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Abstract
We consider a formal model of stimulus encoding with a circuit consisting of a bank of filters and
an ensemble of integrate-and-fire neurons. Such models arise in olfactory systems, vision, and
hearing. We demonstrate that bandlimited stimuli can be faithfully represented with spike trains
generated by the ensemble of neurons. We provide a stimulus reconstruction scheme based on the
spike times of the ensemble of neurons and derive conditions for perfect recovery. The key result
calls for the spike density of the neural population to be above the Nyquist rate. We also show that
recovery is perfect if the number of neurons in the population is larger than a threshold value.
Increasing the number of neurons to achieve a faithful representation of the sensory world is
consistent with basic neurobiological thought. Finally we demonstrate that in general, the problem
of faithful recovery of stimuli from the spike train of single neurons is ill posed. The stimulus can
be recovered, however, from the information contained in the spike train of a population of
neurons.

1 Introduction
In this letter, we investigate a formal model of stimulus encoding with a circuit consisting of
a filter bank that feeds a population of integrate-and-fire (IAF) neurons. Such models arise
in olfactory systems, vision, and hearing (Fain, 2003). We investigate whether the
information contained in the stimulus can be recovered from the spike trains at the output of
the ensemble of integrate-and-fire neurons. In order to do so, we provide a stimulus recovery
scheme based on the spike times of the neural ensemble and derive conditions for the perfect
recovery of the stimulus. The key condition calls for the spike density of the neural
ensemble to be above the Nyquist rate. Our results are based on the theory of frames
(Christensen, 2003) and on previous work on time encoding (Lazar & Tóth, 2004; Lazar,
2005, 2006a, 2007).

Recovery theorems in signal processing are usually couched in the language of spike
density. In neuroscience, however, the natural abstraction is the neuron. We shall also
formulate recovery results with conditions on the size of the neural population as opposed to
spike density. These results are very intuitive for experimental neuroscience. We
demonstrate that the information contained in the sensory input can be recovered from the
output of integrate-and-fire neuron spike trains provided that the number of neurons is
beyond a threshold value. The value of the threshold depends on the parameters of the
integrate-and-fire neurons. Therefore, while information about the stimulus cannot be
perfectly represented with a small number of neurons, this limitation can be overcome
provided that the number of neurons is beyond a critical threshold value. Increasing the
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number of neurons to achieve a faithful representation of the sensory world is consistent
with basic neurobiological thought.

We also demonstrate that the faithful recovery of stimuli is not, in general, possible from
spike trains generated by individual neurons; rather a population of neurons is needed to
faithfully recover the stimulus of single neurons. This finding has important applications to
systems neuroscience since it suggests that the recovery of the stimulus that is applied to
single neurons cannot in general be recovered from the spike train of single neurons. Rather,
the spike train of a population of neurons is needed to get faithful stimulus recovery.

Our theoretical results provide what we believe to be the first rigorous model demonstrating
that the sensory world can be faithfully represented by using a critical-size ensemble of
sensory neurons. The investigations presented here further support the need to shift focus
from information representation using single neurons to a population of neurons. As such,
our results have some important ramifications to experimental neuroscience.

This letter is organized as follows. In section 2, the neural population encoding model is
introduced. The encoding model is formally described, and the problem of faithful stimulus
recovery is posed. A perfect stimulus recovery algorithm is derived in section 3. In the same
section, we also work out our main result for neural population encoders using filter banks
based on wavelets. Two examples are given in section 4. The first details the stimulus
recovery for filters with arbitrary delays arising in dendritic computation models. The
second presents the recovery of stimuli for a gammatone filter bank widely used in hearing
research. For both examples, we show that the quality of stimulus reconstruction gracefully
degrades when additive white noise is present at the input. Finally section 5 discusses the
important ramifications that formal neural population models can have in systems
neuroscience.

2 A Neural Population Encoding Model
In this section we introduce a formal model of stimulus representation consisting of a bank
of N filters and an ensemble of N integrate-and-fire neurons (see Figure 1). Each filter of the
filter bank is connected to a single neuron in the ensemble. The stimulus is modeled as a
band-limited function—a function whose spectral support is bounded.

2.1 Stimulus Encoding with Filter Banks and Integrate-and-Fire Neurons
Let Ξ be the set of band-limited functions with spectral support in [−Ω, Ω]. A function u =
u(t), t ∊ ℝ, in Ξ models the stimulus and Ω is its bandwidth. Ξ is a Hilbert space endowed
with the L2-norm. A brief overview of Hilbert spaces can be found in appendix A. Let h : ℝ
↦ ℝ N be a (vector) filtering kernel defined as

(2.1)

where hj : ℝ → ℝ for all j, j = 1, 2, … , N, and T denotes the transpose. Throughout this
letter, we shall assume that supp(ĥj) ⊇ [−Ω, Ω] (supp denotes the spectral support). Filtering
the signal u with h leads to an N-dimensional vector-valued signal v = v(t), t ∊ ℝ, defined by

(2.2)

where * denotes the convolution operator.
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A bias bj is added to the component ʋj of this signal, and the sum is presented at the input of
the jth integrate-and-fire neuron with integration constant Κj and threshold δj, for all j, j = 1,

2, …, N (see Figure 1). , k ∊, ℤ, is the output sequence of trigger (or spike) times
generated by neuron j, j = 1, 2, …, N.

