volume information auto-
matically determined through the authors’ proposed system. Morphological evolution of the cav-
itary TB were analyzed accordingly with this process. Finally, the authors computed the mini-
mum distance between cavity surface and nearby airway structures by using the linear time dis-
tance transform algorithm to explore potential role of airways in cavity formation and morphological
evolution.
Results: The proposed methodology was qualitatively and quantitatively evaluated on pulmonary
CT images of rabbits experimentally infected with TB, and multiple markers such as cavity volume,
cavity surface area, minimum distance from cavity surface to the nearest bronchial-tree, and lon-
gitudinal change of these markers (namely, morphological evolution of cavities) were determined
precisely. While accuracy of the authors’ cavity detection algorithm was 94.61%, airway detection
part of the proposed methodology showed even higher performance by 99.8%. Dice similarity coef-
ficients for cavitary segmentation experiments were found to be approximately 99.0% with respect
to the reference truths provided by two expert radiologists (blinded to their evaluations). Moreover,
the authors noted that volume derived from the authors’ segmentation method was highly corre-
lated with those provided by the expert radiologists (R2 = 0.99757 and R2 = 0.99496, p < 0.001,
with respect to the observer 1 and observer 2) with an interobserver agreement of 98%. The au-
thors quantitatively confirmed that cavity formation was positioned by the nearby bronchial-tree after
exploring the respective spatial positions based on the minimum distance measurement. In terms of
efficiency, the core algorithms take less than 2 min on a linux machine with 3.47 GHz CPU and 24 GB
memory.
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Conclusion: The authors presented a fully automatic method for cavitary TB detection, quantifica-
tion, and evaluation. The performance of every step of the algorithm was qualitatively and quanti-
tatively assessed. With the proposed method, airways and cavities were automatically detected and
subsequently delineated in high accuracy with heightened efficiency. Furthermore, not only morpho-
logical information of cavities were obtained through the authors’ proposed framework, but their
spatial relation to airways, and longitudinal analysis was also provided to get further insight on cavity
formation in tuberculosis disease. To the authors’ best of knowledge, this is the first study in comput-
erized analysis of cavitary tuberculosis from CT scans. © 2013 American Association of Physicists
in Medicine. [http://dx.doi.org/10.1118/1.4824979]

Key words: cavitary tuberculosis, airway tree, computer aided detection, segmentation, fuzzy
connectedness

1. INTRODUCTION

Tuberculosis (TB), a bacterial disease due to Mycobacterium
tuberculosis, still remains one of the leading causes of mor-
bidity and mortality globally. According to the 2012 WHO
report,1 there were 8.7 × 106 new cases of active TB and 1.4
× 106 deaths related to TB in 2011 alone. In addition, drug-
resistant forms of TB are on the rise and treatment of these
patients is even more challenging.

TB granulomas are the hallmark of human TB, and the
main abnormalities are a progressive extension of inflamma-
tion and necrosis.2 Inflammation of lung tissues can liquefy
and communicate with the airway leading to lung cavitation.3

The process of cavity formation is not well understood, but
cavities contribute to morbidity, mortality, transmission, and
antibiotic failure.4 Patients with cavitary disease have high
mycobacterial burden and are also highly infectious. It is
thought that the cavity is the principal site in which antibiotic
resistance arises.5 Cavities occur in multiple lung pathologies,
but are a useful marker of TB infection for diagnostic and
prognostic purposes.6 While new treatments for TB are be-
ing developed,7 tools needed to monitor patients on TB treat-
ments and to quantify the disease remain limited and anti-
quated, in both preclinical and clinical settings.

In general, quantification of TB disease and cavities is per-
formed by expert radiologists using manual measurements,
often on a 2D plane.8, 9 However, manual analysis is time
consuming and it suffers from limited reproducibility due to
inter- and intraobserver variability. Moreover, extracting spa-
tial information of the cavities, especially with regard to air-
ways is difficult with manual methods. In this study, we hy-
pothesize that this information, the spatial distance between
cavities and airway tree can be helpful to distinguish a cavity
formation from other air- or fluid-filled lung structures with
different disease pathophysiologies. However, identifying air-
ways, particularly in pathological lungs, is an extremely chal-
lenging task due to increased difficulty in separating airway
structures from diseased tissues. As an example, Fig. 1 shows
a typical cavitation from a computed tomography (CT) scan
of a rabbit infected with TB. Red blocks show magnified view
of local regions containing cavities and airways in the second
row. Dashed and solid arrows point to the airways and cavi-
ties, respectively. Note that some cavities (b) and (c) indicate
the coexistence of consolidations. Because of dense distortion

of consolidations, airway identification can be quite challeng-
ing (c). Given these difficulties, a computer-aided detection
and quantification tool is of great importance for reliable and
accurate assessment of lung cavitation in TB and help radiol-
ogists to aid diagnostic process.10

Relevant literature regarding computerized methods for
cavity detection and segmentation is limited to the automatic
or semiautomatic analysis of chest radiography scans.11–13 To
the best of our knowledge, our study is the first attempt to
develop a computer-aided tool for qualitative and quantita-
tive analysis of TB cavities from CT scans. In this paper,
we proposed a novel shape-based airway and cavity detection
method, followed by fuzzy connectedness (FC) image delin-
eation algorithms14 for automatic airway tree extraction and
cavity segmentation. We performed longitudinal evaluation of
TB cavities using volume, surface, and shape information, and
also investigated relative positioning of cavities with respect
to airways, providing a broader analysis platform for clini-
cians.

