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The oxidative modification hypothesis of atherosclerosis, which assigns to oxidized low-density lipoproteins (LDLs) a crucial
role in atherosclerosis initiation and progression, is still debated. This review examines the role played by oxidized LDLs in
atherogenesis taking into account data derived by studies based on molecular and clinical approaches. Experimental data carried out
in cellular lines and animal models of atherosclerosis support the proatherogenic role of oxidized LDLs: (a) through chemotactic
and proliferating actions on monocytes/macrophages, inciting their transformation into foam cells; (b) through stimulation of
smooth muscle cells (SMCs) recruitment and proliferation in the tunica intima; (c) through eliciting endothelial cells, SMCs, and
macrophages apoptosis with ensuing necrotic core development. Moreover, most of the experimental data on atherosclerosis-prone
animals benefiting from antioxidant treatment points towards a link between oxidative stress and atherosclerosis. The evidence
coming from cohort studies demonstrating an association between oxidized LDLs and cardiovascular events, notwithstanding
some discrepancies, seems to point towards a role of oxidized LDLs in atherosclerotic plaque development and destabilization.
Finally, the results of randomized clinical trials employing antioxidants completed up to date, despite demonstrating no benefits in
healthy populations, suggest a benefit in high-risk patients. In conclusion, available data seem to validate the oxidative modification

hypothesis of atherosclerosis, although additional proofs are still needed.

1. Introduction

Recent postulates on atherosclerosis designate the appear-
ance of qualitative changes on endothelial cells, triggered
by “irritative” stimuli (e.g., hypertension, dyslipidemia, and
cigarette smoking), as an early pathogenic event [1]. This
process occurs at specific segments of the arterial tree,
mainly branching points and bifurcations, characterized by
disturbed laminar blood flow, probably owing to differences
in arteries regional development [2] and to the loss of the
atheroprotective effect of laminar shear stress [3]. In this
setting, the endothelium expresses adhesion and chemotactic
molecules and acquires an increased permeability to macro-
molecules, which modifies the composition of the suben-
dothelial extracellular matrix. Hence, the entry of low-density
lipoprotein (LDL) particles in the arterial wall followed by
their retention through the binding of apolipoprotein B100

to proteoglycans of the extracellular matrix [4] is held to
be a key-initiating factor in early atherogenesis [5]. The
LDL particles trapped in the subintimal extracellular matrix
are mildly oxidized by resident vascular cells [6]. They
retain the capability of binding to the LDL receptor [6, 7]
and to exert their proatherogenic effects [8-10], including
stimulation of the resident vascular cells to produce mono-
cyte chemotactic protein-1, granulocyte, and macrophage
colony-stimulating factors. These molecules promote mono-
cytes recruitment and their differentiation into macrophages,
which are able to further promote the oxidation of LDLs
[11] through myeloperoxidase and reactive oxygen species.
Completely oxidized LDLs, characterized by an increased
apolipoprotein B100 negative charge, are recognized by scav-
enger receptors on macrophages and internalized to form
foam cells [12], the hallmark of the atherosclerotic lesion.
Furthermore, macrophages play a key role in atherogenesis
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FIGURE I: Putative pathway of oxidized low-density lipoprotein (0xLDL) in the atherogenetic process according to the oxidative hypothesis

of atherosclerosis.

through their proinflammatory action, which involves the
production of interleukin-1/3 and tumor necrosis factor (Fig-
ure1).

Other main effectors in the development of atheroscle-
rotic lesions are smooth muscle cells (SMCs), which are
recruited from the tunica media to the subendothelial space,
where they proliferate in response to mediators such as the
platelet-derived growth factor. SMCs residing in the tunica
intima produce extracellular matrix molecules, for example,
interstitial collagen and elastin, and build the fibrous cap that
overlies the growing atherosclerotic plaque. The latter entails
macrophage-derived foam cells, cellular debris, and extracel-
lular lipids, which are inefliciently cleared due to defective
efferocytosis and thereby form the so-called necrotic core of
the plaque [13].

