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Abstract
Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular
physiology. A recent study based on protein microarray experiments identified a large number of
kinase-substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation
network in humans. Analysis of this network, in conjunction with additional resources, revealed
several key features. First, comparison of the human and yeast phosphorylation networks
uncovered an evolutionarily conserved signaling backbone dominated by kinase-to-kinase
relationships. Second, although most of the KSRs themselves are not conserved, the functions
enriched in the substrates for a given kinase are often conserved. Third, the prevalence of kinase-
transcription factor regulatory modules suggests that phosphorylation and transcriptional
regulatory networks are inherently wired together to form integrated regulatory circuits. Overall,
the phosphorylation networks described in this work promise to offer new insights into the
properties of kinase signaling pathways, at both the global and the protein levels.
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1. INTRODUCTION
Cells respond to a variety of signals, many of which are relayed from the cell membrane to
specific intracellular targets. Protein phosphorylation, mediated by kinases, is one of the
most important regulatory mechanisms during signal transduction. A kinase can be activated
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by incoming signals, and it subsequently alters the cellular function of other proteins
through phosphorylation, which ultimately turn on genes that are responsive to the signals
from their surroundings. Disruption in the signaling pathways has profound implications in a
variety of human diseases [1–3]. For instance, mutations in kinase genes are frequently
associated with human cancer [4, 5]. Therefore, identifying and characterizing kinase-
mediated signal transduction pathways are critical for many aspects of cellular biology and
also have potential clinical applications.

The model that depicts signaling pathways as a linear wiring diagram have been extremely
useful to explain the properties of some biological systems; however, a large amount of
genetic and biochemical data suggests that the network signaling model is a more complex
one. For instance, a genome-wide RNAi screen of ERK/MAPK activity revealed that the
contribution of each gene to the signaling output is continuous. In other words, various
proteins participate in signal transduction with different levels of contribution [6]. Likewise,
signaling networks underlying animal development are known to be resistant to both
extrinsic and intrinsic perturbations; this robustness can be at least partially explained by a
network model but not by a linear signaling model [7]. Finally, cancer genome sequencing
projects have identified an average of 93 mutated genes per breast or colorectal tumor [8].
Because mutations in a few genes should sufficiently disrupt a signaling pathway, the
finding of a large number of mutations per tumor suggests that signals are propagated
through a signaling network, which needs many mutations to collapse the system. Together,
this evidence strongly supports a network view of signal transduction rather than the
canonical linear view. Constructing a phosphorylation-based signaling network will greatly
help researchers perform a series of global analyses to gain new insights into the
organization, specificity, and function of signaling networks.

The global analysis of phosphorylation networks in humans is limited due to our limited
knowledge about KSRs in humans. Indeed, only ~2,000 human KSRs have been
experimentally identified. In contrast, a large number of phosphorylation sites (>70,000)
have been determined by MS/MS technology. Therefore, most of analysis of the
phosphorylation events often focused on these sites, rather on the KSRs themselves. For
example, evolutionarily conserved phosphorylation sites and their potential physiological
functions were investigated by analyzing the phosphorylation sites in the human genome [9].

Recently, Newman et al published a study in which a large number of KSRs were
determined by protein microarray technology and further refined by bioinformatics analysis
[10]. This study resulted in 3,656 refined KSRs (refKSRs) that are likely to occur under
physiological conditions, more than all KSRs generated from previous studies combined. In
the present work, we used this comprehensive dataset to perform a series of global analyses
of human phosphorylation networks.

2. METHODS
2.1 Datasets

In our previous study, we identified 24,046 kinase-substrate relationships (KSRs) using a
protein microarray approach [10]. The complete set of in vitro KSRs were termed rawKSRs.
The rawKSR dataset represents the biochemical relationships between kinases and their
substrates. To enrich for physiologically relevant KSRs, we performed a Bayesian analysis
by integrating other genomic and proteomic information such as sub-cellular localization,
protein-protein interactions and tissue specificity [10, 11]. The resulting 3,656 KSRs were
termed refined KSRs (refKSRs). We also integrated 744 known KSRs curated from the
literature into the refKSR dataset to generate a combined KSR dataset (comKSR). The

Hu et al. Page 2

Biochim Biophys Acta. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



datasets are available in supplementary information as well as on a searchable web site
(phosphonetworks.org).