The neural population encoding model in Figure 1 therefore maps the input band-limited

stimulus u into the vector time sequence , k ∊ ℤ, j = 1, 2, … , N. It is an instance of a
time encoding machine (TEM) (Lazar & Tóth, 2004; Lazar, 2006a).

2.2 The t-Transform
The t-transform (Lazar & Tóth, 2004) formally characterizes the input-output relationship of
the TEM, that is, the mapping of the input stimulus u(t), t ∊ ℝ, into the output spike

sequence  of the jth neuron, j = 1, 2, … , N. The t-transform for the jth neuron be can
written as

or

(2.3)

where , for all k, k ∊ ℤ, and all j, j = 1,2, …, N.

2.3 Recovery of the Encoded Stimulus
Definition 1. A neuronal population encoding circuit faithfully represents its input stimulus
u = u(t), t ∊ ℝ, if there is an algorithm that perfectly recovers the input u from the output

spike train , k ∊ ℤ, j = 1,2, … , N.

We have seen that the t-transform of the population encoding circuit in Figure 1 maps the

input u into the time sequence , k ∊ ℤ, j = 1, 2, …, N. The faithful recovery problem
seeks the inverse of the t-transform, that is, finding an algorithm that recovers the input u

based on the output vector time sequence , k ∊ ℤ, j = 1, 2, …, N.

Let the function g(t) = sin(Ωt)/πt, t ∊ ℝ, be the impulse response of a low-pass filter (LPF)
with cutoff frequency at Ω. Clearly, g ∊ Ξ. Since u is a band-limited function in Ξ, the t-
transform defined by equation 2.3 can be rewritten in an inner-product form as

or

(2.4)
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where h̃j is the involution of hj, that is, h̃j =hj (—t), for all t, t ∊ ℝ, and for all k, k ∊ ℤ, and j,
j = 1, … , N. After firing, without any loss of generality, all neurons are reset to the zero
state. A description of the firing mechanism with arbitrary reset can be found in Lazar
(2005).

Equation 2.4 has a simple interpretation. The stimulus u is measured by projecting it onto

the sequence , k ∊ ℤ and j = 1,2, … , N. The values of these

measurements form the sequence , j = 1, 2, …, N which is available for recovery. Thus,
the TEM acts as a sampler on the stimulus u. Furthermore, since the spike times depend on
the stimulus, the TEM acts as a stimulus-dependent sampler. How to recover the stimulus
from these measurements is detailed in the next section.

3 Recovery of Stimuli Encoded with the Neural Population Model
As discussed in the previous section, we assume N integrate-and-fire neurons each with bias
bj, integration constant Κj, and threshold δj for all j, j = 1, 2, …, N. Before the stimulus u is
fed to neuron j, the stimulus is passed through a linear filter with impulse response hj = hj(t),

t ∊ ℝ. With , k ∊ ℤ, the spike times of neuron j, the t-transform, equation 2.4, can be
written as

(3.1)

where . If the sequence , k ∊ ℤ, j = 1, 2, …, N, is a frame for
Ξ, the signal u can be perfectly recovered. Thus, our goal in this letter is to investigate the
condition for the sequence ɸ to be a frame (called analysis frame in the literature; Teolis,
1998; Eldar & Werther, 2005) and provide a recovery algorithm.

Before we proceed with the recovery algorithm we also need the following definition of the
filters that model the processing taking place in the dendritic trees:

Definition 2 The filters hj = hj(t), t ∊ ℝ, are said to be bounded-input bounded-output
(BIBO) stable if

In the next section, we investigate the faithful representation of the stimulus u given the

spike sequence , k ∊ ℤ, j = 1, 2, … , N (see theorem 1) and provide sufficient conditions
for perfect recovery. An algorithm for stimulus recovery is explicitly given (see corollary 1).
We show that the sensory world modeled through the stimulus u can be perfectly recovered
provided that the number of neurons is above a threshold value (see theorem 2).

3.1 Faithful Stimulus Recovery
The t-transform in equation 3.1 quantifies the projection of the stimulus u onto the sequence

of functions , k ∊ ℤ, j = 1, 2, … , N. As such, it provides a set of constraints for stimulus
recovery. These constraints might be related if the corresponding functions are related. For
example, for two integrate-and-fire neurons with the same parameters and the same

preprocessing filters, , for all k, k ∊ ℤ. Thus, the two neurons impose identical
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constraints on recovery. For two neurons whose preprocessing filters and biases are the
same and the threshold of one of the neurons is an integer multiple of the threshold of the

other neuron, say, δ2 = Lδ1,  for infinitely many pairs of integers (m, n).

