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Abstract
The left ventricle (LV) responds to a myocardial infarction (MI) with an orchestrated sequence of
events that results in fundamental changes to both the structure and function of the myocardium.
This collection of responses is termed LV remodeling. Myocardial ischemia resulting in necrosis
is the initiating event that culminates in the formation of an extracellular matrix (ECM)-rich
infarct scar that replaces necrotic myocytes. While the cardiomyocyte is the major cell type that
responds to ischemia, infiltrating leukocytes and cardiac fibroblasts coordinate the subsequent
wound healing response. The matrix metalloproteinase (MMP) family of enzymes regulates the
inflammatory and ECM responses that modulate scar formation. Matridomics is the proteomic
evaluation focused on ECM, while degradomics is the proteomic evaluation of proteases as well as
their inhibitors and substrates. This review will summarize the use of proteomics to better
understand MMP roles in post-MI LV remodeling.
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Introduction
Following a myocardial infarction (MI), the left ventricle (LV) undergoes a series of events
that substantially alters LV structure and function. This process is termed LV remodeling
and occurs in three primary, but overlapping, phases.
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The first phase starts immediately after MI and lasts for approximately three days. During
this time, the infarct tissue expands resulting in LV chamber dilation, and the inflammatory
response is initiated [1]. In the absence of reperfusion, neutrophils are the first inflammatory
cells to infiltrate the necrotic myocardium and release reactive oxygen species and proteases.
With reperfusion, all leukocyte types enter simultaneously [2].

During the second phase that occurs at 3–7 days post-MI, the LV continues to dilate and
becomes spherical, and there is a reduction in ejection fraction and an increase in myocardial
strain (Figure 1). Necrotic cardiomyocytes in the infarct region are removed while viable
myocytes in the peri-infarct region undergo compensatory hypertrophy. Macrophage
infiltration peaks to remove necrotic myocytes and apoptotic neutrophils, as well as activate
cardiac fibroblasts that secrete extracellular matrix (ECM) for infarct scar formation [3]. The
formation of the infarct scar results from a balance between ECM degradation and synthesis.
Excessive ECM degradation by matrix metalloproteinases (MMPs) can lead to excessive
thinning of the LV free wall with resultant aneurysm or rupture [4]. As a result, the LV is
most vulnerable to rupture during this time period in both animal models of permanent
artery occlusion and humans who are not successfully reperfused. Excessive ECM
degradation can also disrupt cardiomyocyte alignment and impair contraction or electrical
signaling [5]. Conversely, excessive ECM synthesis by fibroblasts can lead to a stiff and
non-compliant LV, the development of diastolic dysfunction, and ultimately progression to
heart failure. Therefore, successful wound healing post-MI relies on a balance between
sufficient ECM degradation and synthesis.

The third phase begins around day 7 post-MI and continues indefinitely. This phase involves
the chronic LV remodeling response that occurs at a highly variable rate in both animal
models and patients. The possible outcomes of this phase ranges from formation of minor
scar tissue with no further progression of fibrosis and no residual symptoms to extensive
adverse remodeling with resultant congestive heart failure [6].

Currently, over 90% of acute MI patients that present to the emergency department survive
beyond 30 days, which primarily reflects the benefit of reperfusion strategies [7–9].
However, 20–45% of MI survivors will subsequently develop adverse LV remodeling and
heart failure despite currently available therapies (i.e., angiotensin converting enzyme
inhibitors, angiotensin receptor inhibitors, statins, and beta-adrenergic blockers) [10–12].
Because of this limitation in current therapeutic options, novel strategies are needed to
diagnose and treat patients who are at risk for progression to heart failure [8, 13–15].

Identifying ECM changes that regulate the physiological response to MI is essential to
understanding LV remodeling [16–18]. Matridomics provides a global, integrated view of
the ECM network at the protein level, and degradomics is the proteomic evaluation of
MMPs, their inhibitors, and substrates. These approaches provide promising avenues to
elucidate mechanisms and identify therapies to limit adverse post-MI LV remodeling [19].