Figure 2 illustrates the flowchart representation of our pro-
posed methodology. To avoid potential false positives outside
the lungs, we first roughly estimated the lung region from the
original CT images. This procedure was based on conven-
tional CT image thresholding for the lung organ followed by

FIG. 1. Cavitation examples from CT scans. (a) Cavity without surrounding
consolidation; (b) cavity surrounded by consolidation; (c) dense pathologies
with airway and cavities. Airways and cavities are pointed out by dashed and
solid arrows, respectively.
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FIG. 2. Flowchart of the cavity analysis algorithm.

morphological operations as commonly utilized in the clini-
cal settings.15, 16 Although a rough identification of lung re-
gions is often satisfactory for this step, more advanced lung
segmentation algorithms can instead be used. Second, for au-
tomatic cavity and airway detection, a strict threshold was ap-
plied to lung fields to exclude all nonair voxels from lungs.
Then, connected component analysis was performed over the
binary image, forming local groups among which the largest
ones were expected to be either airways or cavities (distinct
in shapes: tree-like vs bulb-like, respectively). Third, a sup-
port vector machine (SVM) classifier was further trained with
cavity and airway structures so that cavity and airway loca-
tions were automatically detected for any given test image and
those regions were used as initial seed locations for initiat-
ing FC based delineation procedure for both airway and cav-
ities. Fourth, while intensity based FC delineation was used
to segment out cavity regions from detected voxel groups us-
ing SVM process, we developed a hybrid approach for airway
tree extraction by combining two well-known airway extrac-
tion techniques in a single segmentation engine: gray-scale
morphological reconstruction17 and multiscale vesselness.18

For this integration, we created a new affinity function for FC
segmentation because airway tree extraction in small animals
is more challenging than human subject due to (i) lower im-
age resolution, (ii) presence of large imaging artifacts, and
(iii) dense pathologies spread over the lungs such as consol-
idations. With the proposed strategy, we improved the final
airway tree with a high sensitivity and a low amount of leak-
age. The details of each step of the proposed framework are
explained in Sec. 2.

2. THEORY AND ALGORITHMS

In this section, we first present the proposed shape-based
method for airway and cavity detection. Then, the basic the-
ory of FC (Ref. 14) is explained in detail, followed by the FC
based cavity segmentation method and airway tree extraction
algorithm with novel affinity relations.

2.A. Shape-based airway and cavity
detection using SVM

Our airway and cavity detection algorithm includes four
steps: (i) preprocessing CT scans to identify candidate air-
way and cavity regions, (ii) refinement of candidate regions
by morphological operations, (iii) feature extraction from re-
fined regions, and (iv) SVM classification based on the ex-
tracted structures. Since cavitary TB presents as air-filled re-
gions with approximately spherical shapes (Fig. 1), in step
(i), we used a strict thresholding method with a Hounsfield
unit (HU) <−950 to indicate air-filled regions. This process
was reliable given that the HU for air is −1000 and this
value is consistent with the observation from the experimen-
tal data. The connected component algorithm was then used
to group the different regions, and morphological closing was
performed next to fill the local holes within each region in
step (ii). By this process, the large air-filled structures within
the lung regions, airway segments, and cavities were approx-
imately identified. In order to further distinguish cavities and
airways from other structures, several shape features were ex-
tracted in step (iii). As illustrated in Fig. 3, several candidate
groups were first formed by thresholding and the connected
component analysis. Note that the esophagus (tube without
branching) running parallel with the airway (1) and a air-filled
region (3), which could be a possible false positive cavity,
were also included at initial step. The latter one may occur if

FIG. 3. Example of the airway and cavity detection algorithm. (a) Roughly
identified candidate groups, generated by thresholding and connected compo-
nent analysis, with bounding boxes. (b) and (c) Two views showing locations
of different structures within the body region. (d) Detected airway (1) and
cavities (2) are rendered. Note that a possible false positive (3) can be seen if
lung segmentation is not conducted as a preprocessing step.
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segmentation of lungs are not conducted prior to computer-
aided detection and quantification system for cavities. An ac-
curate lung segmentation in the preprocessing step can avoid
such false positives.

For the purpose of SVM classification, each connected
binary group g was used to extract the following features:
the volume V (g), eigenvectors and eigenvalues λ1(g), λ2(g),
λ3(g) corresponding to principal axis of g, the smallest bound-
ing box B(g) enclosing the binary group g, and the ori-
ented smallest bounding box along major axis OB(g). We
also used the statistics of B(g) and OB(g) to enhance the
feature vector: volumes VB(g) and VOB(g), lengths lB1(g),
lB2(g), lB3(g) and lOB1(g), lOB2(g), lOB3(g). Finally, we com-
bined all these extracted features in a way to reflect rela-
tive feature resemblance within the same model. For this,
our feature vector was designed to include the features in
the following combination to have a comprehensive cavity
SVM likelihood model: (i) volume ratios V (g)/VB(g) and
V (g)/VOB(g), (ii) bounding box length ratios lB1(g)/lB2(g),
lB1(g)/lB3(g), and lB2(g)/lB3(g), (iii) oriented bounding box ra-
tios lOB1(g)/lOB2(g), lOB1(g)/lOB3(g), and lOB2(g)/lOB3(g),
and (iv) eigenvalue proportions λ1(g)/λ2(g), λ1(g)/λ3(g),
λ2(g)/λ3(g), and λ1(g)/λ2(g)λ3(g) [as λ1(g) ≤ λ2(g) ≤ λ3(g)].
The motivation for using eigenvalues is to include oriented
shape information in the analysis.

