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Abstract

Neuronal ceroid lipofuscinoses (NCLs; also known collectively as Batten Disease) are a family of autosomal recessive
lysosomal storage disorders. Mutations in as many as 13 genes give rise to ~10 variants of NCL, all with overlapping clinical
symptomatology including visual impairment, motor and cognitive dysfunction, seizures, and premature death. Mutations
in CLNG6 result in both a variant late infantile onset neuronal ceroid lipofuscinosis (vLINCL) as well as an adult-onset form of
the disease called Type A Kufs. CLN6 is a non-glycosylated membrane protein of unknown function localized to the
endoplasmic reticulum (ER). In this study, we perform a detailed characterization of a naturally occurring CIn6 mutant
(CIn6™") mouse line to validate its utility for translational research. We demonstrate that this C/n6™"" mutation leads to
deficits in motor coordination, vision, memory, and learning. Pathologically, we demonstrate loss of neurons within specific
subregions and lamina of the cortex that correlate to behavioral phenotypes. As in other NCL models, this model displays
selective loss of GABAergic interneuron sub-populations in the cortex and the hippocampus with profound, early-onset glial
activation. Finally, we demonstrate a novel deficit in memory and learning, including a dramatic reduction in dendritic spine
density in the cerebral cortex, which suggests a reduction in synaptic strength following disruption in CLN6. Together, these
findings highlight the behavioral and pathological similarities between the CIn6"f mouse model and human NCL patients,
validating this model as a reliable format for screening potential therapeutics.
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Introduction 311 amino acid protein with 7 transmembrane domains [11,13].
CLN6 contains two ER retention signals, one found on the N-
terminal cytoplasmic domain, and the other on the C-terminal
luminal domain [14,15]. This non-glycosylated protein can
homodimerize within the ER, although its precise function there
remains unknown [14]. The most common mutation in CLNG6,
which leads to vLINCL, results from the insertion of an additional
cytosine at base pair 307 in exon 4, leading to a frameshift and
premature stop codon. VLINCL disease onset occurs between 18
months and eight years of age, with symptoms of motor delay,
vision loss, dystharthia, and ataxia followed by premature death
during the second decade of life [16,17].

In vivo NCL models have also been invaluable in dissecting
disease pathologies. For vLINCL, these models include the New
Zealand South Hampshire sheep (OCLNG6) and the Merino sheep
[18,19,20], a mouse model (Cin6"% [21], and a dog model [22].
Pathologically, diseased sheep mirror human patients with severe

The neuronal ceroid lipofuscinoses (NCLs) are a family of fatal
lysosomal storage diseases composed of at least 10 disease variants
(Reviewed in [1,2,3]). These diseases are classically characterized
by accumulation of autofluorescent storage material within cells of
the brain and other tissues and mutations in as many as 13 genes
have been reported to cause NCLs (Reviewed in [3,4,5]; see
http://www.ucl.ac.uk/ncl/mutation.shtml). Although genetically
distinct, this family of disorders shares overlapping disease
symptomatology, including ecarly onset visual deterioration,
declining motor coordination, frequent seizures, mental deterio-
ration, and premature death (Reviewed in [6,7]).

Mutations in CLNG result in both a variant late infantile NCL
(vVLINCL) and adult onset type A Kufs disease (MIM#601780,
www.omim.org; [8,9,10,11], Reviewed in [12]). CLN6 is an
approximately 22.7 kb gene located on chromosome 15q23 [11].
Its 7 exons code for a 2.4 kb mRINA transcript which results in a

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e78694



|| wT
D sk 3 cine™"
p—
500~
g 4004
2
&
S 3004
[}
=3
2
>
5 2004
>
o
E 100
0 e

PLOS ONE | www.plosone.org

Murine Model Exhibits vLINCL Disease Phenotype

Figure 1. Retinal degeneration and vision loss in the CIn6™"
mouse. Cell loss and structural degenerative changes occur in the
retina of CIn6™" mice. (A) Comparison of gross morphological changes
over time in retina of CIn6™" mice and their respective age-matched WT
controls was done to determine mechanism of degeneration. (B)
Micrographs (4X) show a section of one retinal hemisphere. (C) At PO all
layers are present and of equal thickness. By 3 months of age the
CIn6™" retina has begun to narrow and shows a distinct loss of the rods
and cones while the overall cytoarchitecture remains intact. By 9
months the rods and cones are nearly absent and the outer plexiform
layer is virtually nonexistent with the merging of a much thinned outer
and inner nuclear layers. Additionally, there is a distinct narrowing of
the inner plexiform layer. [RC-Rode/Cone layer; ONL-Outer nuclear layer;
OPL-Outer plexiform later; INL-Inner nuclear layer; IPL-Inner plexiform
layer; GCL-Ganglion cell layer]. (D) At 8 months of age, CIn6™" mice
displayed a significant reduction in visual acuity in a visual cliff assay.
Mutant mice were unable to distinguish between a “safe” region of the
visual cliff box versus the “unsafe” cliffed portion, spending equal time
between the two regions. [Mean (in seconds) +/- SEM, n=6-9 mice per
group (**p=0.01)].

doi:10.1371/journal.pone.0078694.g001

cortical atrophy, widespread glial activation, and accumulation of
autofluorescent storage material [18,20,23,24,25,26], as well as
presenting with motor dysfunction, vision loss and seizures [27].
The Cln6™ mouse model, identified at The Jackson Laboratory
(Bar Harbor, ME), develops hind-limb paralysis around 8 months
and dies prematurely around 1 year [21]. These mice displayed
retinal degeneration as early as 6 months of age and intracellular
inclusions were detected as early as 11 days of age, demonstrating
the early onset nature of the disease. Similar to the ovine model,
reactive hypertrophic astrocytes are visible in the cerebral cortex,
hippocampus, thalamus, and brain stem of Cln6"Y mice by 6
months of age [13,21].