Strategies to focus on ECM
Matridomics is defined as the proteomic evaluation of all the components of the ECM
present in a tissue at the time of evaluation. This approach examines multiple ECM proteins
in a high throughput way, which has several advantages over examining ECM at the
transcriptional level or the individual ECM protein level. For one, mRNA levels do not
always correlate with protein levels. Further, mRNA levels do not provide information on
protein quality, and this is especially true for the highly post-translationally modified ECM.
In addition, a matridomics approach provides direct information about ECM proteins,
including quantity and quality (e.g., presence of post-translational modifications) [19]. Post-
translational modifications can dramatically alter the signaling transduction networks that
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link intercellular and extracellular communication [20, 21]. Post-translational modifications
relevant to the ECM include glycosylation, citrullination, and proteolytic processing [20].
The latter is of especial importance for MMP regulation of ECM.

Strategies to study ECM proteins include evaluation of ECM secreted from isolated cells
(secretome) or within a tissue (matridome; Figure 2). Using reverse phase liquid
chromatography coupled to mass spectrometry, Stastna et al. identified 83 unique proteins
present in media obtained from cultured rat cardiac stem cells compared to cultured neonatal
rat ventricular myocytes. Atrial natriuretic protein and connective tissue growth factor were
found to be derived from myocytes, while interleukin-1 receptor-like 1 protein (ST2) was
found to be derived from cardiac stem cells [22]. Stable isotope labeled amino acids in cell
culture (SILAC) labeling has also been used to quantify the secretome of transforming
growth factor- β (TGFβ) signaling-deficient mammary fibroblasts. Over 1000 proteins were
identified in the conditioned media as being differentially expressed between fibroblasts
with or without an intact TGFβ receptor II, including colony stimulating factor-1, TIMP-2,
and TIMP-3 [23].

Compared to isolated cell studies, analyzing ECM proteins in complex tissue is at least a
magnitude more difficult. Secreted proteins can be collected from serum-free conditioned
cell media to separate out from cellular proteins. However, ECM proteins within tissue
surround cells in a highly organized and cross-linked scaffold that complicates their analysis
at several levels. Many ECM proteins are large, difficult to solubilize, and undergo
extensive post-translational modifications. In addition, multiple cell types within the
myocardium contribute a large number of intracellular proteins that interfere with the
analysis of ECM proteins. These cell types include myocytes, endothelial cells, vascular
smooth muscle cells, fibroblasts, infiltrating leukocytes, and myofibroblasts. Because of the
high cellular content, intracellular proteins should be removed to enrich the ECM fraction.
One approach is to decellularize the tissue sample to enrich for ECM [24, 25]. Several
versions of this technique have been developed, with the main difference being that sodium
dodecyl sulfate (SDS) with or without Triton X-100 was used to fragment cell and organelle
membranes. Once the cellular constituents are solubilized, they can be removed from the
sample.

The Mayr laboratory has utilized the decellularization approach to examine both vascular
and cardiac ECM [26–28]. They used a multi-step extraction approach that sequentially
enriched for ECM proteins. The first extraction step used 0.5 M NaCl to extract highly
soluble proteins. The second extraction step used 0.08% SDS to remove cellular
components. The final extraction used 4 M guanidine HCl to solubilize the decellularized
ECM. Using this approach, they identified 103 ECM proteins in human aortas and 125 ECM
proteins in human abdominal aortic aneurysms. The Mayr laboratory also examined the left
ventricles of pigs and humans that had been reperfused [19, 27]. A total of 139 ECM
proteins were identified in decellularized porcine LVs that had been exposed to 2 h of
ischemia and 15 or 60 days of reperfusion. For 15 of the proteins, this was the first report
linking them to cardiac ECM. In addition, several of the newly identified cardiac ECM
proteins have been previously linked to cartilage homeostasis. A major strength of this study
was that both the border and infarct regions were analyzed, which provided spatial and
temporal information on ECM scar composition changes in response to reperfusion.
Combining the protein signatures of acute and chronic remodeling stages with an analysis of
protein network interactions, the investigators identified transforming growth factor β1 as a
pivotal regulator of ECM remodeling in the setting of ischemia and reperfusion. The study
also identified ECM proteins which are known to play a role in cardiac remodeling such as
cartilage intermediate layer protein 1, matrilin-4, extracellular adipocyte enhancer binding
protein 1, collagen α-1 (XIV). As evidenced from the results described above, using a
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matridomic approach provides an unbiased method to focus in on ECM changes that occur
during LV remodeling.