In the simple examples above, the constraints that a neuron imposes on stimulus recovery
can be linearly inferred from the constraints imposed by another neuron. This redundancy in
the number of constraints is undesirable, and in proposition 1 we seek sufficient conditions
to avoid it.

Definition 3. The filters (hj), j = 1, … , N, are called linearly independent if there do not
exist real numbers aj, j = 1 … , N, not all equal to zero, and real numbers αj, j = 1, … , N,
such that

for all t, t ∊ ℝ (except on a set of Lebesgue-measure zero).

Proposition 1. If the filters (hj), j = 1, … , N, are linearly independent, then the functions

, k ∊ ℤ, j = 1, 2, … , N, are also linearly independent.

Proof. The functions , k ∊ ℤ, j = 1, 2, … , N, are linearly dependent if there exist real
numbers aj, j = 1, … , N, not all equal to zero, integers kj , j = 1, … , N, and positive integers
Lj, j = 1, … , N, such that

(3.2)

for all t, t ∊ ℝ. By substituting the functional form of  in the equation above, we obtain

(3.3)

For equation 3.3 to hold,  for all j, j = 1, … , N, with aj ≠ 0, where Δ is a
constant. By taking the Fourier transform of equation 3.3, we have

(3.4)

where ĝ is the Fourier transform of g and . After canceling the summation
independent terms and taking the inverse Fourier transform, we obtain

(3.5)

The latter equality can hold only if the filters are not linearly independent.
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Remark 1. In order to satisfy equation 3.3, the spikes generated by the N neurons do not
have to coincide. For two neurons, for example, the spikes might be generated at times

, while the preprocessing filters satisfy the relationship h1(t) = h2(t+α. Here ,
that is, the constraints are linearly dependent. The allowance of time shifts that also appears
in the definition of linear independent filters is therefore essential.

Remark 2. Two neurons might generate spikes at the same time infinitely often. A simple
example is provided by the case when the first neuron is described, after generating L
spikes, by the t-transform

and the second neuron is described between two consecutive spikes by

It is easy to see that if the initial spikes coincide in time, that is, , the filters h1 and h2

and the other parameters of the two integrate-and-fire neurons can be chosen in such a way

as to have . Thus, the spikes generated by the two neurons are identical infinitely
often. However, the spike coincidence just described will be of no concern to us provided
that the filters are linearly independent. This consideration arises when constructing the
synthesis frames throughout this letter.

We are now in a position to state our main theorem. It pertains to the neural circuit model
depicted in Figure 1.

Theorem 1. Assume that the filters hj = hj(t), t ∊ ℝ, are linearly independent, BIBO stable,
and have spectral support that is a superset of [−Ω, Ω] for all j, j = 1, 2, … , N. The stimulus
u can be represented as

(3.6)

where  and , Κ ∊ ℤ, j = 1, … , N are suitable coefficients, provided
that

(3.7)

|u(t)| ≤ c.

Proof. Clearly the theorem holds if we can show that the sequence of functions , k ∊
ℤ, j = 1, … , N, is, respectively, a frame for Ξ (called the synthesis frame in the literature;
Teolis, 1998; Eldar & Werther, 2005).
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Given the structure of the t-transform in equation 3.1 and noting that the N filters are
independent, the definition of the lower spike density D (given in appendix B) reduces to
(see also the evaluation of D below)

(3.8)

where N(a, b) is the number of spikes in the interval (a, b). Since

the condition for the spike density D becomes

(3.9)

where ⌈x⌉ denotes the greatest integer less than or equal to x.

We note that the computation of the lower density above possibly includes identical spikes.
However, the linear independence condition on the filters hj, j = 1, 2, …, N, guarantees that

the sequence , k ∊ ℤ, j = 1, 2, …, N, is a frame. The theorem holds since condition 3.7
guarantees that the lower spike density is above the Nyquist rate, and thus by lemma 2,

given in appendix C, the sequence of functions , k ∊ ℤ, j = 1, … , N, is a frame for Ξ.

Remark 3. Theorem 1 has a very simple interpretation. The stimulus u can be faithfully
represented provided that the number of spikes exceeds the lower bound in equation 3.7.
This lower bound is the Nyquist rate and arises in the Shannon sampling theorem (Lazar &
Tóth, 2004). Thus, inequality 3.7 is a Nyquist-type rate condition.

According to theorem 1 (see equation 3.6), under a Nyquist-type rate condition, the stimulus
u can be written as

(3.10)

The recovery algorithm of u in block diagram form is shown in Figure 2. It is an
instantiation of a time decoding machine (Lazar & Tóth, 2004; Lazar, 2007).

This suggests the following recovery scheme in matrix notation:

Corollary 1. Let c = [c1, … , cN]T, with . Then

(3.11)

where T denotes the transpose, G+ denotes the pseudoinverse of G, and
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(3.12)

Proof. The equation c = G+q can be obtained by substituting the representation of u in
equation 3.6 into the t-transform equation 3.1,

and therefore

for all i, i = 1, 2, …, N and all l, ∊ ℤ. Since the sequences Φ and ψ are frames for Ξ, the
result follows (Eldar & Werther, 2005).