In addition to providing valuable insight into disease pathogen-
esis, these i vivo models have also started to provide clues into
CLNG6’s function and in defining what role protein disruption may
plays in disease. For instance, cDNA microarray analysis of CLN6
deficient fibroblasts has suggested involvement of CLN6 in
extracellular matrix modulation, signal transduction pathways,
apoptosis, and immune/inflammatory response pathways [28].
Protein-protein interaction studies have demonstrated binding of
CLNG6 to the collapsin response mediator protein-2 (CRMP-2),
suggesting a role of CLNG6 in axonal transport, elongation or
maintenance [29]. Several recent studies in both mouse and sheep
models have demonstrated that loss of CLNG6 leads to a disruption
in synaptic function and/or levels of essential synaptic proteins
[30,31]. Changes in cholesterol dynamics in CLN6 deficient cells
have hinted a role of this protein in regulating structure and
function of caveolae and lipid rafts, as well as protein sorting
mechanisms [28]. Additionally, loss of CLNG6 leads to disruption of
the autophagy-lysosome degradation pathway [32] and has been
linked to defects in biometals (such as zinc, copper manganese, and
cobalt) homeostasis- both pathologies similar to other neurode-
generative diseases [30,33]. Studying these animal models has also
provided valuable insight into the composition of the storage
material in CLNG6 defective cells — demonstrating the presence of
subunit C of the mitochondrial ATP synthase ([19], reviewed in
[24,34]).

In this study, we validate that Cln6"” mice are an accurate and
reliable model of the human vLINCL, displaying many of the
same pathological changes as patients, including significant
cortical atrophy, massive accumulation of autofluorescent storage
material, microglial and astrocytic activation, and interneuron loss
within the hippocampus and cerebral cortex - all hallmarks of
NCLs. Within the motor cortex, we observed a decrease in
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dendritic spine density on excitatory glutamatergic pyramidal
neurons. We demonstrated that they develop motor and cognitive
dysfunction as well as profound visual impairment. Taken
together, these findings demonstrate the significant value of
Chn6"Y mice as a small mammalian model for vLINCL and future
drug screening.

Methods

1. Ethics statement/Animals

Animal protocols were approved by the Sanford Research/
USD Institutional Animal Care and Use Committee (USDA
License 46-R-0009) with all procedures carried out in strict
accordance with National Institutes of Health guidelines and the
Sanford Research/USD Institutional Animal Care and Use
Committee guidelines. Wild-type (WT) and homozygous Cln6-
mutant mice (Cl6™% on C57BL/6] backgrounds were utilized for
all studies and were housed under identical conditions. For the
studies presented here, only male mice were used. Body weights of
mice were measured and analyzed by two-way ANOVA with
Bonferroni’s post-hoc test. An allelic discrimination assay was
developed for genotyping Ch6™Y DNA from tissue samples
prepared using the Wizard SV Genomic DNA Purification System
(Promega, Madison, WI) and normalized to 5 ng/pl prior to
mixing with 2X ABsolute Blue gPCR mix containing Rox dye at
60 nM, 20X Cl6"Y custom TagMan SNP genotyping assay
(Applied Biosystems, Carlsbad, CA), and DNase free water.
Primer/Probes in the custom Cn6™Y assay were: Forward:
CCCTCATTCTTCACCTCAGCTTATT, Reverse: GATGAA-
AGTGATGATGCTGACATAGACT, WT/FAM reporter: CG-
GTCCCCCCGAACG, and Cln6"Y/VIC reporter: CGGTCCC-
CCCCGAACG. The gqPCR cycle was run at 95°C for 15 min
followed by 40 cycles of 95°C for 15 seconds, and 60°C for 60
seconds.

2. Behavioral assessment

For all behavioral testing, animals were habituated and tested at
the same time each day and housed in a room with a 12 hour
light—dark cycle between testing.

Rotarod testing. An accelerating rotarod (AccuScan instru-
ments) was used to measure motor coordination over time in
Chn6"Y and control mice as previously described [35,36,37]. In
brief, Cln6"Y and WT mice (n = 7-10) were tested at day 14, 28, 90,
and 270 by placing them on the rotarod starting at 0 rotations per
minute (RPM) and accelerating to 30 RPM over a period of 240
seconds. Three consecutive runs for each test trial were averaged
and the latency to fall during the testing period was calculated.
The same cohorts of mice were tracked over time and data were
analyzed by two-way ANOVA with Bonferroni’s post-hoc test.