Degradomics
Degradomics is broadly defined as the characterization of all proteases, inhibitors, and
substrates in a tissue at the time of evaluation [29]. In humans, there are more than 500
proteases, 150 protease inhibitors, and hundreds of identified substrates and interactors [30].
Time and tissue specificity limits the number of proteases present at evaluation, as not every
protease is present in all tissues at any one given time Degradomics is a shotgun approach
that can be used with both label and label-free mass spectrometry. By design, shotgun
proteomic approaches are unbiased; our means to analyze and interpret the results, however,
are still confined by reductionist concepts. Because of the high complexity of results
obtained, coupling degradomics datasets with sophisticated bioinformatics is necessary to
fully appreciate the rich supply of proteomic information.

Some techniques that have been used to screen for MMP substrates include substrate phage
display, proteomic identification of protease cleavage sites, and combinatorial peptide
libraries [31]. Protein topography and migration analysis platform (PROTOMAP) is a
technique that couples one dimensional electrophoresis with mass spectrometry to directly
map cleavage sites and identify substrates. This approach has been used to identify caspase
substrates and would likely be applicable for MMP substrates. More recently, N-
terminomics has been used to search for MMP substrates [29]. This approach isolates
proteolytically generated N-termini to simultaneously identify substrates and cleavage sites
in a single experiment. Four specific approaches that use N-terminomics include terminal
amine isotopic labeling of substrates (TAILS), combined fractional diagonal
chromatography (COFRADIC), acetylation of N-termini, and selective biotinylation of
unblocked N-terminal α-amines chemically or by subtiligase [32–37].

Using the above approaches, different comparison groups have been used to identify
protease substrates. In vivo, most experimental designs use wild type vs. null or transgenic
mice. In vitro, isolating cells from these mice or using inactive catalytic domains to capture
substrates has frequently been used [31]. Because MMP cleavage of the substrate is a
temporary event, several groups have used exosite scanning techniques to determine MMP
binding partners. Exosites are domains ancillary to the catalytic domain that mediate
interactions and facilitate substrate binding to modulate affinity, efficiency, and sequence
specificity [30]. MMP exosites include the collagen binding domain and the hemopexin
domain [38]. Because protease-substrate interactions are transient and difficult to analyze
kinetically, using an exosite approach takes advantage of the fact that the binding is more
stable, particularly when used in the absence of a catalytic domain or with a mutated
catalytic domain [31]. Recombinant exosites can also be used as competitive inhibitors to
find substrates. Exosite scanning has been used with a quantitative proteomic approach to
identify monocyte chemotactic protein-3 as a MMP-2 substrate [39, 40].

The identification of a broad substrate list has allowed the development of predicted
cleavage site consensus sequences, and bioinformatics can be used to search for candidate
substrates. Figure 3 shows confirmed and candidate substrates of MMP-9 as an example of
the coupling of these approaches to obtain a molecular network for a particular MMP.
Candidate substrates that are derived from in silico approaches need to be biochemically
confirmed using in vitro and in vivo assays. Further, identifying whether a protein is a MMP
substrate is much easier than identifying where the substrate is cleaved. While knowing that
a protein is a substrate provides mechanistic insight, knowledge of the exact cleavage site(s)
is necessary to understand the functional consequences of the cleavage. For some proteins,
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cleavage results in activation while for other proteins it results in inactivation. Only a small
proportion of candidate substrates have been validated in vitro, fewer have been validated in
vivo, and fewer still have been mapped to identify the cleavage site(s). The MEROPS
database (merops.sanger.uk) has been developed, which provides integrated information on
proteolytic enzymes, their substrates, and inhibitors along with a collection of known
cleavage sites.