Remark 4. For the particular case of a TEM without filters, that is, hj(t) = δ(t), where δ(t) is
the Dirac-delta function for all j, j = 1, 2, … N, we have

for all k, k ∊ ℤ, and t, t ∊ ℝ. Consequently, we obtain the representation and recovery result
of Lazar (2007).

Remark 5. Assume that the band-limited stimulus u is filtered with an arbitrary time-
invariant filter with impulse response h. A bias b is added to the output of the filter, and the
resulting signal is passed through an integrate-and-fire neuron with threshold δ. Thus, the t-
transform of the signal can be written as

(3.13)

for all k, k ∊ ℤ. According to theorem 1, under appropriate conditions, the stimulus can be
writen as

(3.14)

for all t, t ∊ ℝ. In matrix notation, c = G+q, where [c]k = ck, [q]k = kδ − b(tk+1 − tk), k ∊ ℤ,

and . Alternatively, in order to recover the stimulus u,
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we can first obtain h * u using the classical recovery algorithm (Lazar & Tóth, 2004) and
then pass h* u through the inverse filter h−1.

Theorem 1 provides a technical condition for faithful representation in terms of the
minimum density of spikes as in equation 3.7. Instead of this technical condition, we give a
much simpler condition in terms of the number of neurons. Such a condition is more natural
in the context of encoding stimuli with a population of neurons. The latter also provides a
simple evolutionary interpretation (see remark 6 below).

Theorem 2. Assume that the filters hj = hj (t), t ∊ ℝ, are linearly independent, BIBO stable,
and have spectral support that is a superset of [−Ω, Ω] for all j, j = 1,2, … , N. If the input to

each neuron is positive, that is, bj + ʋj ≥ εj > 0, and  diverges in N, then there
exits a number such that if N ≥  the stimulus u, |u(t)| ≤ c, can be recovered as

(3.15)

where the constants , k ∊ ℤ, j = 1, … , N, are given in matrix form by c = G+q.

Proof. Since bj + vj ≥ εj for all j, j = 1, 2, … , N, the lower spike density amounts to

(3.16)

and the lower bound diverges in N. Therefore, there exists an such that for N > 

and the theorem follows.

Remark 6. The result of theorem 2 has a simple and intuitive evolutionary interpretation.
Under the condition that every neuron responds to the stimulus with a positive frequency,
the stimulus can be faithfully represented with a finite number of neurons.

3.2 Stimulus Representation and Recovery Using Overcomplete Filter Banks
Receptive fields in a number of sensory systems, including the retina (Masland, 2001) and
the cochlea (Hudspeth & Konishi, 2000), have been modeled as filter banks. These include
wavelets and Gabor frames.

We briefly demonstrate how to apply the results obtained in the previous section when using
the overcomplete wavelet transform (OCWT) (Teolis, 1998). A similar formulation is also
possible with other classes of frames (e.g., Gabor frames). Let u be a band-limited stimulus,
h the analyzing wavelet, and sn, n = 1, … , N, the scaling factors used in the filter bank
representation (for more information, see, e.g., Teolis, 1998). Then the filters hj are defined
by hj = Dsj h, j= 1, 2, … , N, where Ds is the dilation operator (Dsu)(t) =|s|1/2u(st).

From theorem 1 and the simple relation (Dsh)~ = Ds h̃, the stimulus can be represented as
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(3.17)

where c = G+q with [q] = [q1, q2, …, qN]T and . The matrix G
is given by

(3.18)

Note that representation 3.17 uses the same filters (Dsj h̃), j = 1, 2, …, N, for recovery as the
ones that are employed in the classical signal representation with filter banks (Teolis, 1998).
The density condition for equation 3.17 calls for the sum of the whole neuron population
activity to exceed the Nyquist rate. As before, by adding more neurons and filters to the
filter bank results, in general, in an improved representation. The TEM and time decoding
machine realizations are shown in Figure 3.

Remark 7. Our analysis above provides an algorithm for recovering the stimulus even in the
case where the actual input is undersampled by each of the neurons. Thus, our findings in
this section extend the results of Lazar (2005).

4 Examples
In this section, we present two numerical examples of the theory presented above that have
direct applications to stimulus representation in sensory systems.

4.1 Neural Population Encoding Using Filters with Arbitrary Delays
We present an example realization of the recovery algorithm for a filter bank consisting of
filters that introduce arbitrary but known delays on the stimulus. Such filters model dendritic
tree latencies in the sensory neurons (motor, olfactory) (Fain, 2003). They are analytically
tractable as their involutive instantiations can be easily derived. Indeed, a filter that shifts the
stimulus in time by a quantity α has an impulse response h(t) = δ(t−α). Consequently, h̃(t)=
δ(t)+α). Note that although the filter h̃ is, in this case, noncausal, it can easily be
implemented by delaying the recovery.

