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Abstract

Objectives—While genetic determinants of LDL cholesterol levels are well characterized in the

general population, they are understudied in rheumatoid arthritis (RA). Our objective was to

determine the association of established LDL and RA genetic alleles with LDL levels in RA cases

compared to non-RA controls.

Methods—Using electronic medical records (EMR) data, we linked validated RA cases and non-

RA controls to discarded blood samples. For each individual, we extracted data on: 1st LDL

measurement, age, gender, and year of LDL measurement. We genotyped subjects for 11 LDL and
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44 non-HLA RA alleles, and calculated RA and LDL genetic risk scores (GRS). We tested the

association between each GRS and LDL level using multivariate linear regression models adjusted

by age, gender, year of LDL measurement, and RA status.

Results—Among 567 RA cases and 979 controls, 80% were female and the mean age at 1st LDL

measurement was 55 years. RA cases had significantly lower mean LDL levels than controls

(117.2 vs. 125.6mg/dL, respectively, p<0.0001). Each unit increase in LDL GRS was associated

with 0.8mg/dL higher LDL levels in both RA cases and controls (p=3.0×10−7). Each unit increase

in RA GRS was associated with 4.3mg/dL lower LDL levels in both groups (p=0.01).

Conclusions—LDL alleles were associated with higher LDL levels in RA. RA alleles were

associated with lower LDL levels in both RA cases and controls. Since RA cases carry more RA

alleles, these findings suggest a genetic basis for epidemiologic observations of lower LDL levels

in RA.
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INTRODUCTION

Low density lipoprotein (LDL) cholesterol, a major risk factor for coronary artery disease

(CAD), has been observed to be lower in rheumatoid arthritis (RA) patients compared to

individuals of similar age and gender from the general population.[1, 2] Despite lower LDL

levels, RA patients are at higher risk for CAD than the general population.[3] The increased

risk for CAD, as well as lower LDL levels has been attributed to the excess inflammation in

patients with RA.[4, 5] However, the extent to which pathways involved with RA

pathogenesis are also associated with lower LDL levels remain unclear.

The genetic determinants of LDL levels are well characterized in the general population.[6,

7] Genome-wide association studies (GWAS) and related approaches have identified ~30

alleles that explain approximately 12% of the variation of LDL levels in the general

population.[7] A longitudinal study, collecting serial LDL levels over the course of 9 years

found that the association between an aggregate LDL genetic risk score (GRS) and LDL

levels was robust and remained relatively stable over time.[8] The strongest clinical

determinants of LDL levels in subjects not on lipid lowering therapy were age, gender and

the year of LDL measurement.[9, 10] Whether the LDL GRS characterized from the general

population explains LDL levels in RA is unknown.

The genetic determinants of RA play a major role in the risk of developing RA[11] and are

associated with dysfunction in immune pathways and inflammation.[12] Sepsis, an extreme

state of inflammation, is associated with lower and in some cases, undetectable LDL levels.

[13, 14] While the exuberant inflammation of sepsis is mainly caused by an acute response

to environmental pathogens, the immune dysregulation in RA is a chronic inflammatory

process and may be determined in large part by an individual’s underlying genetic make-up.

This suggests that the genetic factors associated with dysfunction in immune pathways that

lead to RA may influence LDL levels in these patients.
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Thus far, only one study has investigated whether RA susceptibility alleles are associated

with LDL levels.[15] This study examined the association of single nucleotide

polymorphisms (SNPs) with lipid levels in three RA risk genes [PTPN22, TRAF1/C5,

STAT4], and the human leukocyte antigen shared epitope (HLA-SE) alleles. They observed

that RA patients carrying one or more risk alleles for TRAF1/C5 had significantly lower

LDL levels than those who did not (3.15mmol/L [121.8 mg/dL] vs. 3.48 mmol/L [134.6mg/

dL], p=0.02). No association between the other RA risk alleles and LDL levels was

observed.

In this study we utilized RA genetic risk alleles as markers of RA specific pathways of

immune dysregulation. If RA specific pathways are associated with LDL levels, then we

would expect an association of RA risk alleles with LDL levels in RA as well as non-RA

subjects. The objectives of this study were: (1) to compare LDL levels in RA cases

compared to non-RA controls, (2) to test whether alleles associated with LDL levels in the

general population were also associated with LDL levels in RA patients; and (3) to test

whether RA risk alleles were associated with LDL levels in a RA case cohort and a non-RA

control cohort. We hypothesize that genetic variants associated with higher LDL levels in

the general population will also be associated with higher LDL levels in RA, but that a

higher RA aggregate GRS will be associated with lower LDL levels. In this study, we also

applied newly developed methods to study the associations of the HLA-SE[16] with LDL

levels.