2.2 Overlap of substrate sets of kinases
Supposing there are N candidate substrates in total, kinase A and B recognize MA and MB
substrates, respectively, MAB of substrates are recognized by both kinases, the overlap rate
(OR) of the two substrate sets can be computed by the Jaccard Index,

(1)

The significance of the overlap can be computed by cumulative Hypergeometric distribution
(supposing MB ≥MA),

(2)

Here, N is equal to 4,191, the total number of proteins on our protein microarray.

2.3 Evolutionally conserved network modules
To investigate the properties of the phosphorylation network more thoroughly, we
constructed network modules and analyzed their properties. Once all size-3 network
modules including at least one kinase were enumerated, the statistical significance of each
module was evaluated using the same method as described in [12]. In a similar manner,
network module conservation analysis was carried out by comparing the modules identified
in the human and yeast comKSR networks that involved homologs between these two
organisms. Here, two proteins were considered to be homologous if the e-value of their
primary amino acid sequence alignment (BLASTP) was lower than 10−20.

To obtain a dataset of yeast refined KSRs, we performed the same Bayesian analysis to the
yeast KSRs obtained from the literature [13]. The gene expression is based on an integrated
microarray expression dataset covering 255 different conditions [14], the cellular
localization is based on GO annotation, and the protein-protein interactions are from
databases and a recently published yeast kinase network [15]. We obtained 374 known yeast
KSRs from the literature and various databases as positive controls and 20,000 protein pairs
devoid of kinases as negative controls. After applying the Bayesian approach, we obtained
797 refKSR for yeast which, when combined with the 374 known KSRs, formed a comKSR
dataset composed of 1167 yeast KSRs of high quality.

2.4 Comparison with conserved protein-protein interactions
To examine the relative conservation level of KSRs between human and yeast, we compared
the conservation levels between KSR and protein-protein interactions (PPIs). We used the
same standard to analyze conservation of the 55,048 human PPI that we collected before
[11] relative to the 36,505 yeast PPI downloaded from the Intact database (http://
www.ebi.ac.uk/intact). This analysis revealed that 1,068 of 55,048 human PPIs (1.94%)
have orthologs in yeast, approximately three times lower than the KSR conservation rate
(265/4375=6.06%).
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2.5 Functional enrichment of a substrate set
If N is the number of proteins on our protein microarray, then M of them are annotated to
have certain function by Gene Ontology. Likewise, if a kinase recognized Nk substrates and
Mk of them are annotated to have that function by Gene Ontology, then the fold enrichment
(FE) of the function in the substrate set can be computed by following formula,

(3)

The significance of the enrichment can be computed by cumulative Hypergeometric
distribution,

(4)

2.6 Identification of network motifs with kinases and transcription factors
To examine the interplay between kinase-mediated phosphorylation and transcriptional
regulation, ChIP-chip and ChIP-seq datasets were collected for a total of 94 transcription
factors. CisGenome was then applied to each dataset in order to identify peaks in the
genome [16]. The phosphorylation networks and the transcriptional regulatory networks
were then superimposed and all size-2 and size-3 network modules which included at least
one transcription factor and one kinase were evaluated. Finally, the statistical significance of
70 network modules was evaluated by comparing the occurrence of each module in the real
and the randomized networks. The randomized network is a degree-preserving network in
which the incoming degree (number of regulators on the node) and the outgoing degree
(number of targets of the node) for each node are preserved relative to the real network [12].

