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Ralstonia solanacearum was ranked in a recent survey
the second most important bacterial plant pathogen, fol-
lowing the widely used research model Pseudomonas
syringae (Mansfield et al., 2012). The main reason is that
bacterial wilt caused by R. solanacearum is the world’s
most devastating bacterial plant disease (http://faostat.
fao.org), threatening food safety in tropical and subtropi-
cal agriculture, especially in China, Bangladesh, Bolivia
and Uganda (Martin and French, 1985). This is due to the
unusually wide host range of the bacterium, its high per-
sistence and because resistant crop varieties are unavail-
able. In addition, R. solanacearum has been established
as a model bacterium for plant pathology thanks to pio-
neering molecular and genomic studies (Boucher et al.,
1985; Salanoubat et al., 2002; Cunnac et al., 2004b;
Occhialini et al., 2005; Mukaihara et al., 2010). As for
many bacterial pathogens, the main virulence determi-
nant in R. solanacearum is the type III secretion system
(T3SS) (Boucher et al., 1985; 1994), which injects a
number of effector proteins into plant cells causing
disease in hosts or a hypersensitive response in resistant
plants. In this article we discuss the current state in the
study of the R. solanacearum T3SS, stressing the latest
findings and future perspectives.

A regulatory cascade controls T3SS expression

Synthesis of the T3SS machinery – encoded by some 20
hrp/hrc genes – is tightly controlled in all species studied,
probably due to its high metabolic cost. Ralstonia
solanacearum is the only bacterial species for which a
regulatory cascade linking T3SS gene expression to plant
host contact has been described (Brito et al., 2002). In
R. solanacearum hrp/hrc gene induction is triggered upon
recognition of an unidentified non-diffusible cell wall com-
ponent by the outer membrane receptor PrhA (Aldon
et al., 2000), which transfers the activation signal through
a cascade of transcriptional regulators (Brito et al., 2002).
HrpG is a central regulator in this cascade (Brito et al.,
1999; Valls et al., 2006), whose downstream activator
HrpB directly controls transcription of the T3SS genes and
its associated effectors (Genin et al., 1992; Occhialini
et al., 2005). Interestingly, these two regulators have
homologues in various Xanthomonas ssp. and Burkhol-
deria ssp. strains, including the human pathogen B. pseu-
domallei (Wengelnik and Bonas, 1996; Zou et al., 2006; Li
et al., 2011; Lipscomb and Schell, 2011), whereas the
PrhA receptor and the upper regulators in the cascade are
not conserved in other species.

A regulatory network with connections to many
cellular processes

In addition to the activation by the presence of plant cell
wall components, expression of the T3SS genes is also
induced by metabolic and environmental inputs. It has
been known for a long time that hrpB expression is
repressed when the bacterium grows in complete
medium, as compared with a minimal medium that is
thought to mimic plant apoplastic fluids (Arlat et al., 1992;
Genin et al., 2005). More recently, it was found that other
regulatory circuits impact hrp gene expression. The global
regulator PhcA, which activates expression of many viru-
lence activities including motility, plant cell wall degrada-
tion, and exopolysaccharide synthesis (Genin and Denny,
2012) has been reported to repress hrpB expression by
two orders of magnitude during growth in complete
medium (Genin et al., 2005). PhcA can also bind directly
to the promoter of upstream regulators in the Hrpcascade
but it only downregulates their transcription to one half of
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the normal levels (Yoshimochi et al., 2008). Recent find-
ings showed that PrhG – a HrpG paralogue – also influ-
ences expression of the HrpB regulon (Plener et al.,
2010) and that this pathway is modulated by an unrelated
virulence operon (Zhang et al., 2011). Thus, the actual
view is that of a complex network of regulators controlling
hrp gene expression in connection with a number of envi-
ronmental and physiological cues.

The hrp regulatory system thus integrates different
inputs but it also brings about various output responses by
co-regulating transcription of the T3SS and effector genes
to that of genes likely associated to metabolic adaptation
to parasitic life in the plant (Occhialini et al., 2005;
Valls et al., 2006). Indeed, transcriptomic studies have
revealed that HrpG controls expression of some 400
genes, half of them independently of the downstream
regulator HrpB. Some of these additional genes encode
lectins and enzymes that degrade plant polysaccharides
or drive the synthesis of polyamines or phytohormones
(Valls et al., 2006). Further analyses may detect additional
targets of the T3SS regulatory system that have escaped
our notice due to experimental or technical limitations. In
this sense, it is expected that RNA sequencing experi-
ments can identify small RNAs involved in virulence con-
trolled by the hrp regulators, as has been found in
Xanthomonas campestris, which bears a closely-related
regulatory system (Chen et al., 2011; Schmidtke et al.,
2012).

