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Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, about which our
understanding is expanding rapidly as its genetic causes are uncovered. The pace of new gene
discovery over the last 5 years has accelerated, providing new insights into the pathogenesis of
disease and highlighting biological pathways for target for therapeutic development. This article
reviews our current understanding of the heritability of ALS, provides an overview of each of the
major ALS genes, highlighting their phenotypic characteristics and frequencies as a guide for
clinicians evaluating patients with ALS.

INTRODUCTION
Definition

Amyotrophic lateral sclerosis (ALS), also referred to as Lou Gehrig’s disease or motor
neuron disease, is fatal neurodegenerative disease characterized by the progressive loss of
cortical, brainstem, and spinal cord motor neurons.

Symptoms and Clinical Course
The classic clinical symptoms of ALS arise from the progressive loss of both upper motor
neurons (UMN) located in the cerebral cortex and lower motor neurons (LMN) located in
brainstem nuclei or anterior horn of the spinal cord. However, ALS is increasingly
recognized as a multisystem neurodegenerative disease, in which motor neurons are
particularly, but not exclusively, involved1–3. As a result, degeneration of non-motor system
neurons occurs and results in clinically recognizable symptoms.

• LMN degeneration produces:

– Muscle cramping and fasciculations, even before weakness occurs

– Atrophy of affected muscles
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– Weakness

• UMN degeneration produces:

– Slowed movement and weakness in a pyramidal distribution

– Uncoordinated movements, particularly of fine manipulation

– Spastic tone

– Increased deep tendon reflexes, sometimes with spread or clonus

– Lost regulation of laughing and/or crying (pseudo-bulbar affect)

• Non-motor system degeneration can produce:

– Executive dysfunction in a majority of patients (loss of frontotemporal
neurons)32

– Frontotemporal dementia in ~5% (loss of frontotemporal neurons)4, 5

– Parkinsonism (basal ganglia)6, 7

– Sensory loss (doral root ganglia)8, 9

ALS is commonly diagnosed according to the revised El Escorial Criteria10, 11. These
criteria require:

• Evidence of lower motor neuron (LMN) degeneration by clinical examination,
neurophysiologic testing, or pathological examination in ≥1 of 4 body regions
(bulbar, cervical, thoracic, lumbar)

• Evidence of upper motor neuron (UMN) degeneration by clinical examination

• Progressive spread of signs within a body region or to additional body regions

• Exclusion of causes other than ALS by appropriate testing (e.g. laboratory,
imaging, electrodiagnostic)

These criteria were initially developed for research purposes but are routinely applied in
many neuromuscular clinics to specify the certainty of an ALS diagnosis according to
definite, probable, and possible categories (Table 1).

The clinical phenotype of a given ALS patient depends on the location, degree, and
proportion of LMN, UMN, and non-motor involvement. At one end of the spectrum are
patients with progressive muscular atrophy (PMA) where only LMN involvement is
clinically apparent. Primary lateral sclerosis (PLS) occupies the other end, with UMN
involvement as its defining feature. Current evidence suggests that the majority of PMA and
PLS cases eventually progress to meet criteria for ALS and are therefore diseases on the
ALS spectrum12–15. Furthermore, sequencing studies highlight identical genetic causes16.
Many lines of evidence also support ALS and frontotemporal dementia (FTD) as two ends
of a clinical spectrum, including clinical observations, co-occurrence in patients, shared
neuropathologic findings, and genetic causes in common (reviewed in 17, 18).

