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Over the past two decades, many biotechnology platforms have
been developed for high-throughput gene expression profiling.
However, because each platform is subject to technology-specific
biases and produces distinct raw-data distributions, researchers
have experienced difficulty in integrating data across platforms.
Data integration is crucial to data-generating consortiums, re-
searchers transitioning to newer profiling technologies, and in-
dividuals seeking to aggregate data across experiments. We
address this need with our Universal exPression Code (UPC) ap-
proach, which corrects for platform-specific background noise using
models that account for the genomic base composition and length
of target regions; this approach also uses a mixture model to
estimate whether a gene is active in a particular profiling sample.
The latter produces standardized UPC values on a zero-to-one scale,
so that they can be interpreted consistently, irrespective of pro-
filing technology, thus enabling downstream analysis pipelines to
be developed in a platform-agnostic manner. The UPC method can
be applied to one- and two-channel expression microarrays and to
next-generation sequencing data (RNA sequencing). Furthermore,
UPCs are derived using information from within a given sample
only—no ancillary samples are required at processing time. Thus,
UPCs are suitable for personalized-medicine workflows where sam-
ples must be processed individually rather than in batches. In a va-
riety of analyses and comparisons, UPCs perform comparably to
other methods designed specifically for microarrays or RNA se-
quencing in most settings. Software for calculating UPCs is free-
ly available at www.bioconductor.org/packages/release/bioc/html/
SCAN.UPC.html.

In high-throughput expression profiling, researchers often char-
acterize transcription in relative terms—for example, transcript

A is overexpressed in one condition compared with another. Such
relative measurements counterbalance systematic biases in geno-
mic data that can obfuscate determination of transcriptional ac-
tivity. However, for many research questions, absolute expression
measures—representations indicating whether a transcript is
“active” or “inactive”—are essential because they enable re-
searchers to characterize a gene’s transcriptional activity in in-
dividual samples and in studies for which a variety of conditions
and/or tissues are being evaluated. Such measures also allow
researchers to characterize biological activity independent
of comparative analyses. Furthermore, these methods enable re-
searchers to aggregate evidence across multiple experiments,
which are often performed using disparate profiling technologies
and protocols. This data integration capability is essential to help
researchers leverage the vast amounts of publicly available
genomic data.
One method for estimating absolute expression is the “bar-

code” methodology (1–3), which is applied to oligonucleotide
expression microarrays. Absolute measures of transcriptional ac-
tivation are calculated through probe-level comparisons against
a large reference database of microarray samples. When applied
to a diverse set of publicly available data comprising many batches,
experiments, and tissues, insights about tissue-independent,
disease-specific pathophysiology have been derived using these
absolute estimates of expression (4). However, a limitation of

previous barcode approaches is that they require a diverse collec-
tion of previously hybridized samples, yet acquiring such a collection
is infeasible for many platforms.
To overcome this limitation, we present a barcoding technique

that requires no ancillary samples at processing time and can
be applied to short-oligonucleotide microarrays, long-oligonucleo-
tide microarrays, and RNA-sequencing (RNA-Seq) read counts
(5). Our Universal exPression Code (UPC) algorithm consists of
two main steps: (i) for each platform, linear statistical models
correct for background noise by modeling the genomic base com-
position and length of target regions; and (ii) estimates of tran-
scriptional activation are calculated using a two-component
mixture model, which assumes that background expression levels
should be similar for genes having similar molecular character-
istics. The background model parameters are estimated using the
data in each sample individually, adapting the background dis-
tribution estimates to account for sample-specific biases. A gene’s
UPC value is determined by how much its actual expression
deviates from model-estimated background levels within the
sample (Materials and Methods and Fig. S1). Therefore, by design,
UPC values represent standardized “evidence codes” (on a zero-
to-one scale) that have a consistent interpretation across gene
expression platforms: lower values indicate that a given gene’s
expression more likely belongs to the background distribution and
higher values indicate transcriptional activation. Previous meth-
ods have applied background/signal mixture models to microarray
preprocessing (2, 6, 7) and to differential expression analysis for
RNA-Seq (8, 9), but the UPC approach derives standardized
estimates of absolute expression that are applicable to both
microarray and RNA-Seq technologies.
In this study, we illustrate UPC’s utility through various