3. RESULTS
3.1 General properties of kinase-substrate relationships

We identified KSRs in humans using protein microarray approach in our previous study
[17]. The resulting dataset (comKSR) covers 4,375 KSRs. Using this dataset, we performed
a series of global analyses to gain new insights into the organization, specificity, and
function of human KSRs.

Based on this KSR dataset, we found that each kinase phosphorylated a distinct set of
substrates, with the set sizes ranging from 1 to 134. On average, each kinase phosphorylated
14 substrates (Fig. 1A). Similarly, most substrates (87%) were recognized by fewer than 10
kinases, with each substrate being targeted by an average of 4.9 kinases (Fig. 1B). In
general, there was little to no overlap between the specific substrates recognized by any
given pair of kinases (Fig. 1C). Nonetheless, in some cases, we did observe substantial
substrate overlap between a pair of kinases. For example, Erk2 and CHK2 checkpoint
homolog (CHEK2), two kinases involved in the DNA damage response [18, 19], shared a
subset of their substrates. Indeed, of the 30 and 15 substrates phosphorylated by Erk2 and
CHEK2, respectively, six are shared between them (P<10−9). Overall, we found that, while
the majority of kinases occupy distinct territories in the phosphorylation landscape, about
20% of kinase pairs among all possible kinase pairs (255×254/2=32,385) exert
combinatorial regulation on certain substrates. These overlapped substrates tend to have
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various enriched functions, including “cellular response to stimulus”, “regulation of protein
transport”, and “DNA metabolic process”.

This dataset also allowed us to determine whether a particular kinase group tends to
recognize more substrates than other groups. While these analyses uncovered no obvious
associations between the average number of substrates per kinase and the groups to which
these kinases belong (p=0.24, ANOVA; Fig. 1D), they did reveal that the distribution of
substrate number within a given kinase group can be quite broad. For example, whereas the
CAMK group member, STK17A/Drak1, recognized 134 substrates, its fellow group
member, STK33, phosphorylated only 3 substrates. These findings imply that, although the
sequence similarity of the kinase domain within a particular kinase group is high, the
mechanism of achieving substrate specificity may be unique for most kinases.

In contrast, when the KSRs were examined from the substrate perspective, we observed
considerable variability in the percentage of phosphoproteins identified across different
protein classes (Fig. 1E). For instance, while 34% (32/95) of the chromatin proteins tested
were found in the KSRs, only 2% (2/96) of the ribosomal proteins in the dataset were
phosphorylated. Interestingly, 22% (75/343) of kinases themselves were phosphorylated by
other kinases. Note that the percentages of phosphoproteins in different protein classes
correlate well with those identified by the MS/MS approach (PCC=0.6; Fig. 1F). These
findings suggest that some protein families are more prone to kinase-mediated regulation
than others.

3.2 Conserved kinase-to-kinase backbone
The construction of an extensive human phosphorylation network allowed us to explore the
extent to which kinase-dependent signaling networks have been maintained throughout
evolution. For instance, by comparing the human KSR dataset with an activity-based yeast
KSR dataset [13] refined using our Bayesian approach [15], we discovered that, in general,
KSRs are not well-conserved between yeast and humans. Indeed, of the 4,375 human
comKSRs, only 265 (6.1%) are conserved between these two species (despite this relatively
low degree conservation, the conservation rate among KSRs is still 3-fold higher than that of
the protein-protein interactions between human and yeast (1.9%)).

Strikingly, however, among the conserved KSRs, kinase-to-kinase relationships are much
more highly represented than kinase-to-non-kinase relationships. In fact, 75% of the
conserved KSRs correspond to kinase-to-kinase relationships (Fig. 2A). Moreover, the
conservation rate observed for kinase-to-kinase relationships (34%, 198/581) is 19 times
higher than that observed for kinase-to-non-kinase relationships (1.8%, 67/3794)
(P=6.18×10−128). Similar results were also obtained when we compared our human
phosphorylation network with another yeast network constructed using an orthogonal MS/
MS-based approach [20]. According to this comparison, the fraction of conserved kinase-to-
kinase relationships (38.6%; 224/581) is 15.6 times higher than that of kinase-to-non-kinase
relationships (2.48%; 94/3794) (P=1.93×10−137). Together, these findings strongly suggest
that a kinase backbone (i.e., kinase-to-kinase connections) within the phosphorylation
networks has been highly conserved during evolution, whereas other KSRs are under less
evolutionary constraint (Fig. 2A).