It is assumed that each filter hj shifts the stimulus in time by an amount αj, where αj is an
arbitrary positive number for all j, j =1, 2, … , N. The quantities of interest become,
according to equations 3.6 and 3.12,

(4.1)

The stimulus u(t) is given in the standard Shannon form,

(4.2)
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with Ω = 2π · 80 Hz, T = π/Ω. Out of the 35 samples, the first and last five were set to zero.
Thus shifts of the stimulus in the time window do not lead to any loss of important
information. The rest of the 25 active samples were chosen randomly from the interval [−1,
1]. Sixteen neurons were used for recovery. Filter delays were randomly drawn from an
exponential distribution with mean T/3, biases bj , j = 1, … , 16, were randomly drawn from
a uniform distribution in [0·8, 1·8]and the thresholds δj, j = 1, … , 16, were drawn randomly
from a uniform distribution in [1·4, 2·4]. Finally, all neurons had the same integration
constant Κ = 0·01. The stimulus and three of its translates, each delayed by the filters, as
well as the spikes generated by the 16 neurons in the time window of interest [6T, 30T], are
shown in Figure 4.

The recovered stimulus based on the spikes from 1, 2, 3, 4, 8, and all 16 neurons,
respectively, is depicted from top to bottom in Figure 5. Note the different amplitude scale at
the top and at the bottom row of Figure 5. The recovered signal converges to the original
one with the number of neurons used. The recovery becomes acceptable when the spikes of
at least the first four neurons are used. Since the density of the sinc functions is invariant
under a time shift, the density criterion of theorem 1 above can be applied. Here we have 27
samples, and the individual neurons elicit between 7 and 17 spikes, respectively. The
threshold is exceeded when the first four or more neurons are used. The recovery results in
Figure 5 are consistent with this observation.

To quantify accuracy of the recovered signal, we provide the mean square error (MSE) for
the various recovery scenarios. The MSE is defined as

(4.3)

where [Tmin, Tmax] is the interval of interest ([6T, 30T] in our case) and ûj (s) denotes the
result of stimulus recovery with a total of j, j = 1, 2, … , 16, neurons. In Figure 6 we show
the dependence of the MSE on the relative interspike rate. The relative interspike rate is
defined as the number of interspike intervals per second divided by the Nyquist rate. Figure
6 demonstrates that when the relative rate is below 1, meaning the average spike rate is less
than the Nyquist rate, the MSE is big and the recovery inaccurate. However, when the spike
rate exceeds the Nyquist rate, the MSE decreases dramatically, and the recovery improves
substantially. Moreover, the MSE decreases overall as more neurons are added to stimulus
representation and, recovery.

Remark 8. The MSE in Figure 6 is shown as a function of both the relative spike rate and
the number of neurons. In neuroscience, the natural abstraction, however, is the number of
neurons. Consequently, in what follows, we shall provide only the MSE as a function of the
number of neurons.

Remark 9. It is easy to see that the filters hj(t) = δ(t − αj), j 1, 2, … , 16, above do not
satisfy the independence condition of definition 3. Nevertheless, as the example illustrates,
the input can be perfectly recovered. Similarly, if no preprocessing filters are used, the
stimulus can be perfectly recovered from the representation provided by a population of
integrate-and-fire neurons (Lazar, 2007). Thus, having linear independent filters is a
sufficient but not a necessary condition for recovery.

It is important to note that the input to each neuron cannot in general be faithfully recovered
from the spike train generated by single neurons. To see that, we applied the classical time
decoding algorithm (Lazar & Tóth, 2004) for signal recovery solely using the spike train of
each individual neuron. The results for four of the neurons are illustrated in Figure 7. The
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other 12 neurons exhibited similar results. As shown, the recovered dendritic currents are
significantly different from the stimulus.

The recovery is not perfect because each individual neuron generates only sparse neural
spike trains (fewer than 28 spikes). However, this sparsity did not affect perfect recovery of
the original stimulus because the total number of neurons fired a significant number of
spikes. These results have some important ramifications to experimental neuroscience
because they demonstrate that in general, stimuli of individual neurons cannot be faithfully
recovered from the spike train they generate. Rather, the spike trains from a larger
population of neurons that encode the same stimulus need to be used.

Finally, we briefly show the effect of noise on the performance of the recovery algorithm.
The setting is as before, except that we also applied additive independent white gaussian
noise at the input of each filter. Since all filters in this example are performing delay
operations, delayed white noise reaches the integrators. The average MSE (in dB) is shown
in Figure 8 for the noiseless case and for five variance values σ2 = 0.001, 0.003, 0.01, 0.03,
0.1. For each value of the variance, 100 repetitions of the simulation were performed. The
95% confidence interval, measured here as twice the standard deviation of the MSE, was in
each case between 3 and 5 dB (not shown). Even though we added an infinite bandwidth
white noise component to a narrow band stimulus, we see a predictable degradation of the
MSE as a function of the noise variance.