Visual cliff. The visual cliff was used to assess visual
performance. The apparatus consists of a wooden box with a
plexiglass bottom that is placed halfway over the edge of a table to
create the illusion of a cliff, as previously described [38,39]. A lamp
was lit from underneath the apparatus to emphasize the visual cliff.
Mice were placed in the apparatus, and the time spent over the
visual cliff in a single fifteen minute trial was measured. Data were
analyzed by Student’s t-test and presented as mean £S.E.M.

Pole climb. A standard pole climb test was utilized to assay
motor balance and coordination using standard climb down and
turn down assays [40,41]. Climb down: Mice were placed face-
down at the top of a threaded metal rod (diameter 1.27 cm, height
60 cm). The time for the mice to climb to the bottom of the pole
and place all 4 feet on the ground was measured. Five trials were
performed, with a maximum time of 60 seconds. Turn down: Mice
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Figure 2. Decreased motor coordination deficits in CIn6™"
mice. (A) Rotarod testing was performed on postnatal day 14, 28, 90,
and 270 old WT and CIn6™" mice. Data are plotted as average latency to
fall from the rotating rod during a 240 second trial period (3 trials per
mouse per time point). CIn6"™ mice had a significant reduction in their
ability to remain on the rod as it accelerated, starting at P90 and
continuing at P270. (B-C) At six months of age, no difference was
noted in additional motor performance measures including the time
required to descend in a pole climb test (B) or the mean distance
traveled (in meters) over a 15-min test period in an open field activity
test (C). [Mean +/— SEM, n=6-9 mice per group (**p=0.01,
*%)<0.0001)].

doi:10.1371/journal.pone.0078694.g002

were placed face-up at the top of a threaded metal rod (diameter
1.27 cm, height 60 cm). The time for the mice to turn downward
was measured. Five trials were performed, each with a maximum
time of 60 seconds. Data were analyzed by Student’s t-test.
Open Field Motor Performance. Automated open field
locomotor activity was assayed using a chamber equipped with
infrared photobeams (Stoetling ANY-maze, Wood Dale, IL) to
measure total distance traveled as previously described [42]. In
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Figure 3. A reduction in brain mass and cortical volume seen in
the adult C/n6"" mouse. Brain mass was assessed in the CIn6"", as a
decrease in brain mass is often seen in VLINCL patients. (A) Brain mass
was reduced beginning at 5 months when compared to age matched
controls. (B) Hippocampal and cerebral cortex volume were further
assessed revealing a decrease in cortical volume at 9 months in the
CIn6"™" mouse. (C) No difference in mean body weight is seen between
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adult WT and CIn6™" mice up to 12 months of age. [Mean +/— SEM,
n=3 (*p=0.01, ***p=0.0001) for brain mass (A) and cortical volume
measurements; n=7-12 for body weight measurements]].
doi:10.1371/journal.pone.0078694.g003

brief, 6-month old mice were habituated to the locomotor activity
chamber for one 15-min session. On the following day, locomotor
testing was performed identical to the pre-testing habituation for
15 min. Photobeam breaks were recorded every 50 ms for 30 min
for horizontal, vertical and ambulatory movements. Data were
analyzed by Student’s t-test.

Radial arm. A standard radial arm maze was used to
examine learning and memory [43] using a video tracking and
analysis system (Stoetling ANY-maze, Wood Dale, IL). Mice were
food-deprived 24 hours prior to the start of the radial arm maze,
followed by continuous food restriction throughout the test period.
The mice received a habituation period in which they were placed
in the radial arm maze apparatus for 5 minutes a day for 3
consecutive days, with a sucrose pellet available at the end of each
of the 8 arms. A training period was then performed for 17 days, in
which the mice were placed in the radial arm apparatus for 8 five-
minute trials per training day, and sucrose pellets were placed at
the end of 3 arms (the trained sequence). To evaluate memory,
mice were placed in the apparatus for 8 five-minute trials and
sucrose pellets were placed in the same three arms as for the
training period. The latency to complete the trained sequence by
reaching the end of the 3 arms at least once, and the number of
errors performed (the number of entries into arms that were not
part of the trained sequence) were measured using ANY-maze
software (Stoelting Co., Wood Dale, IL). A learning test was
performed on the subsequent day, in which the ability of the mice
to learn a new 3-arm sequence was evaluated in 8 five-minute
trials. Sucrose pellets were placed at the ends of three arms
different from the originally trained sequence, with the latency to
complete the new sequence and the number of errors measured.
Data were analyzed by Student’s t-test and presented as mean

*S.EM.

3. Histological and stereological characterization

Histological processing. For histological analysis of the
retina, eyes were removed from euthanized WT and mutant mice
at postnatal day 0 (P0O), P90, and P240 and fixed in paraformal-
dehyde. The lenses of the eyes were removed, samples were
dehydrated in graded ethanol, cleared in xylenes, embedded in
paraffin, sectioned at 6 pm and stained with Hematoxylin and
Eosin as described previously [44].

For histological analysis of the brains, age-matched WT and
mutant mice were deeply anaesthetized with sodium pentobarbital
(100 mg/kg) and transcardially perfused with a vascular rinse
(0.8% NaCl in 100 mM NaHPO,) followed by fixation with 4%
paraformaldehyde as previously described [45]. Brains were post-
fixed overnight, cryoprotected in 30% sucrose, and 40 um frozen
coronal sections were collected in cryoprotectant solution [Tris-
buffered saline (ITBS)/30% ethylene glycol/15% sucrose/0.05%
sodium azide].