evaluations and comparisons against existing methods. Initially, we
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show that UPCs enable data integration. For tissue samples profiled
using both microarrays and RNA-Seq, UPC values can be highly
concordant (98.7%) across the technologies for a large subset of
genes. Second, we show that UPC values are robust to variations
in RNA-Seq sample processing. Furthermore, our data indicate
that UPC-based biomarkers can be used to classify tissue types
for an independent dataset that was profiled using a different
instrument type, library preparation protocol, and read depth.
Using quantitative PCR (qPCR) expression data as a reference
standard, we also show that UPCs perform as well as or better
than other RNA-Seq normalization methods in estimating acti-
vation status. Finally, using spike-in transcript levels and RNA-Seq
read counts as reference standards, we compare the performance
of UPCs against the prior barcode method for microarrays (1, 2).
Our single-sample approach also provides logistical advan-

tages. Unlike most standard approaches that require a group of
samples to be renormalized when additional samples arrive,
UPC values remain static even when additional patient samples
have been added to a study. Therefore, genomics-based clinical
trials—in which patients are recruited at different times—are
one target application of our method. Single-sample approaches
also have computational advantages: because each sample is
processed separately, large datasets can be processed with a
minimal memory footprint and can be executed in parallel to
decrease processing time.

Results
General Approach to Estimating Transcriptional Activation. To de-
rive UPC values for an individual sample, we assume that gene
expression measurements come from two distinct populations,
namely, genes that are inactive (measurement = background
variation) and genes that are active (measurement = background
variation + biological signal). Our modeling of background vari-
ation relies on data-driven statistical models that estimate the
effects in each sample of the structure, base composition, length,
or genomic copy number of a gene, exon, or other expression
feature of interest. The intuition behind the UPC approach is that
the background distribution for a gene should be similar to the
background distribution for other genes in the sample that have
similar molecular characteristics. Under this assumption, we use
a two-component mixture model to simultaneously classify genes
as active/inactive while estimating the gene-specific background
and background-plus-signal distributions. The intuition behind
this approach is that UPC values approximate the probability of
gene expression that would be obtained from a well-defined
Bayesian model with priors that are uniform over their ap-
propriate parameter space. For one-color microarrays, we use
a mixture of normal distributions. For two-color microarray and
RNA-Seq data, any of three distributions can be used: normal,
log-normal, or negative-binomial. The normal and log-normal
distributions model continuous data (nonskewed or skewed,
respectively); the negative-binomial distribution models dis-
crete data. Although RNA-Seq read counts are inherently dis-
crete, our data indicate (see below) that treating logged RNA-Seq
data as a continuous variable performs quite well. Regardless of
the modeling distribution used, a UPC value represents an esti-
mate of whether a given gene is transcriptionally active in a
given sample.

Data Integration Across Expression Platforms. A key purpose of the
UPC method is to enable researchers to integrate data across the
many technologies available for gene expression profiling. This
capability is relevant for researchers (i) acquiring expression data
on multiple platforms, (ii) transitioning to newer technologies,
and (iii) combining samples across laboratories and experiments.
Expression measurements that are tied to any particular plat-
form will be unable to support inevitable advances in profiling
technologies. Contrarily, platform-agnostic measurements enable
development of downstream applications—such as diagnostic, prog-
nostic, or treatment biomarkers—that have broader applicability

and greater longevity. Recent research has demonstrated that
even simple data integration approaches based on relative ex-
pression are valuable for combining data in personalized-medicine
applications (10). UPCs address this need more rigorously and
uniformly by correcting for platform-specific biases and repre-
senting transcriptional activation consistently for all platforms.
Thus, these expression codes can be interpreted consistently,
irrespective of the underlying technology used for profiling.
To evaluate UPC’s ability to integrate data across platforms,