T3SS regulation in planta

An experimental limitation of the above described regula-
tory circuits is that they were all defined based on experi-
ments carried out in vitro using synthetic media. Recent
research has focused on determining their relevance and
expression timing in planta during infection. The creation
of a gene delivery system to integrate gene constructs in
a permissive site of the R. solanacearum chromosome
(Monteiro et al., 2012b) has been key to monitor transcrip-
tion in these conditions. This tool enables the analysis of
promoter output from single-copy fusions to fluorescent or
luminescent reporters during plant infection, as the con-
structs remain stably integrated in the modified strains.
Surprisingly, the master T3SS regulator hrpB was found to
be transcribed in bacteria growing inside wilting plants,
causing expression of hrp genes under these conditions
(Monteiro et al., 2009; 2012a). These findings have been
recently validated by an independent transcriptome analy-
sis approach, which has confirmed that half of the HrpB
regulon is induced in bacteria recovered from wilting
plants (Jacobs et al., 2012). These results are in contra-
diction with the widespread view that the T3SS is only
required during the first stages of host colonization. This
notion was based on the observations that the T3SS

genes are induced immediately after plant contact
(Kamoun and Kado, 1990; Thwaites et al., 2004;
Ortiz-Martin et al., 2010) and that this system is involved
in suppression of host defence responses to promote
bacterial multiplication early after infection (Deslandes
and Rivas, 2012). Thus, it will be interesting to ascertain
whether the T3SS remains active in late stages of disease
development in other plant pathogens or if this is a par-
ticularity of R. solanacearum, and to elucidate what is the
functional importance of the T3SS – if any – during the
R. solanacearum saprophytic life cycle.

A large effector repertoire

One of the key questions in bacterial pathogenicity is
defining the whole inventory of the type III effectors (T3E)
present in a given strain or species. The pioneering
genome sequencing and annotation of R. solanacearum
strain GMI1000 identified a first set of effector candidate
genes based on homology to known effectors from other
species or presence of domains typically eukaryotic
(Salanoubat et al., 2002). The existence of well-defined
T3SS transcriptional regulators greatly contributed to
complete the list. Two approaches were followed to iden-
tify candidate effectors co-regulated with the T3SS: (i) the
search for promoters with a HrpB binding sequence,
similar to the PIP box described in X. campestris (Cunnac
et al., 2004a; Koebnik et al., 2006) and (ii) transcriptomic
studies using HrpB-deficient and overexpressing strains
(Occhialini et al., 2005). Translocation analyses with
the cyaA reporter or T3SS-dependent secretion to the
medium have been used to validate most effector candi-
dates (Cunnac et al., 2004b; Tamura et al., 2005;
Mukaihara et al., 2010; Solé et al., 2012), so that the
reference strain GMI1000 is thought to bear 72 type III
effectors (Poueymiro and Genin, 2009; Mukaihara et al.,
2010). Compared with animal pathogens, bacterial plant
pathogens contain larger numbers (~ 30–40) of effectors,
but the R. solanacearum effector repertoire is exception-
ally large, probably due to its wide host range.

A pan-genomic analysis of R. solanacearum will deter-
mine the super-effector repertoire and help define core
and variable effectors in this species, providing evolution-
ary cues on host range determination. A recent study
comprising 19 P. syringae strains yielded a super-
repertoire of 57 effector genes (Baltrus et al., 2011). Con-
sidering that the average effector number per strain
analysed is considerably lower in P. syringae compared
with R. solanacearum (15–30 in P. syringae versus 72 in
R. solanacearum GMI1000), it is reasonable to expect
that the super-effector repertoire of R. solanacearum will
be correspondingly larger. Up to date, the genomes of
11 R. solanacearum strains have been sequenced
(GMI1000, RS1000, UW551, Po82, CFBP2957, PSI07,
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CMR15, Molk2, IPO1609, K60 and Y45) and many others
are on their way. These genomes, representative of the
whole range of strains composing the R. solanacearum
species complex, will facilitate pan-genomic analyses in
the near future and shed light on effector conservation
and function in this species. It will be interesting to ascer-
tain whether in R. solanacearum divergent repertoires
can be found in strains that are pathogenic on the same
host, as it is the case for P. syringae (Baltrus et al., 2011;
Lindeberg et al., 2012).

The minimal functional set of core effectors has not
been yet determined in R. solanacearum. In P. syringae
DC3000 it has been recently shown to comprise AvrPtoB,
HopE1, HopG1, HopAM1, AvrE, HopM1, HopAA1 and
HopN1 (Cunnac et al., 2011). These effectors function
together in host immune suppression, chlorosis and
lesion formation, in addition to bacterial growth. Among
these, HopG1 is the most widespread in R. solanacearum
sequenced strains, being only absent in PSI07, K60 and
Y45 HopAA1 is the second most represented, as it can be
found in GMI1000, Po82, Molk2, IPO1602, CFBP2957
and CMR15. AvrE homologues are identified in Po82,
Molk2, IPO1602 and CFBP2957, although the picture is
more complex, as distantly-related orthologues may be
present in other strains. Finally, an AvrPtoB homologue is
only present in Molk2 and the remaining four P. syringae
predicted core effectors (HopM1, HopN1, HopE1,
HopAM1) are absent in R. solanacearum. The fact that
only half of the P. syringae core effectors have members
in R. solanacearum may indicate that the core effectome
in this species is constituted by either functional ana-
logues with no sequence similarity to their P. syringae
counterparts or by a total different set of activities. Func-
tional genetics studies will clarify in the future which of
these hypotheses is true.