Nissl staining. To visualize neuronal morphology, every 6 th
section was mounted onto gelatin-chrome alum slides, air dried
and incubated at 60°C in a solution of 0.05% cresyl fast violet and
0.05% acetic acid, differentiated through a graded series of
ethanol before clearing in xylene, and coverslipped.

Histological Analysis. For immunological examination,
Cln6"Y and WT sections were processed as previously described
[44,46]. To survey a variety of phenotypic markers normally
expressed in subpopulations of cortical and hippocampal cells,
adjacent one-in-six series of free floating frozen sections were
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Figure 4. Cortical atrophy limited in CIn6™ mice. Cortical thickness was evaluated in age matched WT and CIn6™" mice. (A) In the S1BF,
thinning begins to appear at 6 months. (B) Thinning in the M1 region is seen at 11 months. (C) Cortical thickness was unchanged in the LEnt (C)
region of the cerebral cortex. (D-E) The S1BF (D) and M1 (E) regions were analyzed for possible laminar specific atrophy. Thinning is seen in lamina V
of the M1 region at 11 months as well as an apparent thickening in lamina IV. Thinning is seen in the S1BF region in lamina VI at 6 months. [Mean +/—

SEM (n=3,*p=0.05, **p=0.01)].
doi:10.1371/journal.pone.0078694.9004

labeled immunohistochemically as previously described [45,47].
The following antibodies were used: anti-parvalbumin; anti-
calretinin; anti-calbindin (all from Swant, Bellinzona, Switzerland),
anti-somatostatin (Peninsula Laboratories, San Carlos, CA), anti-
CD68 (Serotec, Oxford, United Kingdom), and ant-GFAP
(DAKO, Cambridge, UK). Samples were either incubated in
appropriate Alexa-Fluor secondary antibodies (Molecular Probes,
Carlsbad, CA) and DAPI nuclear stain or conjugated with a
Avidin: Biotin enzyme Complex (Vector Labs, Burlingame, CA)
and immunoreactivity visualized by incubation in 0.05% 3,3'-
Diaminobenzidine (DAB) (Sigma, Dorset, UK). Data were
analyzed by one-way ANOVA with Bonferroni’s post-hoc test
and presented as mean =S.E.M.

Storage Material. Visualization of autofluorescent storage
material was performed by capturing confocal images from various
regions of the CNS as described previously [48,49]. All images
were captured using the 543 nm laser and 40X objective on a
Zeiss Pascal LSM 5 microscope (Carl Zeiss Ltd, Welwyn Garden

PLOS ONE | www.plosone.org

City, UK), maintaining a consistent relative relationship between
amplitude offset and detector gain between samples.

Stereology. Unbiased Cavalieri estimates of volume and cell
numbers of the cortex and hippocampus were performed as
previously described [35,36,45,50]. In brief, Nissl stained sections
of age-matched 5 month and 9 month mice were analyzed using
Stereolnvestigator software (Microbrightfield Inc., Williston, VT)
on a Zeiss, Axioskop2 MOT microscope (Carl Zeiss Ltd, Welwyn
Garden City, UK) linked to a DAGE-MTI CCD-100 camera
(DAGE-MTI Inc., Michigan City, IN, USA), with no prior
knowledge of genotype [51]. A sampling grid (250 um? cortex and
200 um® hippocampus) was superimposed over sections and the
number of points covering the relevant areas were counted using a
5X objective. Regional volumes were collected from various
cortical subregions and the hippocampus, and the mean volume of
each region was calculated and analyzed by Student’s t-test and
presented as mean *S.E.M. Cortical thickness measurements
were collected from Nissl stained sections of age-matched 1, 4, 6,

November 2013 | Volume 8 | Issue 11 | e78694
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Figure 5. Decreased dendritic spine density in the mature cortex of CIn6™ mice. Golgi impregnation was used to label dendritic sfpines on
the primary dendrite of excitatory cortical projection neurons in age-matched 2 month controls (A) and CIn6™" (B) mice. (C) The CIn6"" mutant
mouse excitatory pyramidal neurons have reduced spine density. [Mean spine density +/— SEM, n=40 neurons counted per genotype