These observations can be attributed to conservation at the levels of both the protein
sequence and the phosphorylation relationship (Fig. 2B and C). For instance, we examined
the protein sequence conservation and found that the kinases are more conserved than other
proteins. 83% of kinase proteins have orthologs in yeast, whereas only 41% of non-kinases
proteins have orthologs in yeast. We also investigated whether the kinase-to-kinase
relationships are also more conserved than kinase-to-non-kinase relationships beyond the
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protein sequence level. To exclude the contribution from protein sequence conservation, we
examined the conservation level only for KSRs in which the two proteins (kinase and
substrate) have homologs in yeast. For this comparison, we still found that kinase-to-kinase
relationships are more conserved than kinase-to-non-kinase relationships (Fig. 2C),
suggesting that the observed conservation level difference results from both protein
sequences and phosphorylation relationships. The observation is not sensitive to the cutoff
or methods used to define the ortholog, such as Ensembl (http://ensembl.org) and Inparanoid
(http://inparanoid.sbc.su.se). For example, different BLAST E-values ranging from 1e–5 to
1e–40 were used to define homologs and the same trend was observed (Fig. 2B, C).

3.3 Functional conservation of kinase substrates
Among the kinases in the group composed of kinase-to-non-kinase relationships, some were
found to be functionally conserved between humans and yeast, despite the fact that their
identified substrates show little conservation. For example, 14 of the 71 substrates
phosphorylated by PKA are known to be involved in cell differentiation (P<3×10−5);
meanwhile, 12 of the 112 substrates phosphorylated by its yeast homolog, Tpk1, also belong
to the same functional category (P<2×10−4) (Fig. 3). This observation suggests that the two
homologous kinases are functionally conserved. However, there is little conservation
between the two substrate groups. Indeed, PKA and Tpk1 each recognized distinct
substrates involved in cell differentiation. In fact, many of the substrates phosphorylated by
PKA have no homolog in yeast and vice versa. For instance, while three yeast-specific
substrates of Tpk1 are not conserved in higher eukaryotes, most (9 of 12) human-specific
substrates are only found in vertebrates. Consistently, many of the proteins phosphorylated
by human PKA are involved in biological processes specific to multi-cellular organisms,
such as regulation of tissue-specific gene expression (ID2), myogenesis (CSRP3), and
neuronal development (GAS7 and NEUROD1). It is plausible that these proteins have
evolved independently in higher eukaryotes to accommodate more complex processes of cell
differentiation. Overall, 19 of the 27 orthologous kinase pairs defined by the Ensembl
database were found to have conserved enriched function in their substrate sets, despite the
fact that their identified substrates show little conservation (Table 1).

In summary, our analysis suggests that conserved phosphorylation regulation can be found
both at the molecular level in the form of direct kinase-to-kinase relationships, as well as at
higher functional levels.

3.4 Conserved network modules
We next examined which types of interaction patterns (i.e., modules) are more conserved in
the phosphorylation networks (see method for details). Among the modules that are widely
used in the human KSR network, several are highly conserved (these conserved modules are
termed “modulogs”) [21, 22]. The top three conserved modulogs are kinase cascades, single
input (i.e., one kinase phosphorylates multiple proteins), and co-regulation (i.e., two kinases
co-regulate one protein). Indeed, these three modulogs are conserved in 22.2%, 18.8%, and
18.5% of the cases, respectively (Fig. 4). The prevalence of conserved single input and co-
regulation modulogs suggests that parallel or compensatory interactions are a conserved and
widely used design principle in eukaryotic phosphorylation networks [23]. In addition,
cascade and co-regulation motifs were found to be enriched in exogenous processes while
single input and feedforward loops were enriched in endogenous processes [24].
Interestingly, feedforward and feedback modules, which play important roles in
transcriptional regulatory networks, are utilized to a lesser degree in the phosphorylation
network and are also less well-conserved [25, 26]. Together, our network module analysis
not only offers important insights into the organization of intracellular signaling networks,
but it also provides clues about the context and relative frequency with which different
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signaling architectures are utilized within these networks. Using this approach, we identified
several significantly conserved modules between human and yeast which, based on their
high degree of conservation, are likely to play an important role in the organization of
signaling networks in eukaryotes.