The net function of an MMP is defined by its substrate repertoire. The main factors that
determine if an MMP will have a beneficial or detrimental consequence are the MMP
source, location, and time of induction. Therefore, once the substrate list is developed, it will
be important to rank substrates based on both preference and importance. In vitro cleavage
of a substrate by MMP does not mean that the substrate is preferred in vivo, and this is a
major difference between traditional biochemical approaches and proteomics techniques.
When unbiased screens are used to identify novel MMP substrates, fewer than 20% of
substrates identified are ECM. The low percentage suggests that signaling regulation is a
key MMP function and many MMP substrates are non-ECM proteins, or that difficulties in
resolving ECM are responsible for the low percentage of ECM substrates observed (or
maybe both) [41]. The former indicates an important role for MMPs in chemokine
processing; and more than 35 chemokines are known to be regulated by MMPs [42].
Quantitative proteomics can be used with competitive assays to see which substrate(s) in a
complex mixture are preferred. Developing a hierarchy of preference will be essential to
understanding the net biological consequence of MMP activity. In the setting of pathology,
the background proteolysis (which occurs to maintain system homeostasis) may need to be
subtracted if it contributes noise that makes interpretation difficult. Finally, studies to
determine which MMPs cleave a particular substrate and if there is a hierarchical preference
are needed. If several MMPs process the same substrate, but at different cleavage sites, the
differences in the cleavage fragments produced may result in diverse downstream effects.
This highlights the strong need to identify MMP substrates from in vivo samples, which are
the most biologically relevant.

Using Degradomics to Develop Better MMP Inhibitors
In clinical cardiovascular studies, MMP inhibitors have not proven efficacious for multiple
reasons, including trial design, patient selection, inadequate (or nonspecific) dosing issues,
and an incomplete picture of MMP biology [43]. One important concept brought out from
degradomic studies is that MMPs proteolyze substrates that have a deleterious role in
remodeling as well as those that have a beneficial role. Global, nonspecific inhibition
strategies have not worked; and strategies that only focus on inhibiting one MMP may not
work either. Rather, strategies that inhibit the upstream activators or the downstream
substrates may prove more useful. Inhibiting MMPs by targeting upstream pathways will
only work if this is a “leaky strategy,” since both the positive and negative effects will be
blocked if all upstream signaling is inhibited. A more fruitful approach may be to target the
downstream substrates. In order for this to be viable, the most biologically important
substrates need to be identified, as the most obvious ones may not be the most important.

Pharmacoproteomics is the global analysis of the effects of a drug on the system assessed,
using proteomic techniques to map effects [38]. This approach can be used as a high
throughput method to screen for candidate drugs or to refine inhibition strategies if the
critical positive and negative substrates are known. Degradomic approaches highlight the
complexity of the protease network, which has been described as a web, with
interconnections among the protease families [29]. Understanding the interconnectivity and
dependence of components and mapping these effects will help to increase the efficiency of
pre-clinical inhibitor evaluations and may help to limit severe side effects that have been
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observed during early clinical development. For example, factors that exacerbate adverse
remodeling need to be identified and compared to those that are protective, such as factors
that resolve the inflammatory response. Using the protease web to identify critical
intersections where protease pathways cross to affect these factors will provide mechanistic
insight and help to identify therapeutic targets. The complexity of the interclass connections
also highlight that interpretations for MMP null studies often do not consider both the direct
and indirect effects of the gene deletion.