(***p=0.0001)].
doi:10.1371/journal.pone.0078694.g005

and 11 month mice in motor (M1), somatosensory (S1BF), and
lateral entorhinal (LEnt) regions of cerebral cortex, as previously
described [45]. Measures of laminar thickness were performed in
both primary M1 and primary SI1BF cortex for individual laminae
I, IV (S1BF only), V, and VI, while a combined measurement was
taken for laminae II and III, as previously described [45,47]. Data
were analyzed by Student’s t-test and presented as mean *S.E.M.
Image threshold analysis measurements of 20X micrograph
sections immunostained with astrocyte and microglial specific
antibodies [GFAP (Dako, Cambridge, UK) and CD68 (AbD
Serotec, Kidlington, UK)] were made at various time points
(GFAP at 1, 4, 6 and 11 months; CD68 at 1, 4, and 6 months);
data were analyzed by Student’s t-test and presented as mean
percent immunoreactivity as previously described [45,50,52].
Golgi-Cox staining and dendritic spine analysis. Brains
of age -matched 2 month old WT and mutant mice were
immersed into Golgi-Cox staining solution (7.14 M potassium
dichromate, 7.14 M mercuric chloride, and 5.7 M potassium
chromate) for 2 weeks, followed by 7 days of incubation in 30%
sucrose and sectioning at 75 um. Sections were reacted with 50%
ammonia solution and 1% sodium thiosulfate. Glutamatergic
pyramidal neurons from layers III-VI of the medial (M1/S1BF)
cortex were analyzed for spine density. Dendrites were analyzed if
the length of the dendrite extended 75 um past the soma. Images
were captured on the Nikon Eclipse 901 (Nikon Instruments Inc.,
Melville, NY) microscope and magnified by 60X (plus 2X optical
zoom) with Z-stacks captured at approximately 0.6 um thickness.

PLOS ONE | www.plosone.org

Enhanced depth focus (EDF) images were created and Image]
Mosaic was used to tile EDF images. Spine density measurements
were performed by counting visible spines (Image] Cell Count),
and dividing by length of the dendrite. Area of spine heads and
spine lengths were quantified using Nikon Elements tracing
software (Nikon Instruments Inc., Melville, NY). Data were
analyzed by Student’s t-test and presented as mean spine density
(@ minimum of 40 neurons were counted, three animals were
analyzed per genotype).

Results

Common pathological and behavioral NCL characteristics
observed in the CIn6"" mice

Retinal atrophy and progressive vision loss is a pathological
hallmark of vLINCL patients (reviewed in [6,53,54]). Cln6"Y mice
show a similar progressive loss of cells within the retina. At
postnatal day zero (PO), all layers are present and of equal
thickness (Fig. 1 A). By 3 months the Cn6"Y retina has begun to
narrow and shows a distinct loss in the photoreceptor layer with
both inner and outer nuclear layers showing disorganization (Fig. 1
B). By 9 months there is massive degeneration, with the rods and
cones nearly absent, the outer plexiform layer (OPL) virtually
nonexistent, and a merging of the outer (ONL) and inner nuclear
layers (INL). There is also a distinct narrowing of the inner
plexiform layer (IPL) demonstrating that by 8 months of life, the
retina of the Cln6™ is very severely deteriorated (Fig. 1 C). To
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doi:10.1371/journal.pone.0078694.g006

assay visual performance and acuity, mice were analyzed in a
visual clifl’ paradigm [38,39]. 8 month old Ci6"Y mice were
unable to discriminate between the safe zone and crossing over the
cliff zone, spending equal amounts of time within each compart-
ment (Fig 1 D), demonstrating a significant loss in vision at this
time point.

The NCLs are classified based on the accumulation of
autofluorescent storage material in both the CNS and peripheral
tissues. Cln6"Y mice also display this hallmark with storage
material detected in the cortex [21]. We observed a similar
pattern of accumulation — where at 5 months intracellular
accumulation of storage material was detected in Cln6"Y mice,
which progressed significantly by 9 months (Fig. S1), mirroring the
progressive accumulation seen in human patients.

NCL patients often display severe motor dysfunction with
symptoms presenting in vLINCL patients at approximately 18
months of age and including progressive motor delay, dysarthria,
and ataxia ([10,55], Reviewed in [56]). Here, we examine motor
performance in Cln6"Y mice using several motor performance
assays. I'irst, rotarod testing was used to measure the ability of the
mice to maintain their balance on a spinning rod. At P14 and P28
there is no difference in the latency to fall from the rod (Fig. 2 A).
However, by 3 months there is a dramatic reduction in the ability
of the mice to remain on the rod, indicating motor coordination
and balance deficits. These deficits worsen over time, demonstrat-
ing early onset and progressive motor decline in this animal model
of vLINCL (Fig. 2 A). General motor activity tests were performed
using a standard pole climb and open field activity tests (Fig. 2 C—
D), although no differences were noted at 6 months of age (pole

PLOS ONE | www.plosone.org

climb, p=0.22; open field, p=0.1), suggesting these deficits are
specific to balance and coordination.

Cortical atrophy, specifically in the primary motor (M1) and
somatosensory barrel field (SIBF) cortex, has been widely reported
in NCL animal models [26,47,52,57,58]. Therefore, we next
examined Clz6"Y mice for signs of cortical atrophy and observed a
significant loss of brain mass at 5 months and further decreased by
9 months, while the overall weight of the mice remained
unchanged (Fig. 3 A, C). Atrophy was prominent in the cerebral
cortex, with a reduction in volume seen in the neocortex at 9
months (Fig. 3 B). To discern which subregions of the cerebral
cortex where affected, we measured thickness of the SIBF, M1,
and lateral entorhinal (LEnt) (Fig. 4 A-C) cortex. Cortical atrophy
appeared to be restricted to the SIBF and M1 regions, with an 8%
reduction in SI1BF cortical thickness at 6 months and a 10%
reduction in M1 by 11 months (Fig. 4 A-B).