3.5 Wired phosphorylation and transcription regulatory networks
Next, we examined the interplay between protein phosphorylation and other biological
processes, in particular transcriptional regulation. We first assembled a transcriptional
regulatory network based upon genome-wide transcription factor binding data (see method
for details) and then integrated these findings into our phosphorylation network. Searching
this integrated network for common regulatory modules, we found several statistically
significant recurring modules that include both kinase-substrate and transcriptional
regulatory interactions (Fig. 5). For example, we found 55 kinase-transcription factor
feedback modules in which the kinase phosphorylates a transcription factor and the
transcription factor binds to the promoter of the kinase gene. This type of feedback module
is of high statistical significance, as only 18 cases would be expected in a randomized
network (P<10−20). In one such example, CHEK2 phosphorylates and activates E2F1 in
response to DNA damage [27], while E2F1 targets the promoter of CHEK2 [28]. These
results suggest that phosphorylation and transcriptional regulatory networks are inherently
wired together to integrate controls at different macromolecular levels and distinct temporal
scales.

4. DISCUSSION
An exciting finding in this study is the discovery that an evolutionarily conserved kinase
backbone exists between yeast and humans. The conserved kinase backbone is enriched with
proteins involved in certain biological functions, such as the MAPKK and MAPK isoforms
that are known to participate in some of the most fundamental biological processes,
including protein metabolism and cellular responses to stress (Table 2). Although one may
argue that protein kinases tend to be more conserved at the sequence level, we note that the
conservation level of kinase-to-kinase relationships can be attributed to conservation at the
levels of both the protein sequence and the phosphorylation relationship, itself (Figure 2 B
and C). On the other hand, we also found that kinase-to-non-kinase relationships are much
less conserved. It is generally believed that linear motifs possess more evolutionary
plasticity than protein domains because the former are more likely to appear or disappear via
single point mutations [29]. In fact, many phosphorylation events have been mapped to
unstructured loop regions [30], suggesting that KSRs might be subject to rapid evolution.
However, we found that kinase homologs from different species often retain the same
functions, despite the fact that their respective substrates are largely distinct. This may
suggest that rewiring in the KSR subnetworks composed of proteins with the same
biological function is subject to less evolutionary constraint, in analogy to synonymous
substitution in biological sequence evolution.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

A conserved kinase-to-kinase backbone exists in the phosphorylation networks;

Functions of homologous kinases are often conserved, even with distinct substrates;