The atherosclerotic plaque becomes clinically manifest
when it reaches an advanced stage due to its blood flow-
limiting effects or its destabilization with ensuing thrombosis.
Unfortunately, the latter complication, which is responsible
for ischemic events, is not strictly related to the degree
of stenosis at angiography [14, 15] as its occurrence stands
mostly on the cellular features of the plaque and particularly
on the thickness of the overlying fibrous cap [16, 17]. In fact,
atherosclerotic plaques prone to rupture are characterized by
accumulation of inflammatory cells, mostly at the shoulder
regions. These cells degrade collagen through release of
collagenolytic enzymes, mainly matrix metalloproteinases

(MMPs), and also reduce its synthesis by inducing SMCs
apoptosis [18].

Many excellent reviews on the current knowledge of
atherosclerosis are available, but few are focused on oxidized
LDLs. Hence, this review examines the role played by oxi-
dized LDLs in atherogenesis taking into account data derived
by studies based on molecular and clinical approaches.

2. Evidence Linking Oxidized LDLs
to Atherosclerosis

The oxidative modification hypothesis designates the oxida-
tive change of LDLs as a crucial, if not mandatory, step
in atherogenesis [19]. This theory originated from studies
demonstrating that LDLs modified by endothelial cells,
transformation entailing an oxidation process [20], could be
internalized and accumulated avidly by macrophages [21, 22],
leading to foam cell formation, although these cells could
also be generated from macrophages internalizing native
LDLs from the medium through micropinocytosis [23], or by
uptake of aggregated LDLs or LDL immune complexes.
Several potential mechanisms can explain how LDL
oxidative modification occurs within the arterial wall in vivo.
A major role has been proposed for the 12/15-lipoxygenase
[24, 25] because (1) it is expressed in atherosclerotic plaques
but not in normal vessels [26] and (2) its inhibition was



Mediators of Inflammation

associated with decreased oxidation of LDLs [27] and
reduced atherosclerosis in animal models [25, 28, 29].
Myeloperoxidase, a heme enzyme secreted by neutrophils
and monocytes/macrophages, is another suggested agent.
It was found in human atherosclerotic plaques [30] and
modifies LDLs, thus increasing their affinity for CD36 and
SR-A [31, 32], the scavenger receptors mediating the uptake
of oxidized LDLs by macrophages. Nitric oxide synthase
(NOS) and nicotinamide adenine dinucleotide phosphate
(NADPH)-oxidase are other putative players as their prod-
ucts nitric oxide and superoxide anion, respectively, can
combine to form the strong oxidizing agent peroxynitrite.

Native LDLs are internalized by macrophages at a pace
too low to account for foam cells formation [33] owing to LDL
receptor downregulation. Oxidative modification of LDLs
increases their uptake by macrophages [20], via scavenger
receptors. The latter are not downregulated in response to
increased intracellular cholesterol, which explains why foam
cells formation is held to occur with oxidized LDLs and not
with native LDLs.

Besides contributing to the formation of lipid-laden
macrophages, oxidized LDLs exhibit a wide array of biologi-
cal properties, which are deemed to promote atherosclerosis.

(i) Oxidized LDLs exert chemotactic activity for mono-
cytes [34], stimulate their binding to endothelial cells
[35] by inducing the expression of intercellular adhe-
sion molecule-1and vascular-cell adhesion molecule-
1 [36], are mitogenic for macrophages [37], and
promote their trapping in the intima, while limiting
their egress from the arterial wall [38]. Hence, oxLDL
is key for recruitment, activation, and proliferation of
monocytes/macrophages in the arterial wall.

(ii) Oxidized LDLs increase the expression of growth fac-
tors, such as platelet-derived growth factor (PDGF)
and basic fibroblast growth factor (FGF) by endothe-
lial cells and macrophages. The former stimulates
migration of SMCs [39-41], while the latter induces
SMCs proliferation [42].

(iii) Oxidized LDLs stimulate collagen production by
SMCs [43], thus contributing to the fibrous cap lining
the atherosclerotic plaque and the expansion of the
lesion size. However, they could also promote fibrous
cap thinning by increasing secretion of matrix met-
alloproteinase 1 [44] and matrix metalloproteinase
9, decreasing production of the tissue inhibitor of
metalloproteinase 1 [45], and inducing SMCs apop-
tosis [46]. Therefore, they can contribute to the
occurrence of vulnerable plaques [16, 17]. Hence,
taken together, this evidence involved oxidized LDLs
in the progression of the atherosclerotic plaque and
the development of its complications.