ECM Proteins Involved in LV Remodeling
It is estimated that approximately 140 different protein components make up the ECM [29],
and several ECM components are known to be involved in post-MI LV remodeling. ECM
proteins include those that provide structure (e.g., collagens, fibronectin, and laminin) as
well as those that provide support roles. The latter includes matricellular proteins (e.g.
secreted protein acidic and rich-in-cysteine (SPARC) and thrombospondin-1 (TSP-1)), as
well as the MMPs. Matricellular proteins are a group of ECM proteins that do not play a
direct role in formation of structural elements but indirectly regulate cell-matrix interactions
[44]. We will briefly summarize below the known roles for each of these components in the
post-MI remodeling response, to describe how ECM proteomics can be used to understand
remodeling.

Collagens
Collagen I is the most abundant collagen type in the normal adult myocardium, and collagen
degradation is robust during the first and second phases of post-MI remodeling. In a rat MI
model, Weber et al showed that collagenolytic activity increased on the second day post-MI
and remained elevated through day 7 [45]. Cannon and colleagues reported significant
collagen degradation in the rat on the first day after coronary artery ligation [46], and
Villareal and colleagues reported collagen I degradation beginning 15–30 minutes post
occlusion and continuing for up to 48 hours post-MI [47]. There are multiple collagen
subtypes, and the major collagens synthesized in the post-MI infarct region are collagens I
and III. Collagen I and III mRNA levels increase at day 2 and remain elevated for at least 21
days post-MI [48]. Other collagens known to increase post-MI include types IV, V, and VI.
Interestingly, collagen VI alpha 1 null mice show reduced LV dilation and collagen
deposition compared to wild type at 8 weeks post-MI [49]. Collagen VI has also been shown
to induce myofibroblast differentiation post-MI [50].

There are several additional collagen types in the heart, including collagen type 15 (Col XV
or Col15a1) and collagen type 18 (Col XVIII or Col18a1). Mice lacking Col XV
demonstrated irregularly organized ECM matrix [51]. Of interest, both Col XV and Col
XVIII can be proteolytically processed to generate fragments. Due to high homology, two
Col XV fragments (restin and the C terminal fragment NC1) form similar fragments from
Col XVIII (termed endostatin and NC1, respectively) [52, 53]. These fragments are
generally anti-angiogenic, although their roles can vary depending on whether the fragment
is soluble or immobilized.

Fibronectin and Laminin
The glycoproteins fibronectin and laminin are normally expressed at high levels during
development, at low levels in the adult, and are robustly re-expressed post-MI [54, 55].
Fibronectin is present in two forms: a soluble circulating form and an insoluble extracellular
matrix form [56]. In the normal myocardium, fibronectin is localized to the basement
membrane that surrounds endothelial and smooth muscle cells [57]. Fibronectin coordinates
multiple cellular processes, including adhesion and migration as well as growth and
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differentiation [58]. For example, the adherence of fibrillar collagen to cardiac myocytes is
mediated through adhesion to fibronectin [59]. George and colleagues demonstrated the
importance of fibronectin for early embryonic development, as fibronectin null mice are
embryonic lethal and show notable cardiac defects [60].

Fibronectin levels robustly increase early post-MI. Knowlton and colleagues demonstrated a
13-fold increase in fibronectin mRNA in the rabbit heart at day 1 post-MI [61]. Mice lacking
the extra domain-A (EDA domain) of fibronectin showed decreased mortality, better
systolic function, and less LV dilatation at 7 days post-MI compared to wild-type mice [62].
Fibronectin has also been shown to influence monocyte migration into the infarcted
myocardium, by binding to the VLA-5 receptor [63]. The 120 kDa fibronectin fragment
stimulates tissue-infiltrating macrophages into the damaged myocardium, which in turn
prevents apoptotic death of viable cardiac myocytes [64].

