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Added-mass instability is known to be an important issue in the partitioned approach for fluid-structure interaction (FSI) solvers.
Despite the implementation of the implicit approach, convergence of solution can be difficult to achieve. Relaxation may be applied
to improve this implicitness of the partitioned algorithm, but this commonly leads to a significant increase in computational time.
This is because the critical relaxation factor that allows stability of the coupling tends to be impractically small. In this study, a
mathematical analysis for optimizing numerical performance based on different time integration schemes that pertain to both the
fluid and solid accelerations is presented. The aim is to determine the most efficient configuration for the FSI architecture. Both
theoretical and numerical results suggest that the choice of time integration schemes has a significant influence on the stability of
FSI coupling. This concludes that, in addition to material and its geometric properties, the choice of time integration schemes is
important in determining the stability of the numerical computation. A proper selection of the associated parameters can improve
performance considerably by influencing the condition of coupling stability.

1. Introduction

Fluid-structure interaction (FSI) is used widely in biome-
chanical computer simulations. The modelling of pulsatile
blood flow in elastic vessels requires a framework that can
handle the blood-vessel interaction, and the implementation
of FSI can solve the time dependent biofluid flow through its
elastic structure. Useful information such as the severity of
vessel damage by abnormal flow, degree of plaque growth or
risk of its rupture in diseased arteries, and the aggravation
of atherosclerosis can be generated for medical evaluation. In
general, FSI is an architecture processing the interaction of a
solid structure with a dynamic fluid that can be implemented
by the monolithic and partitioned approaches. A configured
FSI solver can use the former approach to solve a system
of governing equations for the fluid and solid domains
[1]. Although FSI gives strong coupling between the two
domains, the limitations are as follows:

(i) demanding computational power for solving a large
system of equations;

(ii) need for further development of preconditioning;

(iii) lack of specialized capabilities that pertain to “legacy
software” such as ABAQUS and ANSYS.

The partitioned approach is attractive due to its advantage
of having software modularity that allows selection of an
appropriate solver among the well-established solvers for
each of the domains. Nevertheless, its efficiency is inferior
to its monolithic counterpart due to the existence of an
“added-mass instability,” which commonly occurs in prob-
lems involving large deformation and light weight structure.
This causes divergence and failure before the final solution
can be achieved. In order to handle this issue, small values
for coupling relaxation factors of interface loadsmust be used
in order to maintain stability. However, that will lead to a
significant increase in computational time. As such, much
work has been performed to search for techniques that can
deal with this instability. For example, adaptive relaxation
techniques that are based on using information of earlier
iterations for approximating an appropriate relaxation value
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and providing stability have been employed to increase the
speed of calculation [2]. It is well understood that FSI solution
experiences this numerical instability when the following
conditions [3] are observed:

(i) stability of FSI solution tends to be critically severe
when density ratio of fluid to solid is excessively high;

(ii) increase in fluid viscosity leads to a decrease in stabil-
ity of the FSI solver, and a corresponding increase in
structural stiffness improves this stability;

(iii) temporal discretisation schemes used for FSI calcula-
tion can influence the instability condition;

(iv) decrease in time step size used for FSI calculation can
give an earlier occurrence of its instability.

The observed behaviors of instability can be explained
mathematically when conditions for stability of both explicit
and implicit FSI solution of a flexible cylindrical vessel are
demonstrated [4]. However, the impact of time integration
schemes of the fluid and solid accelerations that is used
in the FSI calculation is still not fully understood and
therefore justifies the need for a thorough investigation in
this paper. The aim of this work is to analyze performance
of FSI using a partitioned approach based on different time
integration schemes that pertain to the structural mechanics.
We conduct the analysis on a simplified problem of pressure
wave propagation along a flexible cylindrical vessel. Influence
of the parameters relating to the FSI performance can be
summarized as follows:

(i) time integration schemes for solid and fluid accelera-
tions;

(ii) time step size;
(iii) ratio of fluid to solid densities.

We explore the influence of time integration schemes on
a partitioned approach for fluid-structure interaction prob-
lems by organising our work in a logicalmanner. In Section 2,
we present a mathematical description of a simplified pres-
sure wave propagation along a flexible cylindrical vessel, fun-
damental FSI conditions, and the discretization schemes used
for deriving the results. Section 3 provides a mathematical
analysis of the stability of implicit FSI based on the different
time integration schemes that are discussed. In Section 4,
numerical validations and results of the same problem (that
are used in Section 3) are demonstrated in order to confirm
the validity of our theoretical proofs. Finally, Section 5
summarizes the influence of the time integration schemes
and the associated parameters on the stability of the FSI.