(iv) Oxidized LDLs are cytotoxic to vascular cells [47, 48]
and promote their apoptosis [49, 50] with ensuing
release in the subendothelial space of lipids and
lysosomal enzymes, enhancing the progression of the
atherosclerotic plaque [47] and the production of the
necrotic core.

(v) Oxidized LDLs stimulate platelet adhesion and aggre-
gation, by decreasing endothelial production of
nitric oxide, increasing prostacyclin production [51,
52], and stimulating the synthesis of prostaglandins
and prostaglandin precursors [53]. Moreover, they
decrease the secretion of the tissue-type plasminogen
activator and increase that of plasminogen activator
inhibitor-1 followed by a reduction of the fibrinolytic
activity of endothelium [54-56]. Ultimately, they
may determine vasoconstriction by inhibiting nitric
oxide [57] and increasing endothelin production
[58]. Taken together, these findings may explain the
thrombotic complications of advanced atheroscle-
rotic plaques.

3. In Vivo Models Supporting the Oxidized
LDL Role in Atherosclerosis

Several studies were carried out in vivo in animal models
where either a modulation of oxidative stress or manipulation
of the scavenger receptor was undertaken, in order to prove
the role of oxidized LDLs in the pathogenesis of atheroscle-
rosis.

In an animal model of increased oxidative stress obtained
through the overexpression of 15-lipoxygenase in the vas-
cular wall, larger atherosclerotic lesions were found in
LDL receptor-deficient mice [59]. However, a decreased
atherosclerosis in cholesterol-fed rabbits and WHHL rabbits
whose macrophages overexpressed human 15-lipoxygenase
was also reported [60]. Animal models of reduced oxidative
stress, instead, were obtained through knockout of oxidative
stress-related genes or increasing the antioxidants: in three
different knockout mouse models for 12/15-lipoxygenase,
a decreased severity of atherosclerosis was seen [25, 61-
64]. However, in apoE-deficient mice, the knocking out
of the macrophage-specific 12/15-lipoxygenase increased the
extension of atherosclerotic lesions [65].

The knockout in atherosclerosis-prone mice models of
either SR-A or CD36 scavenger receptors, accounting for
almost 90% of macrophage oxidized LDLs uptake [66], was
demonstrated to be efficacious in decreasing the atheroscle-
rotic burden [67, 68]. However, these results were not
confirmed in another mice model with a CD36 and SR-A
double knockout [69].

The results of these studies proved to be highly contra-
dictory, due to the different animal models used, the different
genetic background, and the unexpected consequences of
gene deletions [70].

Finally, in spite of these conflicting data, support to
the oxidative theory comes from extensive literature on the
treatment of atherosclerosis-prone animals with antioxidants
(reviewed by Witztum and Steinberg [71]). Most of these
studies were carried out with probucol and demonstrated a
protection from atherosclerotic lesions with the exception of
the murine models, possibly secondary to a peculiar toxicity
of this molecule in mice. In fact, in apoE-deficient mice fed
with vitamin E, decreased atherosclerosis, paralleled with a
decrease of aortic wall, plasma, and urinary F, isoprostanes,
a marker of oxidative stress, was observed [72].



4. Human Findings Supporting the Oxidized
LDLs Role in Atherosclerosis

There is a wealth of literature on the association between oxi-
dized LDLs and cardiovascular events. An important premise
needs to be made beforehand, however, in that oxidation of
LDLs induces immunogenic epitopes in their particles [73]
with ensuing generation of antibodies against them (oxLDL
Abs). Since these autoantibodies are detectable in the sera of
the majority of patients with advanced atherosclerotic lesions
[74], they can be viewed as in vivo markers of LDL oxidation.
Oxidized LDLs and their involvement in atherosclerosis can
therefore be assessed by two ways: (1) using murine mon-
oclonal antibodies directed toward different oxidized LDLs
epitopes and (2) determining the immunogenic response to
oxidized LDLs. Both approaches have advantages and pitfalls,
as reviewed in detail by Tsimikas [75].