ALS phenotypes are frequently classified by the site of symptom onset. Two-thirds of
patients have onset in the limbs (“spinal onset”), with an approximately equal distribution
between upper and lower extremities19–21. The remaining one-third of patients first
experience difficulties with speech or swallowing (“bulbar onset”). Regardless of the site of
onset or initial phenotype, the relentless loss of motor system neurons leads to progressive
paralysis and eventually to terminal respiratory failure. The rate of disease progression
varies widely, but for a given patient appears fairly linear, possibly with faster rates of
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decline in early and late disease22. Median survival estimates center on 32 months23 from
symptom onset, but varies from 23–48 months24–28. However, 20% of patients survive 5
years and 10% are still living after a decade23. Across multiple studies, bulbar onset ALS is
consistently found to be more common in women, shows a later age of onset, and is
associated with a poorer prognosis29–32. An earlier age of onset, a family history of ALS,
and presentation with primary lateral sclerosis are consistent predictors of longer
survival 19, 21, 32. Studies suggest that improvements in supportive care, including earlier use
of non-invasive ventilation are improving survival trends28, 33. Riluzole is the only
medication approved for the treatment of ALS and improves survival by 2–3 months34.

Nature of Disease
The incidence of ALS is generally consistent across diverse populations at 1–
3/100,00035–42, producing a lifetime risk of 1 in 300–100043, 44. ALS is more common in
men, typically by a ratio of 1.319, 29, 45, but this gender gap may be disappearing due to a
rising incidence of ALS among women44, 46.

Beginning with the earliest descriptions of the disease, hereditary forms of ALS have been
apparent47 and prompted categorization into familial and sporadic forms (FALS and SALS
respectively). The vast majority of FALS cases show autosomal dominant inheritance, with
X-linked and recessive patterns being rare. The prevalence of familial ALS (FALS) is
widely cited to be 10%, but this number depends greatly on the population sampled and the
definition of FALS utilized (for which is there is currently no clear consensus48). For
example, regional clinic-based series report FALS rates as high as 23%49, 50 while
prospective population-based analyses suggest the number may be closer to 5% with modest
geographical variability51. It has been proposed that the definition of FALS should take into
consideration a family history of other neurodegenerative diseases, including FTD52 (Table
2).

Clinical Findings
Physical Examination—Physical examination findings in early ALS are highly variable,
and in a given patient depend on the site of symptom onset, the relative contributions of
upper and lower motor neuron degeneration, and the degree of extra-motor involvement. No
examination findings reliably distinguish FALS from SALS, or definitively differentiate
between specific genetic causes.

Other Diagnostic Modalities—Nerve conduction studies and electromyography (EMG/
NCS) play an important role in identifying the degree and extent of lower motor neuron loss
in ALS. Furthermore, they are utilized to exclude important mimics of ALS, including
radiculopathy, polyneuropathies, and multifocal motor neuropathy. MRI and analysis of
cerebrospinal fluid are also frequently utilized to ruleout infectious polyradiculitis,
carcinomatosis, lymphomatosis, and other mimics of ALS.

Genetic Basis of Disease
Rapid advances in DNA sequencing technologies have accelerated the pace of gene
discovery and revealed an impressive genetic heterogeneity in ALS. Mutations in more than
22 genes have now been described in patients with ALS or ALS-like phenotypes, with more
than half of these representing clear moderate or high-penetrance causative genes (Table 3).
Before reviewing what is known about the most important of these genes, several themes
have been highlighted by these discoveries:

1. Genotype-phenotype correlations are imprecise in most cases.
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As is often the case with adult-onset, autosomal dominant disease, the clinical
manifestations of each gene and each specific mutation show broad clinical
heterogeneity. Even within a given pedigree, the age of onset can span decades, the
ALS phenotype can range from pure LMN syndrome to pure FTD, and the course
of the disease can range from fast progression to prolonged survival. There are
some identifiable broad trends in phenotypes (e.g., SOD1 mutations tend to have
lower extremity onset with predominantly LMN manifestations, TARDBP
mutations are more commonly upper extremity onset, C9ORF72 expansions have
an increased rate of bulbar onset and of accompanying FTD), but for each gene,
many cases disprove the rules. As a result, it is usually difficult to predict which
gene might be mutated in a given pedigree or patient.