Phosphorylation networks are inherently wired with gene regulatory networks.
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Fig. 1. Statistics of human phosphorylation network
(A) The number of kinases per substrate and (B) the number of substrates per kinase are
plotted. Mean and median values are shown. (C) The distribution of substrate overlap rate
among all possible kinase pairs. Supposing A and B are the substrate sets of a pair of
kinases, the overlap rate is defined as Jaccard Index (A∩B)/(A∪B). (D) The distribution of
substrate numbers per kinase among different kinase groups. The bottom and top of the
boxes represent the 25th and 75th percentile of the distribution, respectively. The line near
the middle of the box represents the 50th percentile. The empty squares in each box indicate
the mean. The whiskers represent the 9th percentile and the 91st percentile. The dashed line
across the figure indicates the overall average number of substrates per kinase identified in
this study. (E) The distribution of phosphoproteins across various protein families. The Y-
axis represents the fraction of proteins identified as kinase substrates in each of the six major
protein families indicated. (F) The phosphoprotein percentage for different functional
groups. Each point corresponds to one functional group (i.e., a GO term, such as “RNA-
binding proteins”). The X-axis is the percentage calculated based on MS/MS data while the
Y-axis is based on our protein microarray data. A good correlation between these two
independent studies is observed. PCC, Pearson correlation coefficient.
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Fig. 2. Evolutionarily conserved core
(A) Conserved core of phosphorylation networks identified by comparing the human and
yeast KSR networks. Kinases and non-kinase proteins are represented in orange and green
nodes, respectively. The size of the nodes is proportional to the number of associated
interactions. (B) The overall conservation of K–K and K–S relationships. All human KSRs
were compared with yeast and the percentage of conserved human KSRs was calculated for
each cutoff. The conservation was defined as that the two proteins (kinase and substrate)
have homologs in yeast and the homologous pairs also have the same KSR relationship in
both species. (C) The conservation of human K–K and K–S in which the two proteins
(kinase and substrate) both have homologs in yeast. Using this approach, we essentially
removed the contribution from the protein sequence conservation and only considered the
contribution from the kinase-substrate interaction conservation.
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Fig. 3. Functional conservation between human PKA and yeast Tpk1
The substrates involved in cell differentiation are shown for these two kinases. Short lines
indicate for homologous relationships between proteins from human and yeast.
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Fig. 4. Representative conserved modulogs
A modulog is defined as evolutionarily conserved regulatory modules (see text for more
details). The two numbers under each module represent the number of this module found in
the human comKSRs (orange box) and that found in the conserved core KSR networks (grey
boxes), respectively.
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Fig. 5. List of 71 modules that include at least one transcription factor (TF) and one kinase
Arrows starting from kinases (orange) represent phosphorylation events, while arrows
starting from TFs (blue) represent transcriptional activity. The three numbers below each
module are the Z-score, the observed and expected numbers of the module in the network,
respectively. The over- and under-represented modules are highlighted in red and blue,
respectively.
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Table 1

Ortholog kinase pairs with conserved enriched function in their substrate set.

Human Kinase Yeast Ortholog Conserved enriched function in substrate set

CDK4 Cdc28 DNA binding; Protein binding

CDK5 Cdc28 Protein binding; DNA metabolism

CDKL5 Ime2 RNA metabolism

CSNK2A2 Cka1 Protein binding

MAPK1 Fus3 DNA metabolism; Chromosome Organization

MAPK1 Kss1 Protein modification; Macromolecule metabolism

MAPK3 Fus3 Macromolecule metabolism

MAPK3 Kss1 Protein modification; Macromolecule metabolism

MAPK7 Fus3 Macromolecule metabolism

MAPK7 Kss1 Protein modification; Macromolecule metabolism

PAK1 Ste20 Regulation of transport

PDPK1 Pkh1 Protein binding

PLK1 YMR001C-A Biological regulation

PRKAA1 Snf1 Development

PRKACA Tpk1 Cell differentiation; Transcriptional regulation

PRKACA Tpk3 Transcriptional regulation; Response to stimulus

PRKY Tpk1 Transcriptional regulation

PRKY Tpk3 Transcriptional regulation; regulation of RNA metabolism

WEE1 Swe1 Transcriptional regulation; Macromolecular metabolism
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Table 2

Representative GO terms enriched in the conserved KSR network.

GO Term # Observed # Expected P-value GO annotation

GO:0006468 146 16.99 1.16E-122 Protein amino acid phosphorylation

GO:0019538 158 36.52 1.79E-82 Protein metabolic process

GO:0000165 15 1.34 2.45E-10 MAPKKK cascade

GO:0007254 8 0.51 3.26E-06 JNK cascade

GO:0007265 12 1.39 4.07E-06 Ras protein signal transduction

GO:0006950 52 22.88 5.16E-06 Response to stress
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