Human studies on the association of oxidized LDLs
with atherosclerosis or cardiovascular events have been
highly conflicting (for rev. [76]). Some cross-sectional studies
suggested a direct association of oxidized LDLs or oxLDL
Abs with atherosclerosis in different vascular beds [74, 77,
78], whereas others found no association with coronary
atherosclerotic burden in coronary artery disease patients
[79-81]. Owing to these contradictory results, we focused
on cohort studies, which are more solid and less prone to
serendipitous findings, because of alower chance for selection
and recall bias [82].

Among the twenty-two cohort studies reporting on car-
diovascular events, fourteen were positive [81, 83-94] (Table
1) and eight were negative [80, 95-101] (Table 2). Due to
potential publication bias, the preponderance of positive
results clearly does not provide a proof of the strength of
the association [102]. However, it is important to highlight
that three [95, 99, 100] out of eight negative studies were
completed in healthy people. This carries a limitation in that
the robustness of cohort studies depends on the assumption
that the control group—in this case those exposed to low
levels of oxidized LDLs—has features as close as possible
to the group exposed to high levels of oxidized LDLs [103,
104]. Theoretically, this goal can be better accomplished
in selected populations made of patients with similar risk
profile, rather than in studies recruiting healthy persons.
Among these negative studies, the first one reported on
cardiovascular events in a large cohort of more than three
thousand elderly patients who had 420 cardiovascular events
after 5 years of followup [95]. Oxidized LDLs were predictive
of cardiovascular events only if a multivariate analysis was
not adjusted for the presence of metabolic syndrome. In the
second study, which enrolled almost three thousand healthy
subjects, malonyldialdehyde-LDL autoantibodies were not
associated with cardiovascular events [99]. In the latter, sim-
ilarly performed in a healthy population, malonyldialdehyde-
and Cu-LDL autoantibodies and oxidized LDLs were not
predictive of progression of carotid atherosclerosis [100].

The lack of association between oxidized LDLs and
cardiovascular events, possibly due to lack of statistical power,
was also reported in two small cohorts of high-risk end-stage
renal disease [101] and diabetes mellitus patients [96].
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Other negative studies enrolling patients with coronary
heart disease [80, 97, 98] were either too small [80, 97] and
with a number of cardiovascular events too low to allow
detection of any effect of oxidized LDLs or had an endpoint
not appropriate to study atherosclerosis because most of the
cardiovascular events were coronary artery restenosis (75%
of total events) [98]. Moreover, it is worth highlighting that
the negative study published by Tsimikas et al. [80] was
on the same cohort where an association between coronary
artery atherosclerosis and oxidized LDLs was demonstrated
[78].

Among the positive studies four out of fourteen were
carried out in a healthy cohort [88, 90, 92, 94], thus exposing
them to the same considerations expressed above. Moreover,
it has to be pointed out that three of these studies were
completed in the same cohort, the Brunick study, at different
time points of follow up, that is, 5 [90], 10 [92], and 15 years
[94], and all demonstrated a predictive value of oxidized
LDLs on cardiovascular events, contradicting the results on
carotid artery atherosclerosis [100] on the same population.

Other studies demonstrating an association between oxi-
dized LDLs and cardiovascular events enrolled small cohorts
of either high-risk patients [83-86] or coronary artery disease
patients [87, 89, 105]. Therefore these positive results could
be secondary to serendipitous findings, as suggested by the
opposite results on similar cohorts of end-stage renal failure
patients where high oxLDL Abs titer was associated to either
low [84] or high [86] cardiovascular mortality.

Two studies reported an association of oxidized LDLs
with cardiovascular events in diabetics [93] and acute coro-
nary syndrome patients [91]. Finally, using a prospective
cohort study design and an unequivocal definition of the
coronary artery disease phenotype, we reported the associa-
tion of oxLDL Abs with cardiovascular mortality and cardio-
vascular events in more than 700 coronary artery disease
patients [81].