2. Mutations in known ALS genes also explain a minority of patients with SALS.

This fact is not surprising given the fact that familial and sporadic ALS are
virtually indistinguishable in the clinic and under the microscope, showing similar
ranges of onset, survival, phenotype, and neuropathological features. Mathematical
models considering current demographic trends (e.g. increasingly smaller family
sizes), predict that moderate and even high-penetrance mutations would appear
sporadic at approximately the same rate observed in empirical cohorts53.

3. In a surprising number of cases, more than one ALS-associated mutation may
be found.

As the simultaneous sequencing of panels of ALS genes has increased with
declining costs of sequencing, patients with mutations in more than one gene are
being reported. Most commonly, the C9ORF72 expansion is found alongside a
second mutation, but co-occurrence has also been noted for other combinations of
genes, including FUS with ANG54, UBQLN2 with TARDBP or OPTN55. These
cases are possible examples of “oligogenic” inheritance, where-in clinical
manifestations of disease are influenced by the presence of both mutations. At this
point however, the number of “two-hit” cases is small and it is unclear whether
second mutations influence penetrance, disease phenotype, or progression.

C9ORF72
In 2006, FALS pedigrees were first linked to chromosome 9p2156, with a notable
cooccurrence of ALS and FTD. This pedigree and additional 9p21-linked ALS/FTD families
were recently shown to carry a massive expansion of a hexanucleotide repeat in the first
intron of C9ORF7257, 58. Whereas normal individuals carry 2–30 of the GGGGCC repeat
units, pathological expansions are at least 700–2400 repeat units in length, show a
tremendous degree of somatic variability, and appear to be larger in neuronal tissue than
elsewhere59. Due to a Northern European founder mutation, the prevalence of C9ORF72
expansions is highest in white populations where it explains 37% of FALS, 25% of familial
FTD, and ~6% of sporadic cases of ALS or FTD 60. However, the mutation is found
worldwide61.

The function of C9ORF72 is currently unknown, but recent studies suggest it may function
as a guanine exchange factor (GEF) for Rab GTPases62, 63. How a non-coding expansion in
the gene causes neurodegeneration is not currently known, but emerging evidence supports:

• Loss-of-function: repeat expansions reduce allele-specific expression by as much as
50%57, 64.

• Gain-of-function:
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– Repeat-containing RNA transcripts57 form intranuclear foci, believed to
sequester required RNA binding proteins and lead to disrupted gene
expression and dysregulated alternative splicing, as is the case for
myotonic dystrophy (reviewed in65).

– Repeat-associated non-ATG dependent translation (RANT) of the
GGGGCC repeat itself produces repetitive dipeptides that aggregate in the
cytoplasm of affected cells66, 67.

The C9ORF72 repeat expansion most commonly presents with ALS, ALS-FTD, or pure
FTD, and is associated with an increased incidence of bulbar symptom onset, an earlier age
of onset, and statistically shorter survival. The expansion has also been found in patients
with other neurodegenerative syndromes, including Alzheimer’s disease, Parkinson’s
disease, corticobasal degeneration, and ataxia68–71

SOD1
In 1993, SOD1, encoding copper/zinc superoxide dismutase, was the first causative gene
identified for ALS72. In the 20 years since, more than 160 mutations have been reported,
involving almost every amino acid of the protein (http://alsod.iop.kcl.ac.uk/). SOD1
mutations account for 15–20% of FALS pedigrees73, 74 and until the discovery of C9ORF72
was the most commonly identified gene in ALS. This likely remains true in many non-white
populations, where C9ORF72 is much less common.

Despite the fact that SOD1 is the best studied of all ALS genes, our understanding of its
pathogenic mechanism is incomplete. SOD1 is a ubiquitously expressed cytosolic protein
known to neutralize superoxides. Interestingly, several clearly pathogenic mutations have no
effect on the dismutase activity of SOD1 and reduced enzyme activity shows no correlation
with disease severity, suggesting that a gain-of-function mechanism most likely explains
pathogenesis75. Misfolding of SOD1 is likely to be important, with downstream disruption
of mitochondrial function, oxidative stress, endosomal trafficking, and excitotoxicity
(reviewed in76).