METHODS

Study population

We studied a validated RA cohort[17, 18] and a non-RA control cohort[19] of European

ancestry with available calculated LDL (LDL-C) or direct LDL (LDL-D) measurements in

the electronic medical records (EMR) of Brigham and Women’s Hospital (BWH) and

Massachusetts General Hospital (MGH) from 1989–2007. Briefly, the RA cases were

identified using an RA phenotype algorithm which utilizes a combination of International

Classification of Diseases, 9th Revision (ICD9) and clinical data extracted using

bioinformatics methods to mine narrative text (natural language processing). The positive

predictive value (PPV) for RA using the algorithm is 94%. For details on the development

and validation of this cohort please refer to Liao, et al., Arthritis Care and Research 2010.

[17]

The non-RA cohort was selected by first excluding all patients with an ICD9 code for a

rheumatic disease as reported in Kurreeman, et al., American Journal of Human Genetics.

[19] Briefly, non-rheumatic disease subjects were selected based on similar age, gender, race

and health care utilization to the RA cases. Health care utilization was approximated by

using the number of “facts” which are points of contact with the health care system, i.e.

laboratory blood draws, clinic visits, x-rays. For details on the development of the non-RA

control cohort and sample collection please refer to Kurreeman, et al., 2010.[19] We

collected discarded blood samples for each cohort using the BWH Biospecimen Repository.
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Variables

The primary outcome, LDL, was defined by each subject’s first LDL measurement in the

EMR, to maximize the chance of selecting subjects prior to any lipid lowering intervention.

We excluded patients who had an electronic prescription for an HMG-CoA reductase

inhibitor (statin) prior to their first LDL level. We extracted other lipid levels [total

cholesterol (Tchol), high density lipoprotein (HDL)] measured within one year of the index

LDL. Age at LDL measurement, gender, and the year of LDL measurement were also

extracted from the structured EMR data.

RA cases must have prevalent RA at the time of the first LDL measurement. Prevalent RA

was defined as subjects in the RA cohort with ≥1 RA ICD9 code or narrative text mention of

RA prior to the 1st LDL measurement.

Genotyping

We genotyped individuals using the Illumina BeadExpress (n=384 SNPs) and the Illumina

Immunochip.[20] The Immunochip dataset clustering and initial filtering were performed as

described previously.[21] We excluded individuals with call rate<97%, and SNPs with

missingness>0.02 or departure from Hardy-Weinberg equilibrium (PHWE<0.001). We also

computed a chi-square test to assess the difference in missingness between RA cases and

non-RA controls and removed SNPs with a Pmissing<10−2.

To address population stratification, we selected a set of common SNPs (MAF>5%) in the

filtered Immunochip data, pruned to remove SNPs in linkage disequilibrium (LD). We

calculated pairwise identity-by-state (IBS) statistics using PLINK,[22] and removed one

individual from each pair of individuals who were 2nd degree or closer relatives. Principal

components analysis (PCA) was subsequently performed using EIGENSTRAT[23] with

HapMap phase III samples. We limited our study to individuals of European ancestry

because the majority of published genetic data for lipid alleles were conducted in this

population, and to mitigate confounding from population stratification.

Classical allele genotypes for HLA-DRB1, HLA-B and HLA-DPB1 were imputed using

methods from Raychaudhuri, et al, Nature Genetics 2012.[16]

Genetic risk scores

We constructed three separate aggregate genetic risk scores (GRSs) for LDL, non-HLA RA

risk alleles [24] and the HLA region[16] to test for association with LDL levels. We refer to

these GRSs as the LDL, RA and HLA GRSs, respectively. Individual SNPs have modest

effect sizes and would have limited power to demonstrate an association with LDL levels.

The GRSs allow for testing of SNPs in aggregate (grouped by their association with clearly

defined phenotypes, i.e. LDL, RA), allowing for increased power to detect an association

with LDL levels[24, 25]. For example, rather than testing the association of each of the 44

non-HLA RA risk alleles with LDL levels (44 tests), we tested the RA GRS (aggregated

score of 44 SNPs) with LDL levels (1 test).
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The weighted LDL genetic risk score (GRS) was constructed using 11 single nucleotide

polymorphisms (SNPs) associated with LDL as the lead trait from published studies[7, 25]

and weighted by published effect sizes for higher levels of LDL (mg/dL) (Appendix 1). Not

all alleles associated with LDL were examined due to the timing of genotyping with

Illumina BeadExpress for this study relative to the publication of the LDL genetic studies.