In conclusion, most cohort studies reported an associ-
ation between oxidized LDLs and cardiovascular events or
mortality, in particular those including either a very high-risk
population, that is, with end-stage renal disease and diabetes,
or coronary artery disease patients. However, despite being an
appealing hypothesis, the oxidation theory of atherosclerosis
is not conclusively corroborated by observational studies,
which have conflicting results, probably owing to the enrol-
ment selection criteria and low statistical power.

5. Clinical Trials on Antioxidants and
the Oxidized LDL Hypothesis

The oxidative theory of atherosclerosis would be conclusively
proven by the beneficial effects of oxidative stress decrease
on cardiovascular events. Therefore, the analysis of controlled
randomized trials on antioxidant therapy in this setting
is crucial. The first report on efficacy of antioxidants on
cardiovascular events in coronary artery disease patients
[106] was later confirmed by further studies [107-110] (Table
3), but numerous subsequent randomized clinical trials failed
to prove any benefit [111-126] (Table 4). Moreover, meta-
analyses on this issue are discordant [127, 128].
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TaBLE 1: Cohort studies demonstrating an association between oxidized low-density lipoprotein measurement and cardiovascular events.

Population

Number of

Oxidative oxLDL test under study CV endpoints events Followup Findings Reference
OxLDL Abs 4E06 326 men IMT na 3 years OxLDL predicted IMT e.lnd carotid Wallenfeldt et
plaque progression al. [88]
OxLDL Abs 4E06 765 subjects CV events 77 CV events 5 years OxLDL predicted CV events Tmml{l;%s] etal.
OxLDL Abs 4E06 765 subjects CV events 82CVevents 10 years OxLDL predicted CV events Klec[}gﬂz? al
OxPL/apoB predicted CV events o
OxPL/apoB, AutoAbs 765 subjects CVevents 138CVevents 15years  and stroke; AutoAbs predicted CV Tsimikas et al,
MDA-/Cu-oxLDL [94]
events, stroke, and ACS
MDA-LDL 907NIDDM  CV events, MI 152CV 3.7 years MDA-LDL predicted MI and CV  Lopes-Virella
events, 43 M1 events et al. [93]
AutoAbs Cu-oxLDL 249 ESRD CV mortality 74 CV deaths 63 months  AutoAbs predicted CV mortality ~Shoji et al. [84]
AutoAbs Cu-oxLDL 4 ESR.D " Total mortality 32 deaths 24 months AutoAbs predicted mortality Bayés etal.
hemodialysis (85]
AutoAbs Cu-oxLDL 4 ESR.D on CV mortality 33 CV deaths 4 years AutoAbs predicted CV mortality Bayés etal.
hemodialysis [86]
246 pts with cacrc:\l]iaecV fizzst:h Shimada et al
OxLDL Abs DLH3 coronary ML, PTCA, and 76 CV events 38 months OxLDL predicted CV events (87]
angiography CABG
AutoAbs CV mortality, 65 CV deaths OxLDL predicted CV death and  Maiolino et al.
MDA-oxLDL 734THD pts ML, ACS, and 153 CV events 7.2 years events [81]
CV events
AutoAbs Cu-oxLDL 74 PELCC{; Pts, Restenosis 34 restenosis 6 months AutoAbs predicted restenosis ~ Lee et al. [107]
102 primary . . . . Naruko et al.
OxLDL Abs DLH3 PTCA pts, 86 ctr Restenosis 25 restenosis 6 months OxLDL predicted restenosis [89]
OXLDL Abs 4E06 433ACSpts  CVdeath,MI T C;; i;?ths’ 2 years OXLDL predicted MI J Ohns[tgﬁ etal.
CV death, CV
OxLDL Abs 84 CHF pts (EF  hospitalization, . Tsutsui et al.
FOHIa/DLH3 < 45%), 18 ctr and fatal 26 CV events 780 days OxLDL predicted CV events [83]
arrhythmia

Abs: antibodies; ACS: acute coronary syndrome; AutoAbs: autoantibodies; CABG:
CV: cardiovascular; ESRD: end-stage renal disease; IHD: ischemic heart disease;

coronary artery by-pass surgery; CHF: congestive heart failure; Crt: controls;
IMT: intima-media thickness; MI: myocardial infarction; oxLDL: oxidized

low-density lipoproteins; OxPL/apoB: oxidized phospholipids on apolipoprotein B-100; PTCA: percutaneous transluminal coronary angioplasty; pts: patients.