SOD1-associated ALS is clinically heterogeneous but shows several phenotypic trends
warranting mention. First, cognitive impairment is infrequent and FTD is rare77. Second, in
most patients, UMN findings are minimal or absent and the clinical picture is dominated by
LMN degeneration78. Finally, because large numbers of patients with individual mutations
have been studied, some genotypephenotype correlations can be made: p.A5V (also called
A4V) is associated with rapidly progressive disease, while other mutations (including
p.G38R and p.D11Y) are uniformly slow 79, 80. A recessive form found in Scandinavia is
due to homozygous p.D91A mutations and causes a characteristic ascending paralysis due to
LMN degeneration81.

TARDBP
One consistent pathologic finding in ALS and FTD cases is the presence of heavily
ubiquitinated neuronal cytoplasmic inclusions, which in 2006 were found to contain
TDP-43, encoded by the TARDBP gene82. Mutations in TARDBP were soon found to cause
ALS83–85 and later, FTD86. TARDBP causes 3–5% of FALS and <1% of SALS, although
founder mutations make it more common in some areas49.

TDP-43 is a DNA/RNA binding protein with broad roles in RNA metabolism87, 88,
including microRNA biogenesis89. Almost all pathogenic mutations affect the C-terminal
glycine-rich domain, the function of which is still being uncovered. Mutations in this
domain result in the translocation of TDP-43 from the nucleus to the cytoplasm, where it
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forms the hallmark aggregates. Whether it is nuclear depletion of TDP-43, cytoplasmic
aggregation, or both that causes neurodegeneration is an area of active investigation using an
expanding list of cellular and animal models.

Patients with TARDBP mutations have an earlier age of onset and longer disease duration90,
but otherwise share the broad range of presentations with sporadic ALS. Upper extremity
onset is the most common presentation, which may help differentiate from patients with
SOD1 mutations90. Some patients have extra-pyramidal involvement and rarely present with
pure parkinsonism 91, 92. Cooccurrence of FTD with ALS is common, but pure FTD has also
been reported86.

FUS
Not long after the discovery of TARDBP, linkage of ALS families to chromosome 16
revealed mutations in another RNA binding protein called FUS93, 94. Broader screening of
this gene in FALS cohorts has shown a frequency of 1–8% of Caucasian pedigrees95–97, but
a much higher frequency (10–13%) in Asian populations98–100. A similar trend is
recognized in SALS, where the FUS mutation rate is 0–0.74% 95, 101, 102 among Caucasians
but approaches 2% in Asian studies100, 103. The vast majority of families show autosomal
dominant transmission, but recessive inheritance93 and de novo cases with juvenile onset
and rapid progression are also reported104, 105.

FUS is a member of the “FET” family of proteins along with EWSR1 and TAF15, which
have also been implicated in ALS106, 107. As with TARDBP, disease associated mutations
cluster in the C-terminal domain and cause mislocalization of FUS from the nucleus into the
cytoplasm, where it is found in cytoplasmic aggregates93, 94. Interestingly, the degree of
impaired nuclear localization correlates with the age of onset for a given mutation 108. FUS
mutations, with their cytoplasmic redistribution are hypothesized to cause
neurodegeneration by a combination of mechanisms focused on i) loss of its normal
functions in the nucleus (microRNA biosynthesis, gene expression regulation, alternative
splicing) and ii) a toxic gain-of-function in the cytoplasm (stress-granules, aggregation).

FUS mutations are associated with predominantly lower motor neuron symptoms109 and
most show incomplete penetrance110. In comparison to other causes of FALS (including
SOD1), FUS mutation carriers show earlier onset and shorter survival54, 111. Several specific
mutations, especially p.P525L, typically arise de novo and have an early enough onset to be
classified as juvenile ALS112. Truncation mutations resulting in deletion of the C-terminal
nuclear localization domain also show more aggressive disease97. A broader set of
phenotypes is also rarely associated with FUS mutations, including behavioral-variant
FTD113. Mutations in FUS have also been reported in familial essential tremor, but
screening of other cohorts has failed to find additional families 114.