Similar to fibronectin, laminin also coordinates cell adhesion, migration, growth, and
differentiation [65]. Laminins are a family of basement membrane proteins that naturally
exist as heterotrimeric polypeptides. Currently, 16 laminin trimer groups have been
identified [66]. Several groups report increased laminin levels post-MI, including increases
in laminins α2, α4, α5, β1, β2, and γ1 [67, 68]. A study in rat ventricles showed the presence
of laminin in the basal membranes of cardiac myocytes using confocal microscopy [69].
Another study in cat showed that freshly isolated adult cardiac myocytes readily attach to
laminin via β1 integrin receptors [70]. The role of laminin post-MI, however, has not been
evaluated by null or overexpression strategies.

In the post-MI heart, degradation of both fibronectin and laminin occur in wild type control
mice, and this was attenuated in MMP-2 null mice to indicate a direct or indirect role for
MMP-2 in the cleavage of these particular ECM proteins. Cleavage of fibronectin and
laminin was associated with increased macrophage infiltration into the infarcted area [71].
Although the exact sequences have not been mapped, the cleavage of both proteins plays an
integral role in the post-MI inflammatory response. Interestingly, the proteolytic processing
of fibronectin and laminin is not likely to be MMP-2 selective, as MMP-9 has also been
shown to cleave these proteins in vitro [72, 73]. The degradomic approaches described
above may provide useful information on the processing of these ECM proteins in the post-
MI setting.

SPARC and TSP-1
Several matricellular proteins are also present in the post-MI heart. Matricellular proteins are
ECM proteins that modulate cell function by serving as accessory ECM proteins. However,
unlike fibrillar ECM proteins, matricellular proteins do not contribute directly to fibril and
basil laminae organization in the heart [44].

Two noteworthy matricellular proteins in the post-MI LV are SPARC and TSP-1, both of
which are secreted by fibroblasts. SPARC, also known as osteonectin, is an extracellular
Ca2+ binding protein expressed at high levels in post-MI LV [74]. SPARC mRNA and
protein levels are significantly increased in the LV at days 2–14 post-MI [75], [76]. Reed
and colleagues showed a positive correlation between SPARC expression and the level of
inflammatory response, particularly an increase in leukocyte infiltration that began at day 2
post-MI [77].

The absence of SPARC correlates with improved early LV function at day 3 post-MI but
increased mortality by day 14 post-MI [78], due to a significant increase in the incidence of
cardiac rupture in SPARC null mice [27].Consistent with this finding, fibroblast activation
was blunted in the nulls at day 3 post-MI. Mice with adenoviral overexpression of SPARC
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showed improved collagen maturation and decreased cardiac dilatation and dysfunction
post-MI when compared to wild type [27].

SPARC effects on LV structure and function in the post-MI setting are likely due in part to
its interactions with collagen. Collagens I, II, and III contain major binding sites for SPARC
[79]. In addition, collagen levels in the conditioned media of SPARC null fibroblasts are
decreased compared to WT fibroblasts [80]. Similarly, decreased collagen I secretion has
been seen in SPARC-null mesangial cells [81]. Therefore, SPARC may play an important
role in formation of scar tissue post-MI by regulating the inflammatory response, fibroblast
activation, and collagen assembly into the scar.

The thrombospondins are a group of five secreted Ca++-binding glycoproteins. TSPs -1 and
-2 exist in a trimeric form, while TSPs -3, -4, and -5 exist as pentamers [82]. One of the
major roles of TSP is to interact with membrane proteins, such as integrins and
proteoglycans, to regulate cell-ECM signaling and alter cell migration and adhesion [83, 84].
In the post-MI rat myocardium, TSP-1 increases and is expressed by fibroblasts and
macrophages [85]. In TSP-1 null mice, macrophage and myofibroblast infiltration increases
in the infarct area at day 3 post-MI compared to wild type controls. In addition, TSP-1 null
mice demonstrate increased LV end diastolic volume post-MI, indicating that TSP-1
deletion can affect global LV function [86]. TSP-1 has also been shown to activate TGF-β1,
further implicating TSP-1 in the post-MI inflammatory and fibrotic responses [87].