Due to the strong genetic contribution of the HLA compared to non-HLA RA risk loci,[11]

we studied separately, the association of the HLA RA (with the HLA GRS) and non-HLA

RA risk alleles (with the RA GRS) with LDL levels. If an association was observed, this

approach would allow us to determine whether it arose from the HLA or the non-HLA RA

risk loci. We created an RA GRS using 44 published non-HLA SNPs associated with RA

risk,[11, 20] weighted by the natural log of the odds ratios (OR) for risk of RA from the

most recent meta-analysis[20](Appendix 1). Individuals with missing genotypes for a given

SNP were assigned twice the expected frequency of the risk allele in the samples with the

same phenotype (RA cases or non-RA controls). We constructed the HLA GRS as per

Raychaudhuri, et al. Nature Genetics 2012,[16] weighted by the natural log of the published

effect sizes for risk of RA.

All three GRSs were constructed using the general formula:

Where i=SNP; wi=natural log of published ORs (HLA and non-HLA RA risk alleles) or the

published effect size (LDL, mg/dL); Xi=number of risk alleles (0, 1, or 2).

Laboratory analyses

Anti-citrullinated peptide/protein antibodies (ACPA) were measured using the INOVA

CCP3 IgG ELISA.[19] We determined positivity based on the manufacturer cut-off for

ACPA ≥ 20 units.

Statistical analyses

We conducted univariate analyses to compare age, gender, LDL, year of LDL measurement,

and total cholesterol (Tchol) and high density lipoprotein (HDL) levels across prevalent RA

and non-RA controls. We applied t-tests to compare means and chi-square tests to compare

differences in proportions. To determine differences in LDL levels between RA cases and

non-RA controls, we constructed a linear regression model with RA cases status and LDL,

adjusted by age, gender, and year of LDL measurement. To test whether ACPA status was

associated with LDL levels among RA cases, we constructed a linear regression model with

ACPA status and LDL levels, adjusted by age, gender, and year of LDL measurement. All

models were adjusted by factors with known significant associations with LDL levels: age

and gender as was done in previous genetic association studies of LDL from the general

population[7, 25] as well as year of LDL measurement which was recently identified to have

secular trends over time.[9]
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Our 2 main analyses were: (1) to determine the association between the LDL GRS and LDL

levels in RA cases and non-RA controls, and (2) to determine the association between the

RA GRS and LDL levels in RA cases and non-RA controls. We tested the association

between the LDL GRS and LDL levels in RA cases and non-RA controls by constructing a

multivariate linear regression model containing age, gender, year of LDL measurement, and

two interaction terms, RA case*LDL GRS and control*LDL GRS. The interaction terms

provide the magnitude of effect for the association between the LDL GRS and LDL levels

separately for RA cases (β coefficient for ‘RA case*LDL GRS’) and non-RA controls (²

coefficient for ‘control*LDL GRS’).

To determine if the associations between the LDL GRS and LDL levels were significantly

different in RA cases compared to non-RA controls (differences in the β coefficients for

‘RA case*LDL GRS’ and ‘control*LDL GRS’), we constructed a multivariate linear

regression model with age, gender, year of LDL measurement, RA case status (yes/no), RA

case status*LDL GRS, and association with LDL levels. A significant interaction term (RA

case status*LDL GRS, p<0.05), would suggest a significant difference in the association

between the LDL GRS and LDL in RA cases compared to non-RA controls.

We conducted the same steps above to determine the association between the RA GRS and

LDL levels among RA cases and non-RA controls as well as the HLA GRS and LDL levels

among RA cases and non-RA controls. We also utilized the interaction tests detailed above

to determine significant differences in the association between the RA GRS and LDL levels

in RA cases compared to non-RA controls.

If the associations of the GRSs and LDL levels were similar in the two groups, we tested

whether given the same LDL or RA GRS, if RA cases had similar LDL levels to non-RA

controls. To test for this difference, we constructed a linear regression model with RA case

status (yes/no) and LDL levels, adjusted by age, gender, year of LDL measurement and the

LDL or RA GRS.

To visualize the trends in LDL levels associated with increasing numbers of LDL and RA

genetic alleles, we first determined cutoffs for tertiles of the RA GRS and LDL GRS

separately in RA cases and non-RA controls. We then calculated the mean LDL levels in

tertiles of the RA GRS and LDL GRS.