UBQLN2
Candidate gene sequencing in a large family with X-linked inheritance of ALS-FTD led to
the recent identification of UBQLN2 as a cause of ALS115. UBQLN2 mutations are found in
up to 2% of families without evidence of male-to-male transmission, but have proven rarer
in other large FALS cohorts55, 116–118. Interestingly, the earliest reported mutations all
disrupt proline residues in a unique, but highly conserved, PXX domain115. Subsequent
studies have uncovered a few additional families with PXX domain mutations and two
Australian pedigrees have been reported with a pathogenic mutation adjacent to this
domain119. Screening in patients with SALS have uncovered additional novel variants with
a frequency of ~1%120, but most fall outside the PXX domain and their pathogenicity is
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currently uncertain116, 121. Phenotypes associated with UBQLN2 mutations include ALS,
ALS with FTD, and juvenile onset ALS115.

Ubiquilin 2 is one of four members of the ubiquitin-like family, with roles in delivering
ubiquitinated proteins to the proteasome for degradation. UBQLN2 alone has the unique
PXX domain in which most mutations have been found, and it is hypothesized that this
domain and its proline residues are important for the specificity of protein-protein
interactions115. UBQLN2 localizes to the same neuronal cytoplasmic inclusions that stain
for TDP-43, FUS, and OPTN, not just in the spinal cords of patients with UBQLN2
mutations, but in all ALS patients studied115, 122.

PFN1
Exome sequencing recently identified PFN1 mutations in ALS123. Although this gene
explained 1–2% of families in the initial study, its frequency is likely much lower: only one
additional family124 has been found despite screening in large ALS or FTD cohorts from
around the world 121, 125–127. Furthermore, ~1 in 1000 SALS patients screened has a
p.E117G mutation123, 128, but the pathogenicity status of this variant is currently unclear- it
is found in control datasets at half the frequency as in SALS but by functional studies
appears to be a milder mutation123.

Profilin 1 is essential for the polymerization of monomeric G-actin into filamentous actin
with roles in axonal integrity and axonal transport. These roles may be important to motor
neuron degeneration as other cytoskeletal pathway genes are also implicated in ALS,
including DCTN1, NEFH, spastin and peripherin. All ALS-associated mutations described
to date are missense variants affecting amino acids in close proximity to actin binding
residues. Not surprisingly, all but the milder p.E117G mutation show decreased actin
binding, and when overexpressed, inhibit neurite outgrowth, reduce the size of axonal
growth cones and alter growth cone morphology123. Furthermore, the expression of mutated
PFN1 in N2A cells and primary neuronal culture results in ubiquitinated cytosolic
aggregates with TDP-43 co-localization, similar to those identified in patients with
SALS123.

Fewer than 30 ALS patients with PFN1 mutations been reported to date. Strikingly, all have
presented with limb onset and none have had significant cognitive impairment or
FTD 123, 124, hinting at a consistent phenotype for PFN1 mutations that may parallel SOD1-
associated ALS.

ANG
Since angiogenin (ANG) was first examined as a candidate gene for ALS, numerous
mutations have been reported in both familial and sporadic disease. However, many reported
variants lack segregation evidence and are now recognized as rare variants in the population
(e.g. 1000 Genomes Project or NHLBI’s Exome Variant Server). These ANG variants might
function as low penetrance mutations, increasing the risk of developing ALS129. Recent
work demonstrates ALS-associated ANG mutations impair the formation of stress granules
in neurons130, which is interesting in light of the recruitment of TDP-43 and FUS to stress
granules. Clinical and neuropathologic features of ANG associated ALS are typical of ALS
in general, without discriminating features131.