4.2 Neural Population Encoding with a Gammatone Filter Bank
In this section we present a simple example of stimulus representation and recovery using
gammatone filter banks. The stimulus of interest is bandpass with frequency support
essentially limited to [150, 450] Hz and a duration of 250 ms. The filter bank consists of 16
gammatone filters that span the range of frequencies [100, 500] Hz. The gammatone filters,
developed by Patterson et al. (1992), are widely used in cochlear modeling. The general
form of the (causal) gammatone filter is

(4.4)

where the equivalent rectangular bandwidth (ERB) is a psychoacoustic measure of the
bandwidth of the auditory filter at each point along the cochlea. The filters employed were
generated using Slaney's auditory tool-box (Slaney, 1998). This toolbox generates the
auditory filterbank model proposed by Patterson et al. (1992). The bandwidth of each filter
with a center frequency at fc is given by ERB(fc) = 0.108 fc + 24.7. Parameter n corresponds
to the filter order and is picked to be equal to 4 (n = 4). For this filter order, Patterson et al.
proposed β = 1.019. Finally, the scalar α is picked in such a way that each filter has unit gain
at its center frequency. Gamma-tone filter banks are approximately equivalent to wavelet
filter banks since all the impulse responses are obtained from dilated versions of the kernel
function 4.4 (mother wavelet) at its center frequency. Moreover, the center frequencies are
spaced logarithmically along the frequency axis, giving rise to an overcomplete filter bank.

The frequency responses of the 16 filters and the entire filter bank support are shown in
Figure 9. The filter bank support is defined as

(4.5)

where ĥj(ω) = ∫ℝhj(s)e−iωs ds is the Fourier transform of the jth filter impluse response.
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The biases and the thresholds of the neurons were picked randomly from the interval [1, 2].
Each neuron produced approximately 25 spikes, for a total of approximately 400 spikes. In
Figure 10, we show the recovery of the stimulus when 2, 4, 8, or all 16 filters were used,
respectively. Note the amplitude scale at the top and at the bottom row of Figure 10.

To quantify the recovery results and also the effect of noise, the MSE is depicted as a
function of the number of neurons in Figure 11 for the noiseless case and for white noise
with five different variances. The noise variances were again σ2 = 0.001, 0.003, 0.01, 0.03,
0.1, and the noise was applied again at the input of the filters. However since each filter in
the gammatone filter bank has only a limited frequency support, most of the noise gets
filtered out. Thus, the effect of the white noise on the accuracy of the recovery is much
smaller here when compared to its effect in the delay filter bank example (see also Figure 8).
Again, as an overall trend, the MSE decreases as the size of neuron population increases and
the noise power decreases.

5 Discussion
The problem of stimulus recovery based on the spike trains generated by a population of
neurons is central to the field of neural representation and encoding. In order to achieve a
faithful stimulus representation, our method assigns a kernel function to each neuron. With
these kernels, a frame can be constructed by spike-dependent shifts. Frame theory provides
the machinery needed for faithful stimulus recovery.

In the reverse correlation method of Rieke, Warland, de Ruyter van Steveninck, and Bialek
(1997), the recovered stimulus is obtained by convolving the output spike train with a
suitable kernel. The choice of the kernel is actively investigated (Tripp & Eliasmith, 2007).
Kernel methods have also been investigated for sparse representations of auditory and visual
stimuli in Smith and Lewicki (2005) and Olshausen (2002), respectively. The models used
lack, however, explicit neural encoding schemes. In addition, the faithful representation of
stimuli has not been addressed.

Related work in information coding with a population of neurons is based on stochastic
neuron models. These neuron models (known as linear-nonlinear-Poisson models) produce
spikes with underlying Poisson statistics. The activity of the neurons is measured in spikes
per seconds rather than actual spike times, and it is given as a (nonlinear) function of the
projection of the stimulus on a suitable vector modeling the receptive field. For a population
of neurons, different receptive field models can be used; the latter can be chosen so as to
span the space of interest. Computational models, based mostly on maximum likelihood
techniques, for the suitable choice of receptive fields or neurons, and of actual encoding and
decoding mechanisms based on such setups, have been extensively studied in the literature.
(See, e.g., Deneve, Latham, & Pouget, 1999, or Sanger, 2003, for a review, and Huys,
Zemel, Natarajan, & Dayan, 2007, for a more recent treatment.)

Our neural population model is, in contrast, deterministic. This assumption allowed us to
formally focus on the question of faithful representation of stimuli. The key result shows
that faithful representation can be achieved provided that the total number of spikes of the
neural ensemble is above the Nyquist rate. We have demonstrated that this condition can be
replaced with a more intuitive one that stipulates that the size of the population of neurons is
beyond a threshold value. We have also shown that, in general, the stimulus of a neuron
cannot be faithfully recovered from the neural spike train that it generates. Rather, a
population of neurons is needed to achieve faithful recovery.

The basic population encoding circuit investigated in this letter significantly extends
previous work on population time encoding (Lazar, 2005, 2007). From a modeling
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standpoint, it introduces a set of constraints on the number of spikes that can be generated by
an individual neuron. In addition, it incorporates arbitrary filters that can model the dendritic
tree of the neurons or their receptive fields. Note that this work formalizes the results of
Lazar (2007) by using frame arguments and introducing the notion of linear-independent
preprocessing filters that guarantees that each neuron can provide additional information
about the stimulus being encoded.