An in depth analysis of these studies, however, high-
lighted that most of the negative studies were completed
in either healthy or high-risk individuals, whereas results
of clinical trials completed in patients with cardiovascular
disease demonstrated the benefit conferred by antioxidants
in some cases [106, 108, 109], with notable exceptions [112,
113, 117, 125]. The fact that treatment was likely given to the
wrong patients, that is, with very low risk profile, can explain
the failure of antioxidants trials in preventing cardiovascular
events in the aforementioned negative reports [129].

Moreover, as in cohort studies, positive effects of antiox-
idants were witnessed in randomized trials enrolling very
high-risk populations, as end-stage renal disease patients in
hemodialysis, characterized by an increased oxidative stress,
possibly secondary to hemolysis and hemoglobin-induced
LDL oxidation [130, 131]. In these patients, with vitamin E

supplementation, as tested in the SPACE trial randomizing
patients to vitamin E or placebo [108], cardiovascular events
were reduced by 54% and myocardial infarction by 70%.
Accordingly, the potent antioxidant N-acetylcysteine showed
a significant 40% decrease in the combined primary endpoint
of cardiovascular events in another study [109]. After these
rewarding results, we proposed the use of vitamin E coated
dialysis membrane in these patients, which effectively reduces
oxidative stress markers [132, 133]. Finally, in another high-
risk population of diabetics carrying the haptoglobin 2-2
genotype, which is associated with inferior antioxidant pro-
tection [134], vitamin E was able to reduce the primary com-
posite end point of cardiovascular death, nonfatal myocardial
infarction, or stroke [110], even on top of statin therapy [135].

Thus, most controlled randomized trials involving the
use of antioxidants provided negative results. However,
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TaBLE 2: Cohort studies demonstrating no association between oxidized low-density lipoprotein measurement and cardiovascular events.

Oxidative oxLDL test Population CV endpoints Number of Followup Findings Reference
under study events
OxLDL Abs 4E06 3033 elderly CVevents  418THD,120MI 3 years OxLDL did not predlct. CVevents  Holvoet etal.
at MV analysis [95]
IHD (angina,
AutoAbs . ACS, and THD 1511HD, 234 CV AutoAbs did not predict CV Wilson et al.
2619 subjects  death); CV 8 years
MDA-oxLDL events events [99]
events (IHD +
TIA/stroke)
OxLDL Abs 4E06, . Carotid . AutoAbs and oxLDL did not Mayr et al.
AutoAbs 919 subjects  atherosclerosis na 5 years redict CV events (100]
MDA-/Cu-oxLDL progression b
92NIDDM, 34 CV events, AutoAbs did not predict CV Uusitupa et al.
AutoAbs Cu-oxLDL 80 ctr CV events 15CV deaths 10 years events [96]
69 ESRD on
OxLDL Abs 4E06 hemodialysis, CV events 18 CV events 43 months  OxLDL did not predict CV events Lee et al. [101]
33 ctr

3BCV AutoAbs did not predict CV Erkkild et al

AutoAbs Cu-oxLDL 415 THD CV events deaths/MI, 5 years even tsp [97] ’
33PTCA/CABG

Restenosis, CV 135 restenosis, . . Braun et al.
OxLDL Abs 4E06 687 PTCA pts events 181CV events 1 year OxLDL did not predict CV events (98]

Abs: antibodies; AutoAbs: autoantibodies; CABG: coronary artery by-pass surgery; CHF: congestive heart failure; Crt: controls; CV: cardiovascular; ESRD: end-
stage renal disease; IHD: ischemic heart disease; IMT: intima-media thickness; MI: myocardial infarction; NIDDM: noninsulin dependent diabetes mellitus;

oxLDL: oxidized low-density lipoproteins; PTCA: percutaneous transluminal coronary angioplasty; pts: patients.

TaBLE 3: Randomized controlled trials demonstrating a beneficial effect of antioxidant therapy.