Both SPARC and TSP-1 interact with MMPs. SPARC upregulates membrane type MMP-1,
as well as MMP-2 [88]. TSP-1 upregulates MMP-9 expression in breast cancer and gastric
cancer tissue, as well as in endothelial cells [89, 90]. In vascular smooth muscle cells, TSP-1
increased MMP-2 activity [89]. However, the role of TSP-1 in directly regulating MMPs has
not been resolved and likely involves biphasic effects. In addition, both SPARC and TSP-1
have been shown to be MMP substrates by in vitro or in silico approaches [91].

Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases (TIMPS)
Matrix metalloproteinases (MMPs) are proteolytic, zinc-dependent enzymes responsible for
turnover of ECM and non-ECM substrates [6]. The MMP family is currently composed of
25 proteinases loosely categorized into five groups based on in vitro substrate preferences or
localization: collagenases, gelatinases, stromelysins, matrilysins, and membrane-type MMPs
[6]. The majority of MMPs are secreted as an inactive pro-MMP and are later activated by a
cysteine switch mechanism that releases the pro-domain from the catalytic site [6]. The
membrane type MMPs (MT-MMPs), MMP-11, and MMP-28 are exceptions as each are
intracellularly activated by furin [92]. Four TIMPs have been identified to date.

MMPs and TIMPs are involved in both the inflammatory and reparative responses to MI
[93]. Every inflammatory cell type expresses at least one MMP and TIMP, and MMP
activation can be observed in the LV within 15 minutes of reperfusion [93, 94]. The
inflammatory phase not only involves the degradation of existing ECM by MMPs, but also
involves MMP processing of cytokines and chemokines along with growth factors, all of
which coordinate the wound healing response [93]. In addition to inhibiting MMP, TIMPs
also effect cell proliferation and apoptosis [95, 96]. Of the 25 MMPs and 4 TIMPs presently
identified, MMPs -1, -2, -3, -7, -8, -9, -12, -13, -14 and TIMPs-1-4 have been evaluated
post-MI (Table 1 and Table 2) [97]. With the exception of MMP-2, the expression levels of
the other MMPs are low in the normal myocardium and are robustly increased post-MI in
both temporal and spatial specific ways [6, 97]. Endogenous MMP inhibitors are listed in
Table 3. MMP and TIMP roles, post-MI, have been reviewed previously [97, 98].
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Post-MI LV remodeling involves the dynamic interaction between the ECM and the MMPs
that break down ECM components; the relationship between MMPs and the endogenous
TIMPs that block MMP activity; and the interconnection between cytokines and growth
factors, ECM components, and MMPs [99]. Therefore, consideration of MMP effects is
crucial for successful therapeutic approaches for MI. Table 1 summarizes the current
literature with regard to MMP and TIMP levels post-MI

Conclusions
Matridomics and degradomics are emerging proteomic techniques that hold promise to drive
the ECM remodeling field forward. However, before that success is achieved, several issues
need to be resolved. Current ECM enrichment protocols do not likely solubilize the entire
ECM, and an incomplete analysis of the ECM composition limits the full potential of this
approach. More effective homogenizing buffers that can completely dissolve the ECM need
to be evaluated for compatibility with downstream mass spectrometry approaches, whether
used as a gel-free method or coupled to 1-DE analysis. As with all other proteomic
approaches, consistent and highly reproducible sample preparation is a key step to both
matridomic and degradomic strategies. Finally, systems biology approaches and close
collaboration with bioinformaticians are needed for adequate data interpretation. Harnessing
the complexity of the ECM environment will likely provide critical information that will
allow us to develop novel therapeutic strategies to limit the progression of adverse LV
remodeling, improve quality of life, decrease morbidity, and improve survival.
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LV left ventricle