Our theoretical results provide what we believe to be the first rigorous model demonstrating
that the sensory world can be faithfully represented by using a critical size ensemble of
sensory neurons. The investigations presented here further support the need to shift focus
from information representation using single neurons to populations of neurons. As such,
our results have some important ramifications to experimental neuroscience.

Although the model investigated in this letter employs only ideal IAF neurons, it is highly
versatile for modeling purposes. It provides theoretical support for modeling arbitrary linear
operations associated with dendritic trees. For example, arbitrary stable filters can be used to
characterize synaptic conductances. Moreover, the input-output equivalence of IAF neurons
with other more complex neuron models (Hodgkin-Huxley, and conductance based models
in general) (Lazar, 2006b) elevates the proposed circuit to a very general framework for
faithful stimulus representation with neural assemblies.
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Appendix A: Basic Concepts of Hilbert Spaces
Definition 4. A nonnegative real-valued function ‖·‖ defined on a vector space E is called a
norm if for all x, y ∊ E, and α ∊ ℝ:

(A.1)

Definition 5. A normed linear space is called complete if every Cauchy sequence in the
space converges, that is, for each Cauchy sequence (xn), n ∈ ℕ, there is an element x in the
space such that xn → x.

Definition 6. An inner product on a vector space Ε over ℂ or ℝ is a complex-valued
function <·,·>: E × E ↦ ℂ such that

(A.2)

Definition 7. A complete vector space whose norm is induced by an inner product is called a
Hilbert space.

Example 1. Let L2 be the space of functions of finite energy, that is,
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(A.3)

with norm ǁfǁ = (∫ℝ f(s)2ds)½. L2(ℝ) endowed with the inner product 〈x,y〉 = ∫ℝx(s)y(s)ds
is a Hilbert Space.

Definition 8. For a given Ω > 0,

(A.4)

endowed with the L2 inner product is called the space of band-limited functions.

Appendix B: Basic Theorems on Frames
A formal intoduction to the theory of frames can be found in Christensen (2003). For a
signal processing approach, see Teolis (1998). Here we present all the necessary definitions
and propositions that were used throughout the letter. In what follows, ℐ denotes a countable
index set (e.g., ℕ, ℤ, [1, 2, … , M]).

Definition 9. A (countable) sequence (ɸk)k∊ℐ in ℋ is a frame for the Hilbert space ℋ if there
exist frame bounds A, B > 0 such that for any f ∊ ℋ,

(B.1)

Proposition 2. If A sequence (ɸk)k∊ℐ in ℋ is a frame for ℋ, then .

Proof. See Christensen (2003, pp. 3–4) for a proof for finite dimensional spaces. The proof
for infinite dimensional spaces is essentially the same.

Proposition 3. Let (ɸk)k∊ℐ be a frame for ℋ with bounds A, B,and let U : ℋ → ℋ be a
bounded surjective operator. Then (Uɸk)k∊ℐ is a frame sequence with frame bounds A||
U+||−2, B||U||2, where U+ denotes the pseudoinverse operator of U.

Proof. See Christensen (2003, p. 94).

Definition 10. The frame operator of the frame (ɸk)k∊ℐ is the mapping S : ℋ → ℋ defined
by

(B.2)

Proposition 4. Let (ɸk)k∊ℐ be a frame for ℋ with frame operator S. Then

1. S is bounded, invertible, self-adjoint, and positive.

2. For all f ∊ ℋ we have

(B.3)

where S −1 is the inverse of the frame operator.
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Proof. See Christensen (2003, pp. 90–91).

Finally we state some basic results about frames of exponentials and their relationship to
frame sequences in the space of band-limited functions.

Definition 11. A sequence (λk)k∊ℐ is called relatively separated if there exists an ε ₀ such
that for any n, m ∊ ℐ, we have |λm − λn| ≥ ε.

The following result is due to Jaffard (1991).

Lemma 1. (Jaffard's lemma). Let Λ = (λk)k∊ℐ be sequence of real numbers that is relatively
separated. Let N(a, b), be the number of elements of Λ that are contained in the interval (a,
b). Then the sequence (exp(−i λk ω))k∊ℐ generates a frame for the space L2 (−Ω, Ω) if

(B.4)

Proof. See Jaffard (1991).

This result is connected to results about frames in the space of band-limited functions by the
following proposition:

Proposition 5. If the sequence (exp(−i λk ω))k∊ℐ is a frame for the space L2(−Ω, Ω), then the
sequence (g(t − λk))k∊ℐ is a frame for the space of bandlimited function Ξ.