OPTN
Study of Japanese ALS patients identified mutations in OPTN as a rare cause of ALS, with
both recessive and dominant acting mutations132. Subsequent studies have revealed a few
additional families and rare mutations in SALS133–135. Optineurin is found in TDP-43
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positive neuronal aggregates in mutation carriers132, and can be seen in neuronal aggregates
in non-OPTN ALS132. OPTN associated ALS is heterogeneous in its presentation based on
the limited number of patients reported to date, and no clear phenotype has yet been
identified.

VCP
Mutations in valosin-containing protein (VCP) were first shown to cause inclusion body
myopathy with Paget’s disease and frontotemporal dementia (IBMPFD)136. Recently
however, it has been recognized that rarely, an ALS phenotype can also be seen137–141. A
personal or family history of FTD, myopathy, Paget’s disease, or an elevated serum alkaline
phosphatase (a biomarker for the presence of Paget’s) may serve as clues to this genetic
cause.

SETX
Mutations in senataxin (SETX), a DNA/RNA helicase, were first associated with a juvenile-
onset, slowly progressive form of ALS (ALS4)142. Screening in more typical ALS patients
has uncovered a handful of additional novel or rare variants in SALS, but the pathogenicity
of these variants remains unclear 143, 144.

VAPB
A founder mutation in VAPB (p.P56S) was first identified in Brazilian families with a
spectrum of motor neuron degenerative phenotypes ranging from late onset spinal muscular
atrophy to rapidly progressive ALS145. Although a large number of FALS and SALS cases
have been screened for this gene, only a handful of additional rare or novel variants have
been uncovered but with unclear pathogenicity 146–149.

Other Genes
Mutations in additional genes have also been found in patients with ALS, including
FIG4150, DAO151, hnRNPA2B1152, hnRNPA1152, SQSTM1/p62153–156, and
DCTN1157, 158.

Genomics/Risk Variants
With only 5–10% of sporadic ALS cases harboring disease associated mutations in known
ALS genes159, the remainder of SALS is presumed to be a complex disease influenced by
both genetic and environmental exposures. Efforts to identify genetic risk factors have
largely focused on genome-wide and candidate gene association studies, with mixed
success.

• CYP27A1160: Using gene expression and genotyping data from SALS patients,
SNPs impacting the expression of CYP27A1 were recently identified as small
effect risk factor for ALS. Validation studies have yet to be reported.

• Ataxin-2 intermediate length repeats: Full pathogenic expansions in the CAG
repeat (>34 repeats) of ATXN2 cause spinocerebellar ataxia type 2, a disorder
sometimes accompanied by motor neuron degeneration. Investigations of CAG
repeat length in SALS identified intermediate-sized repeats (27–33) as a risk
factor161. Additional studies across multiple populations have confirmed this
association 162–169, though the strength of association may be lower in some
populations170. The link between intermediate repeats in ATXN2 and ALS appears
to be due to an interaction with FUS171 and TDP- 43172.
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• UNC13A: First identified by genome wide association study (GWAS) in 2009173,
variation near UNC13A has been replicated as a risk for developing SALS174, and
the minor allele at SNP rs12608932 shows a significant association with reduced
survival in patients174, 175. UNC13A is a presynaptic protein involved in regulating
neurotransmitter release and it has been hypothesized that the increased risk could
be due to glutamate dysregulation and resulting excitotoxicity 173.

• DPP6: DPP6 is a component of type A neuronal transmembrane potassium
channels and was first associated with SALS in a GWAS of Irish patients176, and
subsequently validated in other European populations 177, 178. However, since then,
efforts to replicate the association in other populations have failed, leaving the
status of this risk factor uncertain179–183.

• ELP3: A single study identified risk for ALS in association with alleles of a RNA
polymerase component, Elongation protein 3184. Although mutations in ELP3
cause neurodegeneration in a drosophila model and increase interest as an ALS
candidate gene, other GWA studies have not identified this association.