2. Mathematical Background of
Fluid-Structure Interaction

2.1. Governing Equations. A simplified flexible cylindrical
tube of radius 𝑟, length 𝐿, thickness ℎ

𝑠
, density 𝜌

𝑠
, Young’s

modulus𝐸, and Poisson’s coefficient ] is chosen for ourmath-
ematical analysis. It allows our mathematical and numerical
examination to be performed and provides sufficient infor-
mation for conducting a realistic simulation. We define a
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Figure 1: Schematic representation of the computational domain for
a flexible vessel transporting fluid.

fluid domain Ω
𝐹
and a structural domain Ω

𝑆
that interact

at the common boundary Γ. Deformation of cylindrical tube
is allowed only in the radial and longitudinal directions.
Inlet and outlet of the fluid domain are subjected to pressure
boundary conditions. The schematic representation of our
computational domain for a fluid through the tube is shown
in Figure 1. Note that the dashed lines represent the axis of
symmetry of the tube.

2.1.1. Solid Governing Equation. We refer to the governing
equation of deformation for a flexible cylindrical tube in [4]
as follows:
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on the interface Γ due to the external forcing term from the
fluid,𝑑

Γ
is displacement at the interface,𝑥 is position in space,

and 𝑡 is position in time.

2.1.2. Fluid Governing Equations. Considering a general var-
iable property per unit mass that is denoted as 𝜙, the
generic form of fluid governing equations in an Arbitrary
Lagrangian-Eulerian (ALE) frame of reference is stated as
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In the finite volume method, it is required that the
governing equation is satisfied over the control volume V

𝑃

around a point𝑃.Therefore, it can be rewritten in the integral
form as
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2.1.3. The Effective FSI Governing Equation. In order to
analyze stability of FSI calculation, an effective FSI governing
equation can be expressed as
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The structural load that is influenced by the fluid load 𝑃ext,Γ is
given by
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where𝑀
𝑎
denotes the added-mass operator matrix.

By coupling the two domains, we can achieve the interac-
tion of the fluid and structure based on
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Since we are interested in studying the added-mass
instability where the mass term dominates the stiffness term,
some nonlinearity is neglected. This results in
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2.2. Fundamental FSI Coupling Conditions. The partitioned
approach can enable the physical integration of the fluid
and solid domains that is demanded by the simulation of
flow through an elastic vessel. The fluid-structure interface
is enforced by iteration between the structural and fluid
physics modules until convergence is reached. The arbitrary
mesh motion at discrete time steps can be computed by the
timeintegration of the set of partial-differential equations in
Section 2.1 for both the solid and fluid structures that govern
the mesh motion.

The conditions required when solving FSI pertain to the
kinematic and dynamic nature as suggested by numerous
works (see [5] and reference therein). The kinematic con-
dition ensures the compatibility of displacement across FSI
interface and can be written as
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where 𝑑 is displacement, 𝑑𝑠
Γ
and 𝑑
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Γ
are the displacements of

the solid and fluid interface, respectively.
Assuming that if no-slip condition is used on the fluid

side of the FSI interface, this condition leads to a relationship
between fluid velocity k

Γ
and rate of change of displacement,

which can be written as
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The dynamic condition ensures the compatibility of
traction across FSI interface and gives rise to
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, (10)

where 𝜏
Γ
represents stress on the interface.

These two conditions are normally utilized in FSI codes
that adopt the partitioned approach. By implementation of
the kinematic condition, fluid nodes on the FSI interface are
updated according to their corresponding solid nodes. By
doing the same for the dynamic condition, the equilibrium
of stress on FSI interface is ensured and the fluid pressure is
integrated into a fluid force, which is used in applying to the
solid nodes along the interface.