Source Patients Inclusion criteria An:;:rlgant Dose Route Endpoints Followup Events
Angiographically CV death + }S \;3dei trli)i?a‘t,:l
CHAOS [106] 2002 demonstrated Vit E 400/800 IU PO MI; nonfatal 510d » =2 P 1O
MI: 14 vit E,
CAD MI
41pl
Composite CV events: Vit E
6001U end oiI;t (CV 482, pl 517; CV
WHS [107] 39876 Healthy women Vit E PO p 10.1y death: Vit E 106,
q48h death, M1, and .
stroke) pl140; MI: Vit E
196, pl 195
Composite
Composite endpoint: Vit E
Hemodialysis CV . endpoint (MI, 15, pl 33;
SPACE [108] 196 disease pts VitE 8001U PO ACS, PAD, and 519d CV death: vit E
stroke) 9, pl 15; nonfatal
MI: vit E 8, pl 18
Composite
endpoint (CV Composite
Tepel et al. Hemodialysis CV . death, MI, endpoint:
[109] 134 disease pts Acetylcysteine 1200 mg PO PTCA/CABG, 14.5m acetylcysteine
PAD, and 18, pl1 33
stroke)
Composite Composite
Milman et al. 1434 Diabetes mellitus VitE 400TU PO endpoint (CV 18m endpoint: Vit E
[110] Hp 2-2 genotype death, MI, and
16, pl 33
stroke)

CAD: coronary artery disease; CV: cardiovascular; d: days; DM: diabetes mellitus; HR: hazard ratio; HTN: arterial hypertension; m: months; MI: myocardial
infarction; MLD: minimal luminal diameter; na: not available; PAD: peripheral artery disease, pl: placebo; PO: per os; pts: patients; RF: risk factor; vit: vitamin;

y: years.
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TABLE 4: Randomized controlled trials demonstrating no effect of antioxidant therapy.