After SVM classification,19, 20 the likelihood score of air-
way and cavity candidates from test images were estimated
by assessing their feature vector compatibility with the model
as complied with the mostly used CAD systems.15, 21, 22 Based
on the likelihood scores resulted from SVM, airway (1) and
cavities (2) were distinguished from other structures, and la-
beled accordingly.

2.B. Fuzzy connectedness image segmentation

In the FC framework, a fuzzy topological construct char-
acterizes how voxels of an image hang together to form an
object through a predefined function called affinity.23 Assum-
ing V ⊂ Z3 denotes a 3D cubic grid representing the image
space, where each element of V is called a voxel, a topology
on an image is given in terms of an adjacency relation (μα)
such that the adjacency relation is a binary relation on the
image and determines which pair of voxels are close enough
to be considered connected: μα : V × V → {0, 1}. Theoret-
ically, if voxels p and q are α-adjacent to each other, then
μα(p, q) = 1; otherwise, μα(p, q) = 0. While affinity is in-
tended to be a local relation, a global fuzzy relation, called
fuzzy connectedness, is induced on the image domain by the
affinity functions. This is done by considering all possible
paths between any two voxels, p and q, in the image do-
main, and then assigning a strength of fuzzy connectedness
to each path. The level of the fuzzy connectedness between
any two voxels p and q is considered to be the maximum of
the strengths of all paths between p and q.

An affinity relation κ is the most fundamental measure of
local hanging togetherness of nearby voxels. For a path π ,
which is a sequence of voxels 〈p1, p2, . . . , pl〉 with every two
successive voxels being adjacent, and given the fuzzy affinity

function μκ (pi, pi+1), the strength of the path is defined as the
minimum affinity along the path

μN (π ) = min
1≤i<l

μκ (pi, pi+1). (1)

Using the strength of the path formulation, the strength of
connectedness μK(p, q) between any two voxels p and q is the
strength of the strongest path between them, and formulated
as

μK(p, q) = max
π∈P(p,q)

μN (π ), (2)

where P(p, q) denotes the set of all paths between p and q.
Subsequently, a fuzzy connected object O in an image can
be defined for a predetermined set of seeds S. Since the level
of FC between any two voxels p and q is considered to be
the maximum of the strengths of all paths between them, for
multiple seeds, the fuzzy object membership function for O
or the strength of connectedness of O is defined as follows:

μO(p) = max
s∈S

μK(p, s). (3)

For given κ , S, and an image, an efficient computational
solution for computing μO(p), segmenting O is presented in
Ref. 14. As a last step, the binary segmentation is created by
automatic thresholding over the fuzzy image O from the his-
togram analysis.14 In addition, we presented the FC algorithm
below to make this paper self-contained.

Algorithm Delineation of objects through FC.
Input: Image I, threshold θ < 1, affinity κ defined on the image space
V → {0, 1}, a set of seeds S indicating the object of interest (it comes from
cavity detection algorithm).
Output: Delineated object CS, θ .
Auxiliary Data Structures: A characteristic function g : V → {0, 1} of
CS, θ and a queue Q of voxels.
1: Begin
2: Set g(s) = 1 for all s ∈ S and g(c) = 0 for all c ∈ V\S
3: Push to Q all voxels c ∈ V for which κ(c, s) > θ for some s ∈ S;
4: While Q is not empty Do
5: Remove a voxel c from Q;
6: If g(c) = 0 Then
7: Set g(c) = 1;
8: Push to Q all voxels d ∈ V for which κ(d, c) > θ ;
9: EndIf;
10: EndWhile;
11: Create PS, θ as a set of all voxels c with g(c) = 1;
12: End

In general FC, the most prominent affinities used for
image segmentation so far are (i) adjacency-based μα ,
(ii) homogeneity-based μψ , and (iii) object feature-based μφ

affinities such that fuzzy affinity is defined as

μκ (p, q) =
{

1, if p = q,
μα(p, q)

√
μψ (p, q)μφ(p, q), otherwise,

(4)

where μψ (p, q) captures the homogeneity between p and q,
with a higher value for similar pairs. Object feature-based
affinity μφ(p, q) defines the hanging-togetherness of p and
q in the target object, which is based on the likeliness of their
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feature values with respect to the expected feature distribu-
tion of the target object. The general forms of μψ (p, q) and
μφ(p, q) are

μψ (p, q) = e
− |f (p)−f (q)|2

2σ2
ψ , (5)

μφ(p, q) = min

(
e
− |f (p)−m|2

2σ2
φ , e

− |f (q)−m|2
2σ2

φ

)
, (6)

where σψ and σφ are two different standard deviation param-
eters used for homogeneity and object feature distribution, m
is the mean object feature value, and f denotes the image in-
tensity function: f : V → L ⊂ Z.