MMP matrix metalloproteinase

MI myocardial infarction
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Figure 1.
A representative speckle tracking-based strain echocardiographic analysis of the left
ventricle (LV) pre- and post-myocardial infarction (MI). A: Baseline and B: Day 7 post-MI.
The post-MI image illustrates LV dilation, reduced ejection faction, and decreased radial
and longitudinal strains. Images were acquired with a Vevo 2100 (Visualsonics; our own
unpublished data). Analysis was conducted using the VevoStrain™ software.
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Figure 2.
A representative experimental design for a matridomics study. Two strategies typically used
to identify ECM proteins differentially expressed are: 1) decellularization of the tissue to
focus in on the extracellular matrix environment; or 2) SILAC labeling to examine the
fibroblast secretome. SILAC- stable isotope labeling by amino acids in cell culture; ECM-
extracellular matrix; ELISA- enzyme-linked immunosorbent assay; LV- left ventricle; and
TIMP- tissue inhibitor of metalloproteinases.

Patterson et al. Page 17

Proteomics Clin Appl. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
A selection of the MMP-9 molecular interaction network. Known substrates are shown in
the black boxes, while candidate substrates are shown in the white boxes. Factors that bind
to MMP-9, but are not substrates, are shown in gray. IL-8- interleukin-8; SPARC- secreted
protein acidic and rich in cysteine; TFPI- tissue factor pathway inhibitor; PF 4- platelet
factor 4; IL-1β- interleukin-1β; ICAM-1- intercellular adhesion molecule-1; OPN-
osteopontin; GRO α- growth related oncogene alpha; FGF R1- fibroblast growth factor
receptor 1; ET-1- endothelin-1; and NGAL- neutrophil gelatinase-associated lipocalin.
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Table 1

Matrix metalloproteinase (MMP) levels post-MI.

MMP Post-MI Levels

MMP-1 ↑ from days 3–7 post-MI [6, 50, 100]

MMP-2 ↑ from day 4, peaks at day 7 and ↓ to pre-MI levels by day 14 post-MI [6]

MMP-3 ↑ 48 hours post-MI, peaks by day 4 [6, 46, 49]

MMP-7 ↑ in 1st week post-MI and ↓ to pre-MI levels by 8 weeks post-MI [6]

MMP-8 ↑ at 2 weeks post-MI and stays elevated [6, 61, 77]

MMP-9 ↑ in first week post-MI, reduces to control levels by 14 days post-MI [6]

MMP-13 ↑ in 72 hours and declines by 14 days post-MI [6, 76]

MMP-14 ↑ in 3 days post-MI and further elevates by 16 days post-MI [6]
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Table 2

Tissue inhibitor of metalloproteinase (TIMP) cardiac cell expression and levels post-MI

TIMP Cardiac Cell Expression Post-MI levels

TIMP-1 cardiac myocytes, leukocytes, and
fibroblasts [97]

Protein levels ↑ 3 d post-MI in the infarct region of mice; mRNA ↑ 6 h post-MI and ↓ after
2 d in the infarct region of rats [97, 101]

TIMP-2 cardiac fibroblasts [97] Significant ↓ in protein levels at 3 d and 1 w post-MI in mice; no change observed in first
week post MI but ↑ 2 and 16 w post-MI in rats [97, 102]

TIMP-3 cardiac fibroblasts [97] ↓ protein levels at 3 d and 1 w post-MI in mice; significantly low levels in the infarct
regions of sheep at 8 weeks post-MI [97, 101]

TIMP-4 cardiac myocytes and cardiac
fibroblasts [97] [103]

↓ protein levels at 1 w post-MI in mice; ↓protein at 1 and 8 w post-MI in rats [97, 101]
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Table 3

Endogenous MMP Inhibitors.

α macroglobulin [104] RECK [104]

MMP pro domains [105] Thrombospondin-1 or -2 [105]

Procollagen C-proteinase inhibitor [105] Tissue factor pathway inhibitor 2 [104, 105]
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