Type III effector function

Deciphering effector function is essential to understand
the molecular interactions between pathogens and their
hosts in terms of host specificity and pathogenicity. In
P. syringae, it has been suggested that a small subset of
core effectors target antimicrobial vesicle trafficking in
plants, whereas a larger and more variable set would
interfere with plant kinase-based pathogen recognition
pathways (Lindeberg et al., 2012). Whether these two
strategies to defeat plant immune processes are con-
served in R. solanacearum remains an open question.

Up to date 23 R. solanacearum T3E have been
assigned a function in planta using biochemical and/or
pathology assays (Table 1). To study the contribution of
each individual effector to bacterial fitness in planta, three
methods have been used: (i) to measure growth of
R. solanacearum mutant strains inside of natural hosts

(tomato, eggplant); (ii) to measure growth of P. syringae
heterologously expressing R. solanacearum T3E in Ara-
bidopsis (Solé et al., 2012); (iii) competitive index assays
between co-inoculated wt and mutant strains, which have
proved to be a highly sensitive method to detect minor
contributions to pathogenicity (Macho et al., 2010). These
methods have revealed that several effectors promote
growth in R. solanacearum natural hosts (Table 1):
AvrPphF, AWR1, AWR2, PopP2 and Rip34 (HopD1-like)
in tomato; AvrPphF, AWR1, AWR2, Rsp0842 (PopC-like),
PopP2, SKWP4, Rip19 (AvrBs3-like), Rip39, Rip64, Rip3,
Rip55 and Rip23 in eggplant; and AvrPphF, PopP2,
Rsp0842 (PopC-like) and Rip34 (HopD1-like) in bean.
Interestingly, two members of the AWR family show con-
trasting phenotypes, restricting growth in Arabidopsis and
tomato (AWR4) or eggplant and Arabidopsis (AWR5),
which may indicate a certain degree of recognition of
these T3S in certain host cellular contexts. Other
R. solanacearum T3E have been ascribed an avirulence
function: AvrA is considered the major determinant
leading to resistance of tobacco to some strains (Carney
and Denny, 1990; Robertson et al., 2004; Poueymiro
et al., 2009). Other avirulence reactions are triggered by
PopP1 in resistant tobacco plants and in petunia (Lavie
et al., 2002), PopP2 in Arabidopsis (Deslandes et al.,
2002; 2003; Bernoux et al., 2008) and AWR2 and AWR5
in various contexts (Solé et al., 2012). Together, these
results evidence that the interaction of R. solanacearum
with its different plant hosts partly results from a combi-
nation of synergistic and antagonistic interactions
between specific effectors within a single strain.

The characterization of the molecular/biochemical func-
tion of the increasingly large number of R. solanacearum
effectors remains a major challenge. So far only a limited
number of its T3E have been biochemically characterized
(Table 1). Several members of the GALA family (Gala1,
Gala3, Gala5, Gala6 and Gala7) have been shown to
interact with SKP1-like proteins, and are thought to mimic
plant E3 ubiquitin ligases (Angot et al., 2006). PopP2 has
been shown to trigger re-localization of the cysteine pro-
tease RD19 to the nucleus, where it is thought to form a
protein complex with the atypical WRKY-containing
NB-LRR protein RRS1-R leading to disease resistance
(Deslandes et al., 2002; 2003; Bernoux et al., 2008).
However, direct interaction has only been shown for
PopP2/RRS1-R and RRS1-R/RD19, but not for PopP2
and RD19. Recent work suggests that RRS1-R activation
of the plant immune responses upon PopP2 recognition
involves perception of PopP2 auto-acetylation (Tasset
et al., 2010). Finally, the harpin-like T3E PopA has been
shown to localize to the membrane of tobacco cells,
where it forms ion-conducting pores, likely facilitating
translocation of bacterial proteins into the cytoplasm of
plant cells (Racapé et al., 2005).

The R. solanacearum type III secretion system 616
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Despite all our current knowledge on R. solanacearum
T3E derived from the combination of genomic, biochemi-
cal and pathology data obtained in the last two decades,
there is still a considerable number of effectors with no
assigned function. These are usually effectors with no
similarity to known proteins or domains or no apparent
role in virulence or avirulence. The lack of assigned func-
tion in planta for many effectors is likely due to redun-
dancy and specialized functionality restricted to certain
host plant contexts. To dissect such complex interface
between a pathogen and its host a novel genetic screen-
ing (insertional mutagenesis and depletion, iMAD) has
been successfully used (O’Connor et al., 2012). This
method systematically combines bacterial and plant
mutations, and would be extremely helpful to characterize
the interaction of R. solanacearum with its multiple hosts.
Still, 30% of R. solanacearum T3Es have no counterpart
in other bacteria (Mukaihara et al., 2010), making this
species a good model to explore novel effector functions.
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