For our sensitivity analyses, we reanalyzed the data using the highest LDL reported for each

patient in the EMR as the outcome, regardless of statin use.

This study was approved by the Partners Healthcare Institutional Review Board (IRB for

BWH and MGH). Statistical analyses were conducted using SAS 9.2 (Cary, NC).

RESULTS

LDL levels in RA cases vs. non-RA controls

We identified 567 subjects with prevalent RA and 979 non-RA controls with available LDL

measurements spanning from 1989 to 2007 (Table 1). All subjects were of European

ancestry and had genotype data available. The mean ages at first LDL measurement was
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similar in the two groups: 54.5 for RA cases and 55.2 years in controls. The majority of

subjects in both groups were women (80%). In the univariate analyses, RA cases had a mean

LDL of 117.2 mg/dL, which was significantly lower than in non-RA controls (mean LDL

125.6 mg/dL, p<0.0001).

We compared LDL levels in RA cases and controls, adjusting for age, gender and year of

LDL measurement, and observed that LDL was on average 5mg/dL lower in prevalent RA

cases than in non-RA controls (p=0.003). Among RA cases, there was no significant

difference between mean LDL levels in ACPA positive (n=422) compared to ACPA

negative (n=145) subjects, adjusted by age, gender and year of LDL measurement (p=0.94).

Association of LDL genetic risk score with LDL levels

We next tested whether an LDL genetic risk score (GRS) was associated with LDL levels in

RA cases and non-RA controls. Among RA cases, each unit increase in the LDL GRS was

associated with a 0.72mg/dL higher LDL level (p=6.2×10−6). Among controls, each unit

increase in the LDL GRS was associated with a 0.85 mg/dL higher LDL level (p=9.4×10−8,

Table 2a). The association between the LDL GRS and LDL levels was not significantly

different in RA cases and controls (interaction test, p=0.45).

Since the association between the LDL GRS and LDL level was similar in the two groups,

we investigated whether LDL levels were significantly different in RA cases compared to

controls, controlling for the LDL GRS as well as age, gender and year of LDL measurement.

We observed that RA cases still had on average 4.3mg/dL lower LDL levels than non-RA

controls (p=0.03) (Table 3a).

Association of RA genetic risk score and an HLA genetic risk score with LDL levels

Since neither clinical factors nor an LDL GRS could explain the difference in LDL levels

between RA cases and controls, we tested whether genetic factors enriched in RA patients

may explain the observed difference. First, we tested an RA GRS composed of 44 non-HLA

RA risk SNPs for association with LDL levels in both RA cases and non-RA controls.

Second, we tested an RA risk model composed of SNPs within the HLA region, which have

been imputed to tag 5 amino acids in three HLA genes.[16] And third, we tested the non-

HLA RA GRS after controlling for the effect of the LDL GRS in a combined analysis of RA

cases and non-RA controls.

We observed that each unit increase in the RA GRS was associated with 4.6mg/dL lower

LDL levels (p=0.007) among RA cases, and a 4.3mg/dL lower LDL levels in controls

(p=0.02) (Table 2b). The association between the RA GRS and LDL levels was not

significantly different among RA cases and controls (interaction test, p=0.17). Out of 44

non-HLA RA risk alleles, 28 (64%) were associated with lower LDL levels, whereas only

half would be expected by chance alone. No single RA risk allele was significantly

associated with LDL levels after adjusting for multiple comparisons (p<0.001) (Appendix

2B).
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We observed no association between an aggregate HLA GRS and LDL levels in either RA

cases or non-RA controls (p=0.90). No single amino acid residue was associated with LDL

levels in either RA cases or controls.

Since the association between the RA GRS (non-HLA) and LDL level was similar in RA

cases and controls, we also tested whether LDL levels were similar in RA cases compared to

controls, controlling for the RA GRS as well as age, gender, year of LDL measurement. In

this model, given a similar RA GRS, RA cases and controls had similar LDL levels (p=0.30)

(Table 3b).