2.C. Automatic cavity segmentation

Segmentation for cavity and airway faces different im-
age characteristics. For airway segmentation, due to the weak
boundary and low contrast characteristic of airways in CT im-
age with noise, imaging artifacts, and partial volume effect,
we have chosen FC to combine complementary information
provided by different airway enhancing techniques. For cavity
segmentation on the other hand, since cavities appear homo-
geneous region with well-defined boundaries, it is an easier
problem as compared with airway segmentation that we have
a broader selection of methods. Hence, it is expected that any
region based segmentation algorithms such as region grow-
ing, graph-cut, or random walk can be used for the cavity seg-
mentation. In that sense, FC has been proven in many studies
that it is a robust, accurate, and efficient method; therefore,
FC is well suited for this task, and intensity I(x) information
alone is sufficient for generalized FC segmentation. Further-
more, given the seed points detected by SVM, it is most direct
to segment both airway and cavity under the same FC frame-
work without switching to a different method for cavity seg-
mentation. Hence, we set fcavity(x) = I (x), and the affinity κ

is defined using formulation in Sec. 2.B.

2.D. Image enhancement for airway extraction

Airway extraction is a more challenging task compared to
cavity segmentation. Noise, imaging artifacts, and partial vol-
ume effect can lead the segmentation algorithm to leak into
nonobject territories or failure by breaking the airway wall
boundaries as well as the continuity of the airway structure
within the image. Therefore, image enhancement is often nec-
essary for airway tree extraction because of local intensity
variations. And here, we first applied two methods for image
enhancement for higher accuracy. In pulmonary CT images, it
has been shown previously that airways can be regarded as lo-
cal minima of intensity in a 2D slice I that can be enhanced by
applying grayscale morphological reconstruction,17 and tubu-
lar structures that can be enhanced by multiscale vesselness.18

Therefore, we aim to use these two methods to reduce false
positives and increase accuracy.

Gray-scale morphological reconstruction: The morpho-
logical reconstruction technique enhances airways of different

FIG. 4. The result of grayscale morphological reconstruction (right column)
and vesselness computation (middle column) for a CT scan (left column)
from a rabbit infected with TB.

diameters from the perspective of appearance using a range of
morphological structuring elements (SE) SEn by successive
dilation on the basis four-connected binary SE (i.e., SE0), so
that in the resulting image J, the local minima smaller than
SEn is filled in with a value proportional to the difference be-
tween max and min values within neighborhood SEn. There-
fore, the difference image, i.e., D = J − I, infers potential
airway locations. The algorithm is then completed by com-
bining maximum responses from different SEs. Figure 4 third
column shows typical images with enhanced airways through
gray-scale morphological reconstruction of the original CT
images (shown in the first column); emphasized airways by
this method are shown with red arrows.

Vesselness filtering: Alternative to the gray-scale morpho-
logical reconstruction, the vesselness algorithm is often em-
ployed to improve vascular structure identification and de-
lineation by analyzing the second-order information of a
Gaussian convoluted image (i.e., Hessian).18 This technique
enhances airway structure from the shape perspective. Specif-
ically, eigenvalue decomposition is performed over the Hes-
sian matrix and the resulting ordered eigenvalues, i.e.,
(|λ1| ≤ |λ2| ≤ |λ3|), representing the approximate shape of lo-
cal structure, are examined. The vesselness filter Vσ can con-
ventionally be formulated as

Vσ =
{

0, if λ2 >0 or λ3 >0,(
1 − e

− R2
A

2α2
)
e
− R2

B

2β2
(
1 − e

− S2

2γ 2
)
, otherwise,

(7)

for a bright vessel on dark background. Parameters of the ves-
selness filter are as follows: RA = |λ2|/|λ3|, RB = |λ1|/|λ2λ3|,
and S =

√
λ2

1 + λ2
2 + λ2

3. The vesselness measure above is
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calculated at different scales (σ ) and the maximum response
is achieved at a scale that matches the size of the vessel.
Therefore, by using a multiscale approach, one can cover
a range of vessel widths and find the maximum response
by V = max(Vσ ), σmin ≤ σ ≤ σmax. Moreover, with this tech-
nique, we obtain the vesselness measure as well as the ap-
proximate local vascular structure scale for each voxel in the
image. Second column in Fig. 4 shows the results of vessel-
ness computation for a CT scan of a rabbit infected with TB.
Airway locations determined by this filtering are emphasized
by red arrows.

2.E. A new affinity function definition
for airway tree extraction

In Sec. 2.D, we showed that both vesselness filtering V (x)
and gray-scale morphological reconstruction D(x) can help
identify airway structures and provide continuity of the air-
way boundary. In this section, we propose a new affinity func-
tion based on a novel integration of these methods within a
single FC platform. Since both methods have their unique
strength and drawbacks, and effectiveness of the FC algo-
rithm depends on the choice of the affinity function, we
synergistically integrated these features in addition to the
standard intensity information of the voxels through an ap-
propriate affinity function design. In mathematical notation,
we devise a new feature vector fAirway for a given voxel x as
fAirway(x) = {I (x),D(x), V (x)}.