Neurons within individual cortical laminae are morphologically
unique, projecting axons to specific regions within the CNS and,
thus, cell loss within specific lamina can produce distinct
phenotypes. In Cln6"Y mutant mice, lamina V of the M1 was
decreased by 21% whereas lamina VI within the SIBF was
reduced by 17% (Fig. 4 D-E) while lamina IV (in SIBF) increased
in thickness (Fig. 4 E). These findings demonstrate a selective
disruption within the medial portions of the cerebral cortex,
including the M1 and S1BF, similar to what has been observed in
patients  with  NCLs and  other =~ NCL  models
[26,45,47,52,57,58,59]. This cortical atrophy moved us to next
examine other potential pathological changes that may be
occurring within the cerebral cortex.
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Figure 7. Upregulation of astrocyte marker GFAP in the
thalamus and cerebral cortex of C/n6™" mice. (A) Quantitative
thresholding analysis revealed a significant increase in the expression of
astrocytic markers in the CIn6™" mouse at 4 months in the thalamus.
(B-C) Elevations in astrocytic activation, marked by GFAP labeling,
became apparent in the S1BF region at 4 months and in the V1 region
of the cerebral cortex at 6 months in the CIné"" mouse. [Mean%
immunoreactivity +/— SEM, n=3 (*p=0.05, **p=0.01, ***p=0.0001)].
doi:10.1371/journal.pone.0078694.g007

Deficits in dendritic spine morphology have been implicated in
the pathogenesis of numerous neurological disorders (Reviewed in
[60]). Cortical pyramidal neurons have a single apical dendrite
that extends towards the pial surface of the neocortex before
undergoing extensive branching. Dendrites contain thousands of
spines, sites of post-synaptic connection with other excitatory
neurons and inhibitory interneurons. These spines are relatively
plastic in normal adults. However, as age and neurologic disease
set in, they become vulnerable to morphological changes and
instability that may contribute to memory loss and/or motor
deficits, depending on the region of the brain affected. Previous
NCL animal model studies have revealed defects in synapse
formation and stability [61] as well as a reduction in synaptic
proteins specifically in  Ch6™Y mice [30,31], therefore we
examined the dendritic spine morphology in the synaptic deficient

PLOS ONE | www.plosone.org
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MI and SIBF regions of the Cin6"? cortex. Using Golgi-Cox
impregnation to examine dendritic spines, we observed a
reduction in spine density on primary apical dendrites of
pyramidal neurons of layers III-VI of the medial cerebral cortex
in Cln6"Y mice (Fig. 5 A-C). Further analysis of spine head area
and spine length as well as populations of size ranges revealed no
differences in the morphology of the spines (spine head area
p=0.0748, spine length p=0.9985). These results indicate that
within the medial cortex of Cln6™/ mice, a region encompassing
both the motor/somatosensory cortex, there is a defect in dendritic
spine and synapse formation of the glutamatergic excitatory
pyramidal neurons.

In humans, cortical atrophy and diminished synaptic activity
often correlates with diminished cognitive function. To assay
learning and memory performance, we performed an 8-arm radial
arm maze on 8 month old mice. Mice were habituated and trained
with a set sequence of rewarded arms for 20 days. Memory was
assessed by recording latency, total distance traveled, and number
of errors in completing the assigned test sequence. On the
subsequent day the sequence of rewarded arms was changed and
the latency, distance traveled and numbers of errors to complete
the sequence was measured as an assay for learning [43]. Cln6™Y
mice required a significantly longer amount of time to complete
the test sequence of memory performance (Fig. 6 A). Moreover,
when the testing sequence was altered to measure learning, Cl6™Y
mice had a longer latency to complete the task and traveled a
greater distance (Fig. 6 C—D). These parameters demonstrate that
mutations in Cln6"Y \impair both learning and memory, mimicking
the cognitive deficits seen in human NCL patients.

Astrocytic and microglial activation specific to
subregions of the cerebral cortex

Another pathological hallmark of the NCLs is an early onset,
robust activation of glia activation. To quantify the activation of
astrocytes and microglia, threshold analyses of GFAP (glial
fibrillary acidic protein, astrocytes) and CD68 (microglia) immu-
noreactivity were performed. Levels of GFAP staining were
measured in the SIBF and VI regions of the cerebral cortex
and the medial and lateral parts of the ventroposterior nucleus of
the thalamus (VPM/VPL) (Fig. 7 A—C), another brain region often
affected early in NCL mouse models [47,50,52,57,58,62,63].
Within the SIBF and V1 regions, there was a marked increase in
GFAP by 6 months of age (Fig. 7 B-C). When analyzing VPM/
VPL thalamic nuclei, GFAP immunoreactivity was massively
upregulated at 4 months, persisting with age (Fig. 7 A). Microglial
activation was apparent in all of the regions examined, appearing
by 4 months of age and remaining elevated throughout the life of
the animal [VPM/VPL, S1BF, Ml, and VI, (Fig. 8 A-D)].
Although glial activation has been reported previously in Cln6™/
mice, these findings demonstrate earlier onset pathology, with
previous studies showing astrocytosis at 21 weeks and microglial
activation at 54 weeks of age [32].