Since we observed no difference between the associations of the LDL GRS or RA GRS and

LDL levels in RA cases compared to controls (interaction tests all non-significant), we

report a combined estimate for the association of the GRS and LDL levels from RA cases

and controls for subsequent analyses. To determine whether the RA GRS was independently

associated with LDL levels beyond the LDL GRS, we included both the RA GRS and LDL

GRS in one model (Table 4). We observed that the RA GRS remained associated with lower

LDL levels (p=0.008) while the LDL GRS remained associated with higher LDL levels

(p=9.3×10−7) in RA cases and controls (Table 4). The lack of interaction between the RA

GRS and LDL GRS (p=0.42) suggests that the association of RA risk alleles with LDL

levels was independent of the association of LDL alleles with LDL levels. In general, RA

cases or controls with the highest LDL GRS and the lowest RA GRS had the highest LDL

levels (Figure 1).

Sensitivity analyses

We extracted the highest LDL level recorded in the EMR for each subject and observed

similar effect sizes for association between GRS and LDL level, regardless of statin status.

Each unit increase in the LDL GRS was associated with 0.64mg/dL higher LDL level, using

the highest LDL level as the outcome (compared to 0.81mg/dL using the first LDL

measured as the outcome). Each unit increase in the RA GRS was associated with a

3.5mg/dL lower LDL level (compared to 4.6mg/dL).

DISCUSSION

There are three main findings from our study. First, we observed that LDL levels were lower

in RA cases compared to non-RA controls, adding to the few published epidemiologic

studies on this topic.[1, 2] Second, our findings replicate previous studies that LDL alleles in

aggregate are associated with higher LDL levels among non-RA controls,[7] and

demonstrate that the same LDL alleles have similar effects in RA subjects. Third, we

observed associations that non-HLA RA risk alleles in aggregate are associated with lower

LDL levels in both RA cases and non-RA controls.

These findings provide a potential explanation for why LDL levels are lower in RA than

non-RA controls. By definition, RA patients carry more RA risk alleles than non-RA

controls. In this study, RA cases had a significantly higher RA GRS than and non-RA

controls (p=1.93×10−21). Since carriage of a higher number of RA risk alleles was

associated with lower LDL levels, RA patients as a group had lower LDL levels than non-
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RA controls. Moreover, the association of the RA GRS with lower LDL remained after

adjusting for clinical factors associated with LDL levels (age, gender, year of LDL

measurement) and the LDL GRS. RA risk alleles identified mainly though GWAS are

common alleles, and were relatively common in the non-RA control group (Appendix 3).

Thus, we also had adequate power to detect an association between the RA GRS and LDL

levels in non-RA controls.

These results suggest that pathways associated with RA immune dysregulation, represented

by RA risk alleles, are associated with lower LDL levels in prevalent RA. This is in

agreement with prior hypotheses that increasing immune dysregulation prior to the onset of

RA could be the cause of decreasing LDL levels up to RA onset[2, 26] and during active

disease.

Our study represents a comprehensive analysis of the association of RA risk alleles on LDL

cholesterol levels. Rather than focusing on a small number of individual RA risk alleles, we

studied the effect of known RA risk alleles in aggregate using the most up-to-date genetic

data.[20] We also employed recent methods of determining HLA status to test for

association of HLA alleles with LDL levels. Toms, et al., studied four RA risk alleles

including the HLA-SE and found that only one, TRAF1/C5, was significantly associated

with lower LDL levels. In our study, TRAF1 (rs3761847), was not associated with lower

LDL levels. However, in agreement with Toms et al,[15] we found no association between

HLA RA risk alleles and LDL level.

There were limitations to this study. First, although 89% of subjects have a primary

physician in our health care system, the system is not closed and incomplete capture of

patient information, i.e. statin prescriptions, lipid levels, is a possibility. We excluded

subjects on statins to remain in concordance with previous lipid GWAS meta-analyses.[7]

Second, the non-RA control cohort in this study is not a random sample of the general

population. They comprise individuals who utilize the health care system in a manner

similar to RA patients, without a rheumatic disease but have other chronic diseases,

including those with non-rheumatic inflammatory disease. This approach allowed for the

creation of a comparison group of individuals with similar, age, gender, and health care

utilization and therefore similar opportunities to have lipid studies in the system as the RA

cohort. In contrast, the general population or healthy individuals are difficult to define in an