Let I (x),D(x), V (x) features be represented in the FC
segmentation algorithm with corresponding affinities μI

ψ/φ ,
μD

ψ/φ , and μV
ψ/φ . Once intensity, vesselness, and gray-scale

morphological features are represented with these affinities
successfully, then the segmentation can be conducted pre-
cisely. For this purpose, we revisit the advantages of the fea-
tures I(X), D(x), and V (x): (1) pure intensity information is
reliable often when large airways are extracted, (2) small air-
ways are extracted when gray-scale or vesselness feature are
used. Thus, it is of interest to combine V (x) and D(x) for
small airway analysis. Furthermore, because it is evident that
the local scale information [S(x)], provided by multiscale ves-
selness computation, gives additional control over the size of
airways, one may use S(x) as a binary decision operator to
decide whether it is appropriate to use I(x) or combined D(x)
and V (x). That is, the design of the affinity function can be
derived by S(x) as intensity is reliable only for large airways
while the other two features yield support for smaller ones.
Hence, the three features are further combined in a new affin-
ity function with a weight parameter k as

μFC
ψ/φ =

{
μI

ψ/φ, if S > ST ,

kμI
ψ/φ + (1 − k)

√
μD

ψ/φμV
ψ/φ, otherwise,

(8)

where ST is the threshold, which is useful for determining
large airways, and k is the factor to control the intensity ratio
when compared with the other two features in computing the
final affinity function μFC

ψ/φ . It is expected that intensity plays a
less important role for finer structures, so k can be formulated

as k = S/Smax . Further investigation of the parameter selection
is explained in Sec. 3. Although blurred and soft boundaries
of airways can often cause leakage into neighboring struc-
tures, our proposed multiscale hybrid algorithm adapts the lo-
cal hanging-togetherness principle of the FC to overcome this
difficulty.

2.F. Local refinement of segmentation results
and distance computation

Once cavities and airways were segmented, we performed
a local refinement of the segmentation results with finer con-
trol within the region where cavities met the airways. A lo-
cal ROI was extracted first by roughly identifying the regions
where cavities met airways, and then, FC was initialized with
the already segmented airway as a seed set. Note that, small
airways can be recovered by this local refinement if they are
missed by the global settings of the FC segmentation during
the whole airway tree extraction. The results of the local re-
finement can be seen in Fig. 5, which depicts that local refine-
ment process (b) can find small airways which were missed
in global airway tree extraction (a).

After the final step of the proposed detection and delin-
eation strategy, the relative positioning of airways and cav-
ities, and their morphometric features can be studied quan-
titatively. This quantification may bring certain insights into
cavity evolution, which is rarely studied in the literature and
often based on qualitative measurement of expert radiologists.
Since manual measurements are often based on 2D and do
not fully appreciate 3D structural analysis of two nearby ob-
jects, there is a strong need to compute relative spatial posi-
tion and the shortest distance between these two structures. In
our computational evaluation framework, spatial positions of
the airways and cavities were analyzed through distance trans-
form (DT). We used Maurer’s algorithm24 to achieve this goal
in linear time. In practice, the minimum distance between the
cavity boundary and the airways was automatically found by

FIG. 5. Airway extraction result (a) without and (b) with local refinement.
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finding the minimum value of the DT map within the airways
mask (i.e., extracted airway tree). Sample representations of
this computation are given in Sec. 3.D.

3. RESULTS

In this section, we first present the data acquisition process
for our study. Subsequently, the cavity and airway detection
results are provided. Next, the airway and cavity segmenta-
tion results are presented, and the accuracy of the cavity seg-
mentation algorithm is evaluated in comparison with manual
references provided by two expert observers who have exten-
sive experience with TB.

3.A. Data and imaging

In this study, we constructed small animal models to ex-
plore cavitary TB disease in a longitudinal manner. After in-
jection of the TB, CT images of the rabbits were collected
at multiple time points to observe cavity formation longitu-
dinally. Although CT images usually provide high resolution
structural information of the live subjects, in our experience,
breathing artifacts were much more severe for small animals
than human subjects, limiting the amount of quantitative data
that we could potentially extract from these images. Tech-
niques such as respiratory gating and mechanical ventilation
could be used to reduce respiratory artifact. However, im-
plementation of these techniques requires costly equipment,
which is challenging to safely use and maintain in a BSL-3
environment. (BSL stands for biosafety level. BSL-2 is suit-
able for work involving agents that pose moderate hazards to
personnel and the environment. BSL-3 is applicable to clini-
cal, diagnostic, teaching, research, or production facilities in
which work is done with indigenous or exotic agents, which
may cause serious or potentially lethal disease through the
inhalation route of exposure.25) Therefore, we built a cham-
ber with a simple valve-controlled breathing circuit to control
(i) inspiration and expiration, (ii) pulmonary pressure, and
(iii) regulated anesthetic delivery. With this approach, the
breathing artifacts were significantly reduced. Figure 6 shows
an example CT slice with reduced breathing artifacts (approx-
imately same anatomical slice were chosen to demonstrate the
effect of the breathing artifacts).