we obtained microarray and RNA-Seq data from a study of liver
and kidney tissue (11). The study contains three replicates for
each tissue, profiled on Affymetrix U133 Plus 2.0 arrays and
RNA-Seq (Illumina Genome Analyzer platform). Fig. S2
contains heat maps of these data for the UPC method and for
alternative normalization approaches. When UPC values were
used, the samples clustered correctly by tissue type rather than
by expression-profiling technology. Samples processed using the
alternative normalization approaches also clustered properly—
after an additional z-score standardization step. However, even
after z-score standardization, the value ranges and distributions
resulting from the alternative normalization approaches differed
substantially between microarrays and RNA-Seq due to differ-
ences in the underlying data distributions. Contrarily, UPC val-
ues always fall within the same scale, an essential characteristic
of standardization approaches used for integrating data across
technologies.
In practice, we have found that RNA-Seq profiling is more

sensitive than microarrays at detecting relatively low levels of
expression and thus results in more active UPC calls than for
microarrays. Although advantageous when working with RNA-
Seq data alone, this increased sensitivity impacts the ability to
integrate data across these two technologies. However, we have
found that an effective way to integrate data across these tech-
nologies is to focus on the large subset of genes called active by
microarrays or inactive by RNA-Seq. For example, for the first
kidney replicate, we transformed UPC values to active (>0.5) or
inactive (≤0.5) calls for each gene. Of the 12,359 (74.2%) genes
designated as active by microarray or inactive by RNA-Seq,
12,201 (98.7%) were concordantly barcoded across both plat-
forms (Table 1). Most genes called as active for microarrays were
also active for RNA-Seq, and most genes called as inactive for
RNA-Seq were also inactive for microarrays. The number of
inconsistencies between the two platforms for genes that met
these criteria were 27 times fewer in number than for the
remaining genes. Thus, the large subset of genes called as active
for microarrays or inactive for RNA-Seq will be the most useful
for integrating data in downstream applications.
To ensure that the above observations were not specific to

TopHat-aligned data, we also performed the above analyses using
the Genomic Next-generation Universal MAPper (GNUMAP)
read aligner (12). The UPC (normal-normal) values were strongly
correlated (Spearman’s ρ = 0.875) with the TopHat-aligned data,
exhibited similar clustering patterns (Fig. S3), and attained sim-
ilar levels of concordance.

Comparisons Between RNA-Seq Normalized Values and qPCR Values.
To further evaluate our method on RNA-Seq data, we used
TaqMan qPCR expression levels for brain tissue from the Micro-
array Quality Control (MAQC) project (13) as a reference stan-
dard. In the absence of a competing method that produces
absolute expression measures for RNA-Seq data on a single-
sample basis, we compared the UPC method against two RNA-
Seq normalization methods that also correct for technological
biases: reads per million kilobases mapped (RPKM) (5) and
conditional quantile normalization (CQN) (14). RPKM values
are designed to correct for transcript-length and sequencing-
depth biases. CQN also corrects for GC composition.
Initially, we compared continuous expression values between

qPCR and each RNA-Seq method using Spearman’s rank cor-
relation coefficient (Fig. S4). UPC (normal-normal, log-normal)
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and CQN values correlated better with qPCR values than RPKM
or UPC (negative-binomial) (Table 2). Next, we used receiver
operating characteristic (ROC) curves to compare continuous
RNA-Seq values against present (P)/absent (A) calls from qPCR.
To quantify whether present qPCR calls tended to have higher
RNA-Seq values than absent calls, the area under the ROC
curve (AUC) was used. By this metric, each UPC method per-
formed consistently better than RPKM, which is a single-sample
approach. UPCs did not perform as well as CQN at distinguishing
“low” expression levels from “very low” levels. However, its
overall performance was relatively similar (achieving an AUC
of 0.864 versus 0.874 for CQN), even though CQN benefits from
being a multisample method. We also note that the target ap-
plications for UPC and CQN will in many cases be different.
CQN may be better suited for differential expression analyses
where it is essential to identify subtle expression differences be-
tween conditions in a