EMR. They may have less data, making it difficult to determine if they were regularly

followed in our healthcare system. Third, we did not have accurate information on fasting

status, although a recent study demonstrated that fasting and non-fasting variations in LDL

levels at the population level were small.[10] Finally, our models included all variables

known to be significantly associated with LDL levels from published studies: age, gender

and year of LDL measurement. Our approach follows those of previous large genetic

association studies of LDL conducted in the general population (which analyzed several

cohorts with data spanning 5 decades),[6, 7] and allows for comparison of results with these

studies. Other RA clinical factors such as disease activity and RA treatments may also be

associated with LDL levels, however, the significance and magnitude of these associations

are conflicting.[27] Therefore, these factors were not included as covariates in this study.
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In summary, we observed that RA cases had lower LDL levels than controls. This difference

can be partially explained by the higher burden of RA risk alleles in RA cases. Future

studies are needed to replicate our results and to determine the clinical implications of these

findings. Specifically, since LDL levels in RA patients reflect the combined effects of

distinct gene subsets involved in LDL metabolism and RA pathogenesis (and immune

dysregulation), LDL levels may have different prognostic implications for CAD in RA

patients. More investigation is needed to determine the target LDL levels for CAD risk

prevention in RA patients who have a higher burden of RA risk alleles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Mean levels of LDL among RA cases grouped by tertiles of the LDL and RA GRS for (a) RA cases and (b) non-RA controls.

(Note: no interaction observed between the RA GRS and LDL GRS)
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Table 1

Clinical characteristics of prevalent RA cases compared to non-RA controls.

Clinical characteristics RA cases, n=567 Non-RA controls, n=979 p-value

Age LDL measured, yrs 54.5 (12.3) 55.2 (12.5) 0.29

Female, n (%) 456 (80.4) 777 (79.4) 0.65

Mean year LDL measurement (SD) 2000 (4.9) 1998 (5.2) <0.0001

ACPA status, n (%) 422 (74.4) 1 (0.6)* <0.0001

Lipoprotein levels (mg/dL)

LDL, mean (SD) 117.2 (36.5) 125.6 (41.7) <0.0001

Tchol, mean (SD) 199.4 (43.5) 208.3 (49.9) 0.0002

HDL, mean (SD) 56.1 (18.1) 53.8 (17.8) 0.01

*
out of 156 controls with ACPA data
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Table 2

The association between (a) the LDL GRS and LDL levels, and (b) the RA GRS and LDL levels, among RA

cases and non-RA controls, adjusted by age, gender and year of LDL measurement.

(a)Association of LDL GRS with LDL
levels

(b)Association of RA GRS with LDL
levels

Variables Beta coefficient (SE) p-value Beta coefficient (SE) p-value

Age 0.34 (0.08) 1.4×10−5 0.34 (0.08) 1.9×10−5

Female gender 4.90 (2.41) 0.04 6.23 (2.44) 0.01

Year of LDL measurement −2.55 (0.19) 8.6×10−39 −2.60 (0.19) 1.50×10−39

RA case*GRS (LDL GRS) 0.72 (0.16) 6.2×10−6 (RA GRS) −4.58 (1.71) 0.007

Control*GRS (LDL GRS) 0.85 (0.16) 9.4×10−8 (RA GRS) −4.26 (1.79) 0.02

RA cases with RA GRS data, n=541 Non-RA controls with RA GRS data, n=945

Interaction tests: No significant difference in association between LDL GRS and LDL levels in RA cases and non-RA controls, p=0.45
No significant difference in association between RA GRS and LDL levels in RA cases and non-RA controls, p=0.17

Note: RA cases with LDL GRS data, n=542 Non-RA controls with LDL GRS data, n=963
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Table 3

Association between RA case status (yes/no) and LDL levels in a model containing (a) the LDL GRS, and (b)
the RA GRS, adjusted by age, gender and year of LDL measurement.

(a)LDL GRS (b)RA GRS

Variables Beta coefficient (SE) p-value Beta coefficient (SE) p-value

RA case status −4.31 (2.04) 0.03 −2.15 (2.11) 0.31

GRS 0.81 (0.15) 3.0×10−7 −4.32 (1.75) 0.01

RA cases with RA GRS data, n=541 Non-RA controls with RA GRS data, n=945

Interaction tests: No significant differences in association of GRSs between RA cases and controls. Therefore, GRSs combined into one average
estimate in these models.

Note: RA cases with LDL GRS data, n=542 Non-RA controls with LDL GRS data, n=963
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Table 4

The association between RA GRS, LDL GRS and LDL levels in a multivariable model adjusted by age,

gender and year of LDL measurement in RA cases and non-RA controls.

Variable Beta coefficient (SE) p-value

RA case status −3.25 (2.14) 0.13

RA GRS −4.68 (1.76) 0.008

LDL GRS 0.78 (0.16) 9.31×10−7

Note: Subjects with both complete LDL GRS and RA GRS data, RA cases, n=516; Non-RA controls, n=930
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