We performed serial CT scans on 12 rabbits infected with
M. tuberculosis H37Rv. Image acquisition was utilized in a
Neurologica CereTom eight slice CT scanner. Pressure con-
trolled breath-holding was used to minimize motion artifacts,
and it standardized pulmonary pressures for all scans (i.e.,
baseline and at week’s 3, 4, 5, and 7 postinfection). Nonanes-
thetized scans were performed at weeks 1 and 2 prior to the
development of cavities in this model, in a break-proof sealed
container with HEPA-filtered gas exchange ports. For breath-
hold scans, rabbit anesthesia was induced in BSL-3 environ-
ment using intramuscular ketamine (20 mg/kg) and xylazine
(5–10 mg/kg as required) and rabbits were maintained on 1%
isoflurane in 3 l min−1 of medical Oxygen. The animals were
intubated and transferred to a custom built chamber, in which
all joints were sealed and gas exchange occurs through HEPA

FIG. 6. CT scan and a zoomed region for a rabbit without (a) and with (b) the
breathing controlled mechanism. Breathing artifact was significantly reduced
in (b).

grade filters. Animals were then transported in this sealed
chamber to a BSL-2 environment where CT scanning was
performed. Set pressure breath-holds were achieved by clos-
ing the expiratory loop of the respiratory circuit to allow the
pressure to increase until displacement of a column of water
at the relevant depth was achieved and then we closed the cir-
cuit during acquisition. In total 54 images were generated in
breath-holding condition as six of the rabbits are sacrificed
before week 7. The image size is 512 × 512 × 318 with spac-
ing 0.3 × 0.3 × 0.7 mm.

3.B. Evaluation of airway and cavity detection

As a result of thresholding and connected component
analysis performed on 54 pulmonary CT images, a total of
N = 178 objects were identified. These objects were labeled
as “airway,” “cavity,” or “others” (all identified air-filled re-
gions other than cavities and airways such as esophagus) by
visual inspection of expert observers. Shape feature vectors
were extracted for every identified object. In order to test
the effectiveness of extracted features, we repeated our ex-
periments using a different combination of individual feature
types to select the best set of features that identify cavities in
high accuracy. As stated in Sec. 2.A, shape features were from
four categories: volume based (SubVol), bounding box based
(SubBox), oriented bounding box based (SubOriBox), and
eigenvalue based (SubEigen); therefore, a total of five experi-
ments were performed for a feature ranking test.

After extracting the feature vectors for each object, the data
set was separated randomly by selecting t% of the whole data
set for training purpose and the rest as a testing reference. Us-
ing the training set, a SVM classifier was trained that further
labels the objects in a testing set based on the feature vectors.
The resulting outputs were subsequently compared with ref-
erence truth and the number of false positive cases FPA, FPC

and false negative cases FNA, FNC were calculated for air-
way (“A”) and cavity (“C”), respectively. Consequently, the
accuracy (i.e., �) for a specific sample case at t% was
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FIG. 7. Accuracy of the SVM airway and cavity detection algorithm with
different feature sets.

calculated as

�A = 1 − FPA + FNA

N × (1 − t%)
; �C = 1 − FPC + FNC

N × (1 − t%)
.

(9)

For every t% setting, a bootstrapping approach was employed
to better estimate the accuracy of the proposed SVM sys-
tem at different size of training data. That is, the whole data
set was randomly resampled 100 000 times for a fixed t%,
and the estimation of accuracy at t% was the average of
100 000 repeated experiments. We selected 81 settings for
t = [10, 90] , t ∈ Z and the results are shown in Fig. 7. As
can be seen from the figure that, as expected, the detection
accuracy is consistently higher with more training data, and
the increase is more pronounced at small training sizes. In
the same figure, the effectiveness of different subsets of the
features were illustrated in different colors, and the best per-
formance was achieved when we used full set of features.

Note also that for airway detection, a further constraint
was used to refine the result for airway detection (“airway
refined”). For every 3D chest CT image, it is expected that
among the roughly identified candidate region, one and only

one region should be detected as the main airway structure.
Therefore, for a specific image, the candidate group achiev-
ing the highest score in the SVM system was selected as air-
way, while all others were labeled as nonairway. This pro-
cess greatly promoted the performance of airway detection.
It can be observed that this constraint is especially effective
for the subset “SubVol” of the whole feature set. “SubVol”
represents two features: ratio between volume of candidate
subject and volume of its bounding box, and ratio between
volume of candidate subject and volume of its oriented bound-
ing box. Without reinforcing the single airway rule, these two
features are not strong and stable enough because there can be
multiple regions approximately satisfying the constraints (al-
though not better than the true airway candidate). As shown in
Fig. 7, if 50% of the data are selected as training set and the
other 50% as testing set, the accuracy of airway detection was
found to be 95.7% without constraint, and 99.8% with con-
straint. The accuracy of the cavity detection was obtained as
94.61%. Therefore, it is evident that the automatic algorithm
is capable of capturing cavities from 3D shape information.