6nclf

Interneuron loss within the mature Cin cortex and

hippocampus

Loss of y-amino butyric acid (GABA) inhibitory cortical neurons
within the cerebral cortex and hippocampus has been observed in
human NCLs patients [64,65], and NCL animal models
[18,45,47,48,50,59,66]. Studies of CLNG6 sheep models have
demonstrated loss in distinct subtypes of interneurons, varying
within the cortical subregion examined [59]. Specifically, parval-
bumin (PV) and somatostatin (SOM) positive interneurons in the
parietal cortex appear selectively vulnerable whereas calretinin
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Figure 8. Upregulation of microglial marker CD68 in the thalamus and cerebral cortex of C/n6™/" mice. Quantitative thresholding
analysis in CIn6™" mice was compared to age matched WT, revealing a significant increase in the expression of the microglia marker CD68 in the
VPM/VPL (A), M1 (C), S1BF (B), and V1 (D) regions in the CIn6™" mouse over WT. [Mean% immunoreactivity +/— SEM, n=3 (*p=0.05, **p=0.01,

***p=0.001, ****p=0.0001)].
doi:10.1371/journal.pone.0078694.9g008

(CR) and calbindin (CB) positive interneurons remain relatively
unaffected [59]. Here, we reveal a similar phenomenon in Ch6™?
mice. SOM+, PV+, and CB+ interneurons all exhibit some
deficiency within the Cl6™? brain (Fig. 9 and Fig. $2). Within the
LEnt cortex, a region identified as having fewer GABAergic
interneurons in other NCL models [45,59], there was a decline in
PV+ interneurons (Fig. S2). Interneuron loss within the hippo-
campus varied across subfields. In the dentate gyrus, there was a
slight decline in PV+ interneurons at 5 months, with increasing
severity at 9 months (Fig. 9 A). Beginning at 5 months, SOM+
interneuron loss was seen in the dentate gyrus/hilus and stratum
oriens, with loss extending to the stratum radiatum and combined
CA fields 1, 2, and 3 at 9 months (Fig. 9 B). CB+ interneurons
within the Clz6"7 hippocampus were markedly reduced only at the
later timepoint (Fig. 9 C-D), with this cell loss restricted to the
stratum oriens. These findings demonstrate significant reduction in
select sub-populations of hippocampal interncurons in Cl6"Y
mice, similar to other NCL animals and NCL patients.

Discussion

The NCLs are a devastating family of genetic disorders which
manifests in early childhood with vision loss, motor decline,
seizures, and culminates in premature death (Reviewed in [7]).
The ability to recapitulate these diseases in animal models provides
invaluable tools for defining the underlying molecular mechanisms
responsible for the NCLs and for successful screening of potential
therapies. Spontaneous mutations in Cln6 have arisen in several
different species resulting in a murine (Ch6"Y) model [21], two
ovine models [20,67,68], and a canine model [22]. Here, we
dissect the pathology and behavioral phenotype of Cln6"Y mutant
mice and demonstrate that these mice closely recapitulate the
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disease progression seen in human patients, elevating their validity
for therapeutic drug screening studies.

To date, 55 disease-causing mutations have been identified in
CLNG (see http://www.ucl.ac.uk/ncl/cIn6.shtml). Recent studies
have also linked mutations in CLNG6 to the adult-onset form of
NCL (or Kufs disease, Type A) [9]. In both vLINCL and Kufs A,
mutations span the entire gene yet offer no indication of a relation
between the mutations and phenotype. The mutation in Cln6™Y
mice is homologous to a mutation in a Pakistani family with
vLINCL [11,13]. The human and murine CLN6 show 90.3%
amino acid similarity [11], with Clk6"Y mutation (c.307insC,
frameshift after P102) located on exon 4 [11,13]. This insertion
results in a frameshift followed by 25 novel amino acids and a
premature stop codon [11]. Human mutations in CLN6 have been
found in seven different exons, all resulting in similar pathological
features [16] — providing no pattern in severity of disease
symptoms and age of onset making it difficult to pinpoint domains
that are critical for proper protein function [8,10,13,15,16,69].
Access to these reliable, well validated animal models of vILINCL
will allow scientists to better understand both the genotype/
phenotype relationship of these mutations.

One common feature for many of the NCLs is retinal
deterioration and eventual blindness. This hallmark degeneration
of the retina has been seen in other NCL animal models
[44,70,71,72,73,74,75,76]. Here we show that cell loss in the
CIn6"Y retina begins around 3 months of age and progresses
rapidly. The exact cause of retinal degeneration and eventual
blindness in the NCLs is unclear and likely varies with subtype of
the disease. A variety of hypotheses have been proposed such as
altered gene expression, accumulation of storage bodies resulting
in deficient phagocytosis, as well as possible degeneration in the
optic nerve, lateral geniculate and/or occipital lobe resulting in
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Figure 9. Loss of specific subpopulations of interneurons seen within various regions of the hippocampus. Loss of interneurons is a
characteristic often seen in the hippocampus of the NCLs. We divided the hippocampus into defined regions and stained sections for specific
subpopulations of interneurons and subsequently counted the subpopulations within the sections. (A) PV+ interneurons decreased in the dentate
gyrus (DG) at 9 months but remain unchanged in other areas where PV+ interneurons were present. (B) SOM+ interneurons were first decreased at 5
months in the hilus and stratum oriens with further decline observed at 9 months. Decline of SOM+ interneurons was also seen at 9 months in the
stratum radiatum as well as the combined CA fields of the hippocampus. (C-D) A significant reduction in the number of CB+ interneurons was
observed within the stratum oriens at 9 months when compared to WT. [Mean +/— SEM, n=3 (*p=0.05, **p=0.01, **p=0.001, ****p=0.0001)].