Evaluation and Management
Strategies for Diagnosis

Obtaining a genetic diagnosis in ALS is challenging due to the overlapping phenotypes and
genetic heterogeneity. Given the complicated implications of a genetic diagnosis, the
decision to undertake testing warrants careful consideration by patients and their families.
Referral to a knowledgeable genetic counselor may help patients make informed decisions
in this regard. Five years ago, when causative mutations were identified in only 20% of
familial cases, the utility of genetic testing was unclear. Now however, a causative mutation
is found in ~2/3 of pedigrees59, making testing more informative to patients and their at-risk
relatives. Typically, the C9ORF72 repeat expansion is investigated first, since this is the
most common mutation in Caucasian populations and cannot be detected using standard
sequencing methods. If no expansion is present, direct sequencing of other common genes is
usually pursued, either sequentially (typically starting with SOD1 followed by TARDBP
and FUS) or as a panel. As sequencing costs fall, next-generation sequencing methods are
also becoming a cost-effective option. Whole-exome sequencing will screen for mutation in
all known ALS genes, with the added benefit that data can be re-analyzed in the future as
new genes are discovered. Historically, the yield of genetic testing in sporadic disease was
quite low. Now however, the realization 6–10% of apparently sporadic ALS patients carry
C9ORF72 expansions is challenging this belief. Testing for the C9ORF72 expansion should
be considered in SALS, especially if the patient or a close relative has dementia. Other genes
are sufficiently rare that further testing is usually of limited utility.

Current Management and Therapeutic Options
While riluzole is the only FDA approved medication for ALS, there are numerous
supportive therapies which likely improve quality of life and survival. These include
noninvasive positive pressure ventilation185, 186 and nutritional support via placement of a
gastric tube187. Most importantly, care in a multidisciplinary clinic setting has been shown
to significantly improve prognosis188, and clinicians should strive to refer their patients to
multidisciplinary ALS clinics if available.

Summary
The last 5 years have led to a staggering expansion of our understanding of the genetics of
ALS. With these insights we have learned of several key molecular pathways on which to
focus basic science research, and therapeutic efforts. The most notable include alterations in
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RNA metabolism and protein homeostasis. There is no doubt that the prospects for
developing meaningful interventions for ALS patients have never been better, providing
hope for ALS patients and their caregivers.
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KEY POINTS

1. ALS is increasingly genetically heterogeneous as studies have implicated more
than 20 genes, at least half of which are definitively causative and represent
moderate to high-penetrance genes.

2. Mutations in ALS genes are increasingly recognized in patients with no family
history, emphasizing the incomplete ascertainment of familial links as well as
the importance of genetic causes in even apparently sporadic cases.

3. With a few notable exceptions, correlations between the mutated gene and the
ALS phenotype are imprecise. Thus sequencing approaches targeting the
increasing numbers of ALS genes are required, including next-generation based
gene panels or whole-exome sequencing.
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Table 1

Revised El Escorial Criteria for the classification of ALS diagnostic certainty:

Category

Definite • UMN and LMN signs in bulbar region and ≥2 other spinal regions

-or-

• UMN and LMN signs in 3 spinal regions with progression over 12 months

Probable • UMN and LMN signs in ≥ 2 regions, with UMN signs above a region with LMN signs AND
progression over 12 months after diagnosis

Probable, laboratory supported • UMN and LMN signs in only 1 region, or UMN signs in only 1 region AND EMG evidence for
LMN degeneration is present in ≥2 regions without another cause.

Possible • UMN or LMN signs in only 1 region (i.e., progressive bulbar palsy)

• UMN signs in ≥2 regions (i.e., primary lateral sclerosis)
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Table 2

Proposed Classification of Familial ALS52

Category Criteria

Definite • ≥3 affected individuals

-or-

• 2 affected individuals with a segregating of genetic mutation

Probable • ≥1 affected first or second degree relative(s)

Possible • An affected relative is more distant than second degree

-or-

• A “sporadic” patient is found to carry a known genetic mutation

-or-

• A first degree relative has/had frontotemporal dementia, but not ALS
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