Skip to main content
. Author manuscript; available in PMC: 2014 Dec 1.
Published in final edited form as: Neuroimage. 2013 Jun 21;83:10.1016/j.neuroimage.2013.06.033. doi: 10.1016/j.neuroimage.2013.06.033

Table 5.

Comparison of MRI and clinical measures for prediction of MCI conversion to AD

Method Measures Classifier ACR AUC p-value
MRI: whole brain volume+thickness LLE+LDA 0.68 0.72

MRI: ROI hippocampus 0.66 0.69 0.19
hippocampus +entorhinal corex LDA 0.65 0.69 0.26
entorhinal cortex 0.61 0.62 0.08

MRI: whole brain volume+thickness SVM (Gaussian) 0.61 0.62 < 0.001

neuropsychological scores ADAS-Cog11+LDEL+CDR+MMSE 0.62 0.69 0.27
ADAS-Cog11 0.59 0.67 0.14
LDEL LDA 0.60 0.61 0.01
CDR 0.56 0.52 < 0.001
MMSE 0.57 0.54 < 0.001

MRI: whole brain volume+thickness SVM (linear) 0.53 0.58 0.002
PCA+LDA 0.51 0.53 < 0.001

The results are ranked by accuracy values from high to low.

p-values indicate prediction performance compared with LLE.

All predications used a LDA classifier. ROI = region of interest; PCA = principal component analysis; all other abbreviations are explained in the text.