Proof. Let ℱ denote the Fourier transform. Then we clearly have ℱg(t − λk) = e−i λk ω. By
definition, the sequence (g(t − λk))k∊I is a frame for Ξ if there exist positive constants A, B >
0 such that

(B.5)

for all u ∊ Ξ. From Parsevals identity, we have that ‖u‖ = ‖ℱu‖ and 〈u(t), g(t − λk)〉 = 〈(⌒u)
(ω), e−iλkω〉 . Therefore equation B.5 can be rewritten as

(B.6)

But this holds since ℱu ∈ L2(−Ω, Ω), and the sequence (exp(−i λk ω))k∊I is a frame for the
space L2(−Ω, Ω)

Appendix C: Three Frames

Lemma 2. Assume that the lower density of spikes satisfies the Nyquist rate, that is, .
The following holds:

i.
, k ∊ ℤ, j = 1, …, N, with , is a frame for Ξ

ii.
, k ∊ ℤ, j = 1, …, N, is a frame for Ξ

iii.
, k ∊ ℤ, j = 1, …, N, is a frame for Ξ,
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provided that the filters hj, j = 1,…, N, are BIBO stable and thire spectral support is a
superset of [−Ω, Ω].

Proof. (i) The derivation is based on Jaffard's lemma (Jaffard, 1991) (lemma 1, appendix B)
and is given in proposition 5 in the same appendix. See also Jaffard's lemma for a definition
of D, the lower density of the spikes.

(ii) Let S be the frame operator of the frame , k ∊ ℤ, j=1, … ,N (the definition of
the frame operator is given in appendix B). Then each function u ∊ Ξ has a unique expansion
of the form

(C.1)

with . Note that any operator defined on the functions of the frame is
well defined for the whole space of band-limited functions Ξ. Let us now define the
nonlinear operator : Ξ ↦ Ξas

(C.2)

.

In order to prove that the sequence of functions , k ∊ ℤ, j=1,…N, is a frame for Ξ,
we a key proposition from Christensen (2003, p. 94), also included as proposition 3 in

appendix B. According to propostion 3, the family , k ∊ ℤ, j=1,…N is a frame for Ξ, if
the operator is bounded and has closed range. To show these two properties, we observe
that can be written as the synthesis of N operator 1 , … N with n :Ξ ↦ Ξ,n = 1, 2,
… ,N defined as

(C.

3)

Then  = 1 2,… N, and  is bounded and has closed range whenever all operators i, i =
1, 2,… N, are But i is bounded if and only if the filter with impulse response ĥi (t), and
therefore also the one with hi (t), is BIBO stable.

Moreover, i has closed range if for any sequence un ∈ Ξ n ∊ ∊ ℕ that converges to u ∊ Ξ

the sequence iun also converges to an element in Ξ. Since the sequence , k ∊
ℤ, j = 1, …N is frame for Ξ, un ∊ Ξ can be represented as

with  and
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with . From the continuity of the inner product, it follows that

, and therefore we have that limn→∞Uiun= Uiuε Ξ. Therefore the operator

U has closed range and , k ∊ ℝ, j = 1, … , N is a frame. To ensure that the operator U
spans the whole space Ξ, it suffices that the frequency support of each filter is a superset of
[−Ω,Ω].

(iii) Since , k ∊ ℤ, j = 1, … , N, is a frame for the space of band-limited
functions with finite energy, any function u ∊ Ξ can be uniquely represented as

(C.4)

for all t, t ∊ ℝ, with , where S frame operator. Consider the operator
 : Ξ ↦ Ξ defined as

(C.5)

The right-hand side of equation can be rewritten as

(C.6)

The integral operator is bounded, and the sequence , k ∊ ℤ j =1, 2, … ,N, is a
frame because of the Nyqist density condition in Jaffard's lemma. Therefore, the operator 
is bounded. Moreover by following a similar reasoning as before, has closed range.

Proposition 3 implies that , k ∊ ℤ ,j = 1, … ,N, is a frame for Ξ.

Finally by working as in (ii), we conclude that , k ∊ ℤ, j = 1, … , N is also a frame for Ξ
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Figure 1.
Single-input multi-output time encoding machine.
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Figure 2.
Single-input multi-output time decoding machine.

Lazar and Pnevmatikakis Page 21

Neural Comput. Author manuscript; available in PMC 2013 November 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Time encoding machine (left) using an overcomplete wavelet filter bank for stimulus
representation. Recovery is achieved with a time decoding machine (right).

Lazar and Pnevmatikakis Page 22

Neural Comput. Author manuscript; available in PMC 2013 November 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Band-limited stimulus u(t) and three of its translates (left) and the spike train generated by
each of the 16 neurons (right).
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Figure 5.
Stimulus recovery as a function of the number of neurons.
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Figure 6.
Dependence of the mean square error on the relative interspike rate and the number of
neurons.
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Figure 7.
Recovery of the dendritic currents for four of the neurons, using the classical time decoding
algorithm.
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Figure 8.
Effect of noise on the accuracy of recovery.
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Figure 9.
Characterization of the gammatone filter bank: Frequency responses of the filter bank
elements (left) and filter bank support (right).
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Figure 10.
Stimulus recovery using a gammatone filter bank as a function of the size of the population
of neurons.
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Figure 11.
MSE of recovery.
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