3.C. Evaluation of the proposed segmentation
algorithm for airway and cavity delineation

For small animal CTs, since it is subjective and time con-
suming to create ground truth for airway structures, partic-
ipating expert radiologists visually verified the airway seg-
mentation results. Some examples of airway extraction are
given in Fig. 8 for a qualitative inspection. As it can be simply
seen from the figure, the boundary of the cavity and nearby
airway structures were identified successfully. Furthermore,
we tested the proposed airway segmentation algorithm quan-
titatively on publicly available human CT scans (EXACT09
challenge26) and obtained promising results. Based on the
evaluation metric provided by the challenge organizers,26 we
obtained a second best detection rate with a low false positive
rate (<1%). Extended evaluation metrics of the segmentation
challenge and results of the dataset from human CT scans
is outside the scope and aim of this paper. Nevertheless, all
relevant results can be accessed from our recent conference
publication.27

To evaluate the accuracy of our cavity segmentation algo-
rithm, manual delineations provided by two expert observers
(blinded to their evaluations) were used as reference stan-
dards. Figures 9 and 10 show the volume agreement of the
proposed method, compared with reference standards. The

FIG. 8. (a)–(d) Examples for airway and cavity extraction.
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FIG. 9. Quantitative evaluation of cavity segmentation as compared with observer 1.

linear regression lines were found to be y = 1.0301x + 43.273
and y = 1.0109x + 33.52, with a correlation coefficient of R2

= 0.9926 and R2 = 0.9966, respectively. We also computed
the Dice similarity coefficient (DSC) for overlap measure of
segmented objects. In addition, interobserver agreement was
also calculated through DSC. The overall DSC rates for seg-
mentation evaluation and observer agreement are given in
Fig. 11.

Surface area may also have the potential to be used as a re-
liable marker for longitudinal evaluation of cavities; therefore,
it is of interest to compute surface area information accurately
and efficiently. However, its measurement through manual as-
sessment is almost intractable. On the other hand, automatic
surface area computation is relatively simpler once cavities
are segmented. After the cavity boundary was obtained as a

result of the FC delineation, we used Crofton formula28 to es-
timate the surface area. Simply, estimated surface of the cavity
c is

S(c) = 4
∫
L3

χ (c ∩ L)dL ≈ 4
∑

k

wk

ωk

χ (c ∩ Lk), (10)

where S is the computed surface area, L3 is the set of all lines
in the 3D space, and χ is the Euler-Poincare characteristics
and is equal to the number of connected components of the
intersection of c with a line L. The equation above is approx-
imated for discrete cases too, where Lk is the set of 3D dis-
crete lines parallel to the direction k, wk is the discretization
weight associated to 3D direction k, and ωk is the density of
discrete lines in direction k. The details of the surface area
computation and the algorithm are given in Ref. 28. Note that

FIG. 10. Quantitative evaluation of cavity segmentation as compared with observer 2.
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FIG. 11. DSC results for proposed method with regard to manual
segmentations.

all segmentation experiments and computations in this study
were conducted on 3D.

Finally, longitudinal assessment of cavity volumes and sur-
face areas for three example subjects, as qualitatively illus-
trated in Fig. 15, are shown in Fig. 12. Volume and surface
area changes obtained by the proposed methods were illus-
trated, and volume results were compared with manual refer-
ence (left column). As shown, the cavities grow most rapidly
in the first week after formation, then the speed of growth
decreases toward the maximum cavity volume/surface area
(Rabbit I) or starts to shrink (Rabbits H and C). At the final
stage, the air-filled region collapses in some instances. No-
tably, changes in surface area (right column) demonstrate the
same trend as volume change.

Computational cost: With our method, any CT scan with
longitudinal points can be analyzed both qualitatively and
quantitatively within seconds. For airway and cavity detec-
tion using SVM, the trained system takes less than 1 s to pro-
cess a new case. For FC segmentation, our approach takes an
average of 50 s to segment airways and 40 s to segment cav-
ities per scan on a Linux machine with 3.47 GHz CPU and a

FIG. 12. Longitudinal change in cavity volume and surface area for three example subjects.
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24 GB memory. In total, the core algorithms takes less than
2 min. Other computational time involves generating
grayscale reconstruction and vesselness, standard computa-
tional complexity was reported in the literature.18, 29

3.D. Distance between airway and cavity
with radiological interpretations

Figure 13 illustrates the procedure of measuring the min-
imum distance between cavity and airway. Binary regions
defining the cavity (red) and the airway (green) are overlaid
on the DT map of the cavity, and the minimum value of DT
within the airway region is identified. Figure 14 shows how
the distance is measured manually by expert observers. Man-
ual measurement appeared to be less accurate than automatic
computation even if ideal segmentation was provided because
automatic results were measured in 3D with subvoxel accu-
racy but manual measurement was restricted within the 2D
slice plane.

Figure 15 shows the qualitative results for example cases
of four rabbits where the minimum distance between cavities
and the airway is minor (<1 mm, Rabbit D), small (2–3 mm,
Rabbits C and I), and large (14 mm, Rabbit A). Quantitative
longitudinal results for individual rabbits are shown in Fig. 16.
As illustrated, the distance is relatively stable for individual
rabbits.

Figure 17 shows the histogram of minimum distance for all
36 cases with cavitation. It can be noted that three of the cases
had the problem of a missed branch. The minimum distance to
the nearby airways for the rest 33 cases was 1.59 ± 1.07 mm.

FIG. 13. Automated distance measurement. (a), (c), and (e) DT overlaid
by cavity (bulb structure) and airway (tubular structures pointed by arrows)
segmentations from three views; (b), (d), and (f) are magnified display of (a),
(c), and (e) showing the nearest airway location to cavity.

FIG. 14. Manual distance measurements for two images (a) and (b) with
magnified display where the minimum distance is measured.