doi:10.1371/journal.pone.0078694.g009

progressive retinal degradation [44,77,78]. Furthermore, not all
NCL animal models exhibit the same degree of retinal degener-
ation and visual loss, indicating that some compensation may be
made at different levels, with convergent pathways that eventually
result in neuronal loss [76]. This is further evident in NCL
patients, since not all patients display the same levels of
degeneration [8,10,13,15,16,69].

vLINCL patients also exhibit motor delay, dystharthia, ataxia
and eventual paralysis. Here, we are able to recapitulate motor
deficits in Ch6"Y mice using several tests of balance and
coordination. By as early as 3 months, diminished motor
coordination could be observed. Previously, Bronson et al. have
reported rear-limb paralysis starting at 10 months of age [21] with
more recent studies demonstrating rotarod motor coordination
deficits around the same time (at ~45 weeks of age [33]). Here we
provided an earlier behavioral indicator of disease progression,
enhancing the utility of this model for therapeutic/drug screening.
One should be cautioned though that a recent study of another
NCL mouse model has shown that changes in the animal’s
environment can significantly impact their motor performance
(including the age of onset of deficits) — thus changes in housing or
diet may contribute to the manifestation of these earlier behavioral
phenotypes [79].

In both vLINCL human patients and the CLNG6 sheep models
there is progressive thinning of the cerebral cortex and neuronal
loss ([16,18,59]; reviewed in [80]). We show here that these
changes are recapitulated in Cln6"Y mice, with a reduction in brain
mass and thinning in the S1IBF and M1 cortex by 9 months of age.
Additionally, we report here a selective loss of GABAergic
inhibitory interneurons in the cortex and hippocampus, similar
to what has been reported in vLINCL patients and other NCL
animal models [18,45,48,59,66]. Specifically, we demonstrate that
within Cln6"Y cortices there is a specific loss of PV+ interncurons
within the LEnt cortex, and further loss of PV+, SOM+, and CB+
interneurons in subdomains of the hippocampus, mirroring what
has been reported in the South Hampshire sheep model [59].
Further research into the cause of interneuron loss as well as the
timing of cell loss will be needed to understand the role this plays
in disease pathology.

Dysregulated synapse morphology has been implicated in a
number of neurodegenerative and neurological diseases [81].
Indeed, loss of dendrite spines and synaptic connectivity has been
associated with a host of diseases including epilepsy, schizophrenia,
autism, fragile X, mental retardation, and Alzheimer’s disease
[82,83,84,85,86,87,88]. The reduction in dendritic spine density
reported here may contribute to the decline in motor perfor-
mance, learning and memory observed in Cln6" “if mice model and
may be directly related to previously reported disruption in
synaptic and axonal protein levels [31]. Combined, these findings
of early onset disruption in dendrite spine density might suggest
earlier dysfunction within the cortex that precedes neuronal loss.

Glia play an essential role in neuronal function, including the
regulation of spine pathology and synapse formation [89].
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Elevated astrocytosis and microglial activation has been reported
in sheep models of NCLs — starting as early as 20 days before birth
with increasing activation through maturation [26,90,91,92]. In
Cln6"Y mice however, the cortical astrocytosis does not appear
until later at 6 months. Microglial activation however mirrors the
sheep model, appearing early in life (by 1 month of age). Further
investigation of prenatal and early postnatal time points will allow
us to narrow down a more precise window of activation.

Taken together our findings provide novel insights into the
pathogenesis of this disease, and based upon the evidence
provided, the onset of this disease may be occurring earlier than
previously reported. We demonstrate novel defects in visual acuity,
learning, and memory as well as pathological deficits in dendrite
spine morphology. Combined, these data establish Cin6"Y mice as
an essential tool for the study of VLINCL, presenting phenotypic
similarities to NCL patients and other NCL animal models. The
Cln6"Y mouse model will therefore provide an invaluable platform
for high throughput screening of possible NCL therapeutics.

Supporting Information

Figure S1 Accumulation of autofluorescent storage
material in the Cln6"Y mouse. Confocal microscopy images
of age matched WT and Cle6"Y mutant mice were taken to assess
the accumulation autofluorescent storage material of cortical
sections. The accumulation of storage material becomes apparent
in the mutant cortex by 5 months (upper right panel) of age and
increases through 9 months (lower right panel) with no
accumulation seen in the WT cortex (left panels).

(TIF)

Figure S2 Cln6"Y mice exhibit a loss of parvalbumin
interneurons in specific subregions of the cerebral
cortex. Interneuron loss is often seen in NCL patients as well
as animal models. Interneuron subpopulations were stained and
counted within the entorhinal region of the cerebral cortex which
resulted in an observed decrease in PV+ interneurons within the
cortex versus age matched controls. [Mean +/— SEM, n=3
(**$=0.01)]

(TIF)
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