Source Nurn.ber Inc.luSI.O " Antioxidant Dose  Route  Endpoints  Followup Events
of patients criteria agent
CV events: Vit E 519,
beta-carotene 547, Vit E +
Major beta-carotene 511, and pl 534; CV
Virtamo et Vit E, 50 mg, coronary death: Vit E 212, beta-carotene
al. [111] 27271 Male smokers beta-carotene 20 mg PO events (CV 6.1 235, Vit E + beta-carotene 222,
death, MI) and pl 238; non-fatal MI: Vit E
307, beta-carotene 312, Vit E +
beta-carotene 289, and pl 296
Rapola et al Vit E 50 m: C(i\t/'l(?il(;i’ CV events: Vit E 94,
P T 1862 Previous MI ? 8 PO b 53y beta-carotene 113, Vit E +
[112] beta-carotene 20 mg events (CV beta-carotene 123. and pl 94
death, MI) »anap
Vit E/C, beta- 8010 v, encdorf)lgl(is(lg:V CV events: antiox 9, pl 9; CV
HATS [113] 80 CAD carotene, and & PO p 38 m death: antiox 0, pl I; nonfatal MI:
selenium 25mg, death, ML, and antiox 1, pl 4
and 100 g PTCA/CABG) ’
Composite CV events: Vit E 620, pl 625; Vit
.. . 400IU endpoint (CV C 619, pl 626; CV death: Vit E
PHSIT[14] 14641 Malephysicians  VItE/C 550 0 PO oo ML and  8Y 258, pl 251; Vit C 256, pl 253 MI:
stroke) Vit E 240, pl 271; Vit C 260, pl 251
600U CV events: Vit E 708, pl 742; Vit
q48h Composite C 731, pl 719; beta-carotene 731,
. . . ’ endpoint (CV pl 719; CV death: Vit E 193, pl
WACS [115] 8171 H‘gvlvlofnZSISk be tZ‘thr/o Ct;ne > 0:nr§g, PO death, MI, 94y 202; Vit C 206, pl 189;
50m PTCA/CABG, beta-carotene 211, pl 184; MI: Vit
. 8}% and stroke) E 131, pl 143; Vit C 140, pl 134;
q beta-carotene 135, pl 139
eriiof)lﬁl 25(18/ CV events: Vit E 56, pl 53; CV
PPP [116] 4495 Subjects > 1 RF VitE 300mg PO b 3.6y death: Vit E 22, pl 26; MI: Vit E
death, M1, and
22,pl 25
stroke)
GISSI- encd‘“;‘gl‘f(“cev CV events: Vit E 371, pl 414; CV
prevenzione 5660 Recent MI VitE 300 mg PO b 35y death: Vit E 155, p1 193; MI: Vit E
[117] death, M1, and 22,pl 25
stroke) ’
gf:le rfllalesl‘]g 1720 Skin cancer  beta-carotene 50 mg PO CV death 43y  CV death: beta-carotene 68, pl 59
Malignant
neoplasm; CV events: beta-carotene 967, pl
- 50 mg composite 972; CV death: beta-carotene
PHS [119] 22071  Male physicians beta-carotene 48 PO endpoint (CV 12y 338, pl 313; MI: beta-carotene
death, M1, and 468, pl 489
stroke)
30 mg,
Vit E/C, beta- 120 mg,
SUVIMAX . carotene, 6 mg, CV ischemic . .
[120] 13017 Adult subjects selenium, 100g, PO events 75y CV events: antiox 134, pl 137
and zinc and
20 mg
. 600 mg, Composite CV death: antiox 878, pl 840; MI:
HPS [121] 20536 D&A?ﬁgﬁl%N be tzfzi/()(iéne 250mg, PO  endpoint (CV 5y antiox 1063, pl 1047; CV events:
’ 20 mg death, and MI) antiox 2306, pl 2312
v g‘;zafe or ei"rgﬁs(‘tcev CV events: Vit E 1022, pl 985; CV
HOPE [122] 9541 .. Vit E 400 IU PO p 7y death: Vit E 482, pl 475; MI: Vit E
additional CV death, M1, and
724, pl 686
RF stroke)
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TaBLE 4: Continued.
Source Num'ber Inc.lus1.o " Antioxidant Dose  Route  Endpoints  Followup Events
of patients criteria agent
601U,
Mark et al. Esophageal Vit E/C, 180 mg, o
[123] 3318 dysplasia beta-carotene and PO CV death 6y CV death: antiox 22, pl 35
15mg
Exposure to
CARET . 15/30 mg, Lung cancer .
[124] 1845 asbestos or Vit E/A 25000 TU PO incidence 55y CV death: HR 1.26 (0.99-1.61)
smoke
Postmenopausal . CV events: antiox 10, pl 5; CV
WAVE [125] 213 women with Vit E/C 40010, PO Change in 2.8y death: antiox 4, pl 2; nonfatal MI:
500 mg MLD .
CAD antiox 3, pl 1
v g‘;zafe or enc(iorgﬁl 23(18/ CV events: Vit E 772, pl 739; CV
HOPE [126] 9541 o VitE 400IU PO P 4.5y  death: Vit E 342, pl 328; MI: Vit E
additional CV death, MI, 532 pl 524
RF stroke) P

CAD: coronary artery disease; CV: cardiovascular; d: days; DM: diabetes mellitus; HR: hazard ratio; HTN: arterial hypertension; m: months; MI: myocardial
infarction; MLD: minimal luminal diameter; na: not available; PAD: peripheral artery disease, pl: placebo; PO: per os; pts: patients; RF: risk factor; vit: vitamin;

y: years.

administration of antioxidants to patients with known car-
diovascular disease or with a very high-risk profile proved to
be beneficial in a nontrivial number of studies.

6. Conclusions

Evidence supports on a molecular ground the oxidative
hypothesis of atherosclerosis. The translation of experimental
evidence in humans with studies aimed at the demonstration
of the association of oxidative stress with cardiovascular
events proved to be difficult and resulted in contrasting
findings, particularly with administration of antioxidant
therapy. However, the selection of patients either at higher
risk or with cardiovascular disease provided much rewarding
outcomes with numerous positive studies. It seems therefore
that although this theory still needs further proofs to be
definitely clarified, data available so far strengthen the pivotal
role for oxidative stress in atherosclerosis.
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