The result confirms quantitatively that the cavity is closely re-
lated with the bronchial tree. Hence, for most cases (33/36
= 92%) in our study, cavities and airways were shown to be
adjacent with strong/weak connection under small/medium
distances. Nevertheless, a failure happened due to broken con-
tinuity of airways caused by imaging artifacts, and it resulted
in a large distance (Rabbit A). Figure 18 qualitatively illus-
trated the robustness of the method under severe motion ar-
tifacts using rabbit images without the breathing controlled
mechanism. As shown, the proposed method is robust even in
presence of motion artifacts and pathologies (a)–(c), while it
may fail to fully extract the airway structure for some cases
where airway (pointed by solid arrow) appears similar to sur-
rounding tissues (pointed by dashed arrow) in (d)–(f).

4. DISCUSSION

Inarguably, more data will be valuable for further eval-
uation of the performance of our system, as well as better

FIG. 15. Examples for airway extraction. Week 3, 4, 5 for Rabbits C and D;
week 3, 4, 5, 7 for Rabbit I; and week 4 for Rabbit A are shown in the figure.
As illustrated, cavities are within close vicinity for Rabbits C, D, and I; while
it is away from segmented airway for Rabbit A due to broken structure caused
by imaging artifacts.
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FIG. 16. Minimum distance to airway measurements for four rabbits along time. As illustrated, the distance is relatively stable for an individual rabbit while
different between rabbits.

training of the detection system. Moreover, the proposed
method can be used for other cavity formation studies based
on different lung diseases.

One may wonder the feasibility of our proposed system for
human subjects. Differences between images of small animals
and humans are that human CT scans suffer less from mo-
tion artifacts with lower contrast between airway lumen and
surrounding tissues and that the bronchial tree is much more
complex than small animal subjects. It turns out that our algo-
rithm also works on human CT scans by adjusting parameters
for the image. Figure 19 shows a preliminary result on human
CT scan that presents the feasibility of the algorithm for po-
tential applications. In this example, the spatial resolution was
0.8 × 0.8 × 2.5 mm.

Having demonstrated the potential efficacy of such a strat-
egy, one must consider the ethics of studies such as this in
clinical trials: Without treatment, TB carries a mortality of ap-
proximately 50%. Sputum smear microscopy, the most com-
mon method of TB diagnosis, only detects 1/3 of clinical
cases.30 Attempts to generate diagnostic algorithms from mul-
tiple factors including chest x ray have proved fruitless due to
their individual and combined lack of sensitivity.31 Clinicians
are therefore left to make the decision of treatment empiri-
cally, and individuals (many without TB) are often given a
complex drug regimen which carries not only the risk of side
effects (including fatal hepatitis), but also increases popula-

FIG. 17. Histogram of minimum distances between cavity and airway in
36 cases.

tion exposure to antibiotics and the emergence of drug resis-
tance. Cavitary TB, carries a risk of treatment failure of 15%
(the biggest cause for the emergence of MDR and XDR-TB),
against normal rates of approximately 2%.32 In the clinic, the
physician would always be wise to consider the potential risks
of radiation exposure. The potential benefit of CT scanning
as a diagnostic/monitoring tool must be weighed carefully
against radiation risk (a chest CT is equivalent in exposure
to 1 year of background radiation in the United States).33–37

Newer CT scanners and protocols also allow for lower doses
of radiation exposure and continued improvements could al-
low even lower radiation exposure in the future.38, 39 How-
ever, with the impact of undiagnosed TB on global mortal-
ity and the need to improve our knowledge about the efficacy
of novel therapeutic agents, it would seem careful investiga-
tion of this strategy is warranted both for research and clinical
application.

FIG. 18. Airway segmentation under motion artifact on rabbit images with-
out the breathing controlled mechanism. (a) and (d) Two rabbit images under
motion artifacts and blurring with zoomed view shown in (b) and (e). (c)
3D rendering of a successful segmentation showing airway with surrounding
consolidation in (a) and (b). (f) 3D rendering of a broken case where the air-
way structure is not fully extracted as pointed by the yellow arrow due to mo-
tion artifacts and blurring, in which case the appearances of airway (pointed
by solid arrow) and nonairway (pointed by dashed arrow) are similar.
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FIG. 19. Airway and cavity segmentation of a human CT scan.

5. CONCLUSION

In this paper, a system for computerized analysis of cavi-
tary tuberculosis from CT scans was proposed. Specifically,
a novel shape-based cavity detection algorithm integrated
within FC segmentation was developed. Moreover, airway
tree was extracted and delineated using a hybrid multiscale
method based on a novel fuzzy connectedness affinity func-
tion, enabling quantification of the interaction between cav-
itation and the bronchial tree. The proposed methodology is
fully automated and the performance of the proposed method
was qualitatively and quantitatively evaluated on pulmonary
CT images from longitudinal study of rabbits. It was shown
qualitatively and quantitatively that cavities are in the vicinity
of the airway tree and longitudinal change of volume and sur-
face area are indicative of disease progress. As an extension
of this work, we are currently developing a full pipeline for
integrating quantification results from functional images (i.e.,
positron emission tomography) to create a new scope on the
functional characterization of cavities and nearby structures
as a complementary to structural characterization.
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