2.3. Time Integration Schemes

2.3.1. Discretization of Structural Acceleration. The nonlinear
version of the generalized-𝛼 time integration scheme that
was introduced by [6] can be used for discretization of solid
governing equation [7] and is given by
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where Δ𝑡 denotes the discrete time step interval.
After some mathematical manipulations, (11) can be

recasted into the following equations as:
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The value of structural displacement, velocity, and accelera-
tion is interpolated between time level as

̈
𝑑
𝑛+1,𝛼

= (1 − 𝛼
𝑚
)

̈
𝑑
𝑛+1

+ 𝛼
𝑚

̈
𝑑
𝑛

,

̇
𝑑
𝑛+1,𝛼

= (1 − 𝛼
𝑓
)

̇
𝑑
𝑛+1

+ 𝛼
𝑓

̇
𝑑
𝑛

,

𝑑
𝑛+1,𝛼

= (1 − 𝛼
𝑓
) 𝑑
𝑛+1

+ 𝛼
𝑓
𝑑
𝑛

.

(13)

In order tomaintain unconditional stability and second order
accuracy of time integration, the following criteria must be
satisfied [6]:
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For numerical damping, [8] suggests that these parameters
can be written in terms of amplitude decay factor 𝛾 as
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When minimum numerical damping is applied, the
values of 𝛼, 𝛿, 𝛼

𝑚
, and 𝛼

𝑓
are set to be 1/4, 1/2, 0, and 0,

respectively. These values represent time integration that has
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zero numerical damping, which can be achieved by setting
𝛾 = 0. The equations for ̈

𝑑
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After mathematical manipulation, the structural acceleration
can be written in terms of deformation at different time levels
as
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This time integration scheme cannot be put in terms of dis-
placement only, and it has the fully recursive characteristics,
which means that the calculation of time step 𝑛 + 1 utilizes
information of all previous time steps down to the intial step.

When maximum numerical damping is applied, the
values of 𝛼, 𝛿, 𝛼
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respectively. This can be achieved alternatively by setting 𝛾 =

1. Therefore, equations for ̈
𝑑
𝑛+1 and ̇

𝑑
𝑛+1 can be written as

̇
𝑑
𝑛+1

=
̇

𝑑
𝑛

+

1

2

Δ𝑡
̈

𝑑
𝑛

+

3

2

Δ𝑡
̈

𝑑
𝑛+1

,

̈
𝑑
𝑛+1

=

1

Δ𝑡
2
[𝑑
𝑛+1

+ 𝑑
𝑛

− Δ𝑡
̇

𝑑
𝑛

−

Δ𝑡
2

2

̈
𝑑
𝑛

] .

(18)

Subsequently, this leads to
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2.3.2. Discretization of Fluid Acceleration. Two backward
Euler schemes are used for the discretization of fluid acceler-
ation. The first order backward Euler scheme can be written
as
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while the second order backward Euler scheme is
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In this paper, only the zeroth order structural predictor is
used in order to estimate the fluid deformation correspond-
ing to structural displacement of previous time step 𝑑

𝑛. This
structural predictor can be written as
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3. Mathematical Analysis

A stability analysis of FSI calculation based on implicit
coupling is presented. By adopting this implicit coupling,
several iterations are needed for each time step, and relaxation
is applied to maintain the stability of calculation.

3.1. Numerical Procedure of Implicit Coupling. An interface
code processes the data transfer between the fluid and
solid domains and mesh association across their respective
processors.The following steps are used for achieving implicit
coupling. Initial guess 𝑑

𝑛+1

0
is given and coupling iteration

𝑚 = {0, 1, 2, 3, . . .}.

(1) Estimate interface deformation according to previous
time or coupling step by using (22), and update the
interior fluid mesh.

(2) Execute fluid solver, 𝐹(𝑑), such that
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(4) Apply relaxation such that
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Note that the critical relaxation factor is denoted by
𝜔.

(5) Check convergence. The solution is converged if the
following conditions are applied:

𝑟
𝑛+1,𝑠

< 𝜀
0
, 𝑟
𝑛+1,𝑠

= 𝑑
𝑛+1

𝑚+1
− 𝑑
𝑛+1

𝑚
,

𝑟
𝑛+1,𝑓

< 𝜀
0
, 𝑟
𝑛+1,𝑓

= 𝑃
𝑛+1

𝑚+1
− 𝑃
𝑛+1

𝑚
.

(26)

3.2. Stability Condition When Minimum Numerical Damping
Is Applied. In this section, we discuss the analysis of explicit
FSI coupling when minimum numerical damping is imple-
mented. The discretized forms of the structural acceleration
and fluid acceleration are given by
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Contrary to explicit coupling, the latest information used
for calculation of FSI interface acceleration of fluid domain
comes from the same time level as the one that is used for
the structural acceleration. This is due to the application of
relaxation factor. Then, discretization of (7) is achieved by
substituting (27) to give

𝜌
𝑠
ℎ
𝑠

Δ𝑡
2
(4

̃
𝑑
𝑛+1

Γ
− 16𝑑

𝑛

Γ
+ 32𝑑

𝑛−1

Γ
− 20𝑑

𝑛−2

Γ

−

12

Δ𝑡
3

̇
𝑑
𝑛−2

Γ
−

1

Δ𝑡
2

̈
𝑑
𝑛−2

Γ
)

+

𝜌
𝑓
𝑀
𝑎

Δ𝑡
2

(
̃
𝑑
𝑛+1

Γ
− 2𝑑
𝑛

Γ
+ 𝑑
𝑛−1

Γ
)

+ 𝑎
0
𝑑
𝑛+1

Γ
= 𝑃
𝑛+1

ext,Γ.

(28)
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For simplification, the analysis can be done by consid-
ering only one eigenvector, k

𝑖
, of solution on the interface.

This is because the added-mass operator𝑀
𝐴
is a real positive

matrix. Therefore, 𝑑
Γ
= Σ𝑑

𝑖
k
𝑖
. Notice that the added-mass

operator𝑀
𝐴
can be represented by the 𝑖th eigenvalues of𝑀

𝐴
,

𝜇
𝑖
. This results in

𝜌
𝑠
ℎ
𝑠

Δ𝑡
2
(4

̃
𝑑
𝑛+1

𝑖
− 16𝑑

𝑛

𝑖
+ 32𝑑

𝑛−1

𝑖
− 20𝑑

𝑛−2

𝑖

−

12

Δ𝑡
3

̇
𝑑
𝑛−2

𝑖
−

1

Δ𝑡
2

̈
𝑑
𝑛−2

𝑖
) ⋅ ⋅ ⋅

+

𝜌
𝑓
𝜇
𝑖

Δ𝑡
2
(
̃
𝑑
𝑛+1

𝑖
− 2𝑑
𝑛

𝑖
+ 𝑑
𝑛−1

𝑖
)

+ 𝑎
0
𝑑
𝑛+1

𝑖
=

Δ𝑡
2

𝜌
𝑠
ℎ
𝑠

𝑃
𝑛+1

ext,𝑖 .

(29)

By substituting (25) into (29), we obtain

𝜌
𝑠
ℎ
𝑠

Δ𝑡
2
(

4𝑑
𝑛+1

𝑖

𝜔

− 16𝑑
𝑛

𝑖
+ 32𝑑

𝑛−1

𝑖
− 20𝑑

𝑛−2

𝑖

−

12

Δ𝑡
3

̇
𝑑
𝑛−2

𝑖
−

1

Δ𝑡
2

̈
𝑑
𝑛−2

𝑖
) + 𝑎
0

𝑑
𝑛+1

𝑚+1,𝑖

𝜔

⋅ ⋅ ⋅

= (

1 − 𝜔

𝜔

)(

2𝜌
𝑠
ℎ
𝑠

Δ𝑡
2

+ 𝑎
0
)𝑑
𝑛+1

𝑚,𝑖

−

𝜌
𝑓
𝜇
𝑖

Δ𝑡
2
(𝑑
𝑛+1

𝑚,𝑖
− 2𝑑
𝑛

𝑖
+ 𝑑
𝑛−1

𝑖
)

+

Δ𝑡
2

𝜌
𝑠
ℎ
𝑠

𝑃
𝑛+1

ext,𝑖 .

(30)

By means of Von Neumann stability analysis [9],

1

𝜔

(

4𝜌
𝑠
ℎ
𝑠

Δ𝑡
2

+ 𝑎
0
)𝑑
𝑛+1

𝑚+1,𝑖

= [(

1 − 𝜔

𝜔

)(

4𝜌
𝑠
ℎ
𝑠

Δ𝑡
2

+ 𝑎
0
) −

𝜌
𝑓
𝜇
𝑖

Δ𝑡
2
] 𝑑
𝑛+1

𝑚,𝑖
⋅ ⋅ ⋅

+ 𝑔 (𝑑
𝑛

𝑖
, 𝑑
𝑛−1

𝑖
, 𝑑
𝑛−2

𝑖
,

̇
𝑑
𝑛−2

𝑖
,

̈
𝑑
𝑛−2

𝑖
, 𝑃
𝑛+1

ext,𝑖) ,

𝑑
𝑛+1

𝑚+1,𝑖

𝑑
𝑛+1

𝑚,𝑖

≈

[((1 − 𝜔) /𝜔) (4𝜌
𝑠
ℎ
𝑠
/Δ𝑡
2

+ 𝑎
0
) − 𝜌
𝑓
𝜇
𝑖
/Δ𝑡
2

]

(1/𝜔) (4𝜌
𝑠
ℎ
𝑠
/Δ𝑡
2
+ 𝑎
0
)

= 1 −

𝜔 (4𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2

+ 𝜌
𝑓
𝜇
𝑖
)

4𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2

.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Growth factor, 𝐺

(31)

The absolute value of the growth factor has to be less than
unity for the solution to be stable. That is,

|𝐺| =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝜔 (4𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2

+ 𝜌
𝑓
𝜇max)

4𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 1, (32)

0 < 𝜔 <

8𝜌
𝑠
ℎ
𝑠
+ 2𝑎
0
Δ𝑡
2

4𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2
+ 𝜌
𝑓
𝜇max

. (33)

From (33), we see that not only does thematerial and geo-
metrical properties (such as fluid and solid densities, Young’s
modulus of the structure, and the maximum eigenvalue of
added mass matrix) influence the allowable relaxation factor,
but they also affect the time step size of the calculation. It can
be further deduced that if the time step size is significantly
small and approaches zero, (33) becomes

0 < 𝜔 <

8

4 + 𝜌
𝑓
𝜇max/𝜌𝑠ℎ𝑠

. (34)

This means that if the time step size is sufficiently small,
the Young modulus is no longer a factor that determines the
criteria for stability of an implicit algorithm. Therefore, the
critical value of relaxation factor converges and does not vary
with a further decrease in time step size. Moreover, it can also
be concluded that if 𝜌

𝑓
𝜇max = 𝜌

𝑠
ℎ
𝑠
, the relaxation factor has

to be strictly less than 8/5 to allow convergence of solution.

3.2.1. Stability Condition When Maximum Numerical Damp-
ing Is Applied. The discretized forms of structural accelera-
tion and fluid acceleration are

̈
𝑑
𝑛+1,𝑠

Γ
=

1

Δ𝑡
2
(2

̃
𝑑
𝑛+1

Γ
− 5𝑑
𝑛

Γ
+ 4𝑑
𝑛−1

Γ
− 𝑑
𝑛−2

Γ
) ,

̈
𝑑
𝑛+1,𝑓

Γ
=

1

Δ𝑡
2
(
̃
𝑑
𝑛+1

Γ
− 2𝑑
𝑛

Γ
+ 𝑑
𝑛−1

Γ
) .

(35)

Unlike explicit coupling, the latest information used for cal-
culation of FSI interface acceleration of fluid domain comes
from the same time level as that used for structural acceler-
ation. This is due to the application of the relaxation factor.
The discretized form of (7) is achieved by substituting (35)
and (45) to give

𝜌
𝑠
ℎ
𝑠

Δ𝑡
2
(2

̃
𝑑
𝑛+1

Γ
− 5𝑑
𝑛

Γ
+ 4𝑑
𝑛−1

Γ
− 𝑑
𝑛−2

Γ
)

+

𝜌
𝑓
𝑀
𝑎

Δ𝑡
2

(
̃
𝑑
𝑛+1

Γ
− 2𝑑
𝑛

Γ
+ 𝑑
𝑛−1

Γ
) + 𝑎
0
𝑑
𝑛+1

Γ

= 𝑃
𝑛+1

ext,Γ,

(36)

𝜌
𝑠
ℎ
𝑠

Δ𝑡
2
(2

̃
𝑑
𝑛+1

𝑖
− 5𝑑
𝑛

𝑖
+ 4𝑑
𝑛−1

𝑖
− 𝑑
𝑛−2

𝑖
)

+

𝜌
𝑓
𝜇
𝑖

Δ𝑡
2
(
̃
𝑑
𝑛+1

𝑖
− 2𝑑
𝑛

𝑖
+ 𝑑
𝑛−1

𝑖
) + 𝑎
0
𝑑
𝑛+1

𝑖

=

Δ𝑡
2

𝜌
𝑠
ℎ
𝑠

𝑃
𝑛+1

ext,𝑖 .

(37)

By substituting (25), (37) can be written as

𝜌
𝑠
ℎ
𝑠

Δ𝑡
2
(

2𝑑
𝑛+1

𝑚+1,𝑖

𝜔

− 5𝑑
𝑛

𝑖
+ 4𝑑
𝑛−1

𝑖
− 𝑑
𝑛−2

𝑖
) + 𝑎
0

𝑑
𝑛+1

𝑚+1,𝑖

𝜔

= (

1 − 𝜔

𝜔

)(

2𝜌
𝑠
ℎ
𝑠

Δ𝑡
2

+ 𝑎
0
)𝑑
𝑛+1

𝑚,𝑖

−

𝜌
𝑓
𝜇
𝑖

Δ𝑡
2
(𝑑
𝑛+1

𝑚,𝑖
− 2𝑑
𝑛

𝑖
+ 𝑑
𝑛−1

𝑖
) +

Δ𝑡
2

𝜌
𝑠
ℎ
𝑠

𝑃
𝑛+1

ext,𝑖 ,
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Figure 2: Computational meshes of the fluid and solid domains for a flexible vessel.

1

𝜔

(

2𝜌
𝑠
ℎ
𝑠

Δ𝑡
2

+ 𝑎
0
)𝑑
𝑛+1

𝑚+1,𝑖

= [(

1 − 𝜔

𝜔

)(

2𝜌
𝑠
ℎ
𝑠

Δ𝑡
2

+ 𝑎
0
) −

𝜌
𝑓
𝜇
𝑖

Δ𝑡
2
] 𝑑
𝑛+1

𝑚,𝑖

+ 𝑔 (𝑑
𝑛

𝑖
, 𝑑
𝑛−1

𝑖
, 𝑑
𝑛−2

𝑖
, 𝑃
𝑛+1

ext,𝑖) .

(38)

By means of Von Neumann stability analysis,

𝑑
𝑛+1

𝑚+1,𝑖

𝑑
𝑛+1

𝑚,𝑖

≈

[((1 − 𝜔) /𝜔) (2𝜌
𝑠
ℎ
𝑠
/Δ𝑡
2

+ 𝑎
0
) − 𝜌
𝑓
𝜇
𝑖
/Δ𝑡
2

]

(1/𝜔) (2𝜌
𝑠
ℎ
𝑠
/Δ𝑡
2
+ 𝑎
0
)

= 1 −

𝜔 (2𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2

+ 𝜌
𝑓
𝜇
𝑖
)

2𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Growth factor, 𝐺

.

(39)

Absolute value of the growth factor 𝐺 has to be less than
unity if the solution is to be stable. That is,

|𝐺| =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝜔 (2𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2

+ 𝜌
𝑓
𝜇max)

2𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 1, (40)

0 < 𝜔 <

4𝜌
𝑠
ℎ
𝑠
+ 2𝑎
0
Δ𝑡
2

2𝜌
𝑠
ℎ
𝑠
+ 𝑎
0
Δ𝑡
2
+ 𝜌
𝑓
𝜇max

. (41)

From (41), the material and geometrical properties such
as the densities of both the fluid and solid, Young’s modulus,
and eigenvalue of added-mass matrix have influence on both
the allowable relaxation factor and also the time step size
of the calculation. This is similar to the case when the
minimumnumerical damping is applied. As the time step size
approaches zero, (41) becomes

0 < 𝜔 <

4

2 + 𝜌
𝑓
𝜇max/𝜌𝑠ℎ𝑠

. (42)

Here, it is proven that if time step size is very small, the
Young modulus is no longer a factor determining the criteria
for stability of implicit algorithm. This also means that the
critical value of relaxation factor converges and does not vary
with a further decrease in time step size. Moreover, it can also
be concluded that if 𝜌

𝑓
𝜇max = 𝜌

𝑠
ℎ
𝑠
, the relaxation factor has

to be strictly less than 4/3 to allow convergence of solution.

4. Numerical Results

4.1. Validation of ComputationalModel. Pressure pulse veloc-
ity has beenwidely used as an indicator of blood vessel health.
In the past, only physical experiment and analytical solutions
were available for obtaining the pulse velocity. Although these
analytical solutions can only be used for simple geometries of
blood vessel, they can serve as solid verification for numerical
simulation, which are becoming popular nowadays. There-
fore, a simulation of fluid-structure interaction for calculating
pressure pulse velocity in a compliant vessel is conducted
to verify our proposed technique in order to compare with
analytical solutions such as the Moens-Korteweg equation.
The results presented in this section are obtained by using the
samemethod as that used in the next sectionwhere numerical
results are presented to confirm our theoretical results.

The geometrical model of a three-dimensional tube is
shown in Figure 1.The cylindrical domain has a radius of𝑅

𝑠
=

0.0005m and a total length of 𝐿 = 0.06m.The working fluid
is modelled as incompressible fluid with fluid viscosity and
density of𝜇 = 0.01Pa⋅s and𝜌

𝑓
= 1,000 kg⋅m3, respectively.On

the other hand, the compliant vessel is modelled as isotropic
material with Poisson’s ratio of ] = 0.3 and density of
𝜌
𝑠
= 1,000 kg⋅m3, respectively. Young’s modulus of the solid

structure is varied between 𝐸 = 50 and 200 kPa.
Figure 2 shows the computational mesh of both solid

and fluid domains that consist of 1,800 and 24,674 elements,
respectively. In the fluid mesh, the laminar boundary layer
has 5 layers of thin hexagonal elements, while 4 layers are
used for the thickness of solid domain. The mesh in the fluid
domain is Geometric Conservation Law (GCL) compliant
and the architecture generates arbitrary mesh motion at
discrete time steps. Now, our main aim is to validate the
theoretical results.

Then, analytical sets of equations developed for pressure
wave velocity are discussed next.TheMoens-Korteweg equa-
tion [10, 11] is

𝑐 = √

𝐸ℎ
𝑠

2𝑅
𝑠
𝜌
𝑠

, (43)

where 𝑐 represents the pressure wave velocity.
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Figure 3: Relationship between pressure wave velocity and Young modulus of a flexible vessel.

TheWylie and Streeter equation [12] is

𝑐 = 𝜑𝑐
∗

𝑓
, (44)

where 𝜑 is the stress factor and 𝑐
∗

𝑓
is the corrected pressure

wave velocity as given by

𝜑 = √1 − ]2[1 −
𝐸

𝐾

(

ℎ
𝑠

2𝑟

)(1 −

𝐾𝜌
𝑓

𝐸𝜌
𝑠

)]

−1

,

𝑐
∗

𝑓
= √

𝐸

𝜌
𝑓

(

(2𝑅
𝑠
+ 2ℎ
𝑠
)
2

ℎ
𝑠
(2𝑟 + ℎ

𝑠
)

− 2 (1 − ]))

−1

.

(45)

Note that 𝐾 is the bulk modulus of elasticity of the tube
walls. These two equations will be utilised for the validation
of numerical method used in this work. The relationship
between pressure wave velocity and Young’s modulus of
flexible vessel illustrates adequate accuracy of the method
(Figure 3).

The pressure pulse velocity is calculated by measuring
the location of maximum deformation at two different
times based on the sixth and eleventh millisecond. Distance
between the two locations is divided by a time difference
of five milliseconds in order to obtain the velocity of the
pressure pulse.This location is used for themeasurement as it
represents the centre of the pressure wave. Figure 4 shows the
contour plot of pressure wave propagation along the flexible
cylindrical vessel at different Young’s moduli and simulation
time levels.

Next, we present a set of numerical results with different
structural time integration scheme by varying the amplitude

decay factor 𝛾. These results can be used to confirm our
theoretical experiments. By our default configuration, which
is used to as a reference to compare with other cases, we
set vessel radius 𝑅

𝑠
= 0.005m, vessel length 𝐿 = 0.06m,

vessel thickness ℎ
𝑠
= 0.001m, solid density𝜌

𝑠
= 30,000 kg⋅m3,

Young’s modulus 𝐸 = 750,000 Pa, Poisson’s ratio ] = 0.5,
fluid density 𝜌

𝑓
= 1,000 kg⋅m3, and fluid dynamic viscosity

𝜇
𝑓
= 0.01Pa⋅s. At the initial condition, the fluid is assumed

to be at rest and a pressure pulse with peak of 2,000 Pa is
imposed at the inlet. The total duration of our observation
𝑇max for instability is 0.02 s. For majority of the test cases,
the instability occurs at the beginning of calculation before
reaching 𝑇max. In our program, the fluid acceleration is
discretized by the second order accurate backward Euler
scheme.

4.2. Influence of Simulation Parameters on 𝛾 versus 𝜔 Curve.
We observe a dependence of the critical relaxation factor 𝜔
on the amplitude decay factor 𝛾. In particular, the required
relaxation factors for maintaining stability become greater as
the amplitude decay factor approaches zero and the structural
time integration scheme becomes the average acceleration
method. The numerical tests agree well with our theoretical
results, and they confirm that the critical relaxation factor
increases with the decrease in the structural amplitude decay
factor. Moreover, it is observed that the required values of
relaxation factor when using amplitude decay factor of zero
can be approximately 30 percent higher than that when
using amplitude decay factor of one as shown in Figure 5. By
varying parameters and configurations of the FSI architecture
such as (a) fluid time integration scheme, (b) time step size,
and (c) fluid-solid density ratio, we can obtain information
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Figure 4: Pressure wave propagation along a flexible cylindrical vessel at various Young moduli and time levels.

on their effect on the graph of critical relaxation factor
versus amplitude decay factor. For all the graphs, it can be
demonstrated that the value of critical relaxation factor is
inversely proportional to the value of amplitude decay factor.

First, we prove numerically the influence of the fluid
time integration scheme on the FSI stability condition. By
changing the discretization schemeused for fluid acceleration
from the second to the first order accurate backward Euler
scheme, the values of critical relaxation factor based on each
value of 𝛾 increase considerably (Figure 5(a)). With 𝛾 = 1,
the solutionwill be stable if the relaxation factor is set at lower
than a conservative value of 0.7, while this threshold increases
up to 0.95 when 𝛾 is set to zero.

Then, the influence of time step size on the stability of FSI
calculation is tested. Here, we consider the same domain of
calculation and physical parameter as before, and only time
step size used for calculation is reduced from0.001 to 0.0001 s.
It is found that time step size also has considerable impact
on the performance of FSI simulation. From Figure 5(b), it is
shown that the values of critical relaxation factor correspond-
ing with various values of amplitude decay factor decrease
considerably when time step size is reduced. Moreover, when
the time step size is further reduced to 0.00001 s, the change
in critical relaxation factor remains almost unchanged. This
observation agrees well with our theoretical results that when
the time step size approaches zero, the value of critical
relaxation factor converges as presented in Figure 5(b).

The influence of the fluid and solid structure densities on
the performance of FSI calculation is considered next. The
relationship between fluid-solid density ratio and the critical
relaxation factor is based on different values of amplitude

decay factor. Figure 5(c) illustrates the impact that the density
ratio has on variation of critical relaxation factor, which is
observed to be high only when the density ratio is relatively
small. Its gradient tends to vanish as we increase the density
ratio value. For fluid-solid density ratio of 0.033, the variation
of the critical relaxation factor in the range of 𝛾 = 0 to 1 is
considerably high, while it is negligible at a density ratio of 1.

5. Conclusion

We summarize that the stability condition of FSI solution can
be influenced significantly by the material densities and the
relaxation factor to be implemented. Its computational cost
can be greatly reduced by implementation of an appropriate
structural time integration scheme. In particular, the critical
relaxation factor is higher when using the structural time
integration scheme that does not contain numerical damping.
Furthermore, the choice of time integration schemes for
discretizing fluid acceleration has a strong impact on the
stability condition. Our results suggest that more accurate
schemes such as the second order accurate backward Euler
can lead to a more stringent condition for the stability of
FSI. Another important parameter is the time step size.Then,
smaller time step size results in a more restrictive condition,
and as the time step size approaches zero, the value of
the critical relaxation factor converges to a specific value.
Another factor worth mentioning is the density ratio of fluid
to solid structure. It is found that this value has a considerable
impact on FSI performance, and the stability condition is
invariant to the choice of structural time integration schemes
in the case of high fluid-solid density ratios. However, for
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Figure 5: Influence of amplitude decay factor on the critical relaxation factor based on (a) fluid time integration scheme; (b) time step size;
and (c) fluid-solid density ratio.

the low density ratios, this value will mainly depend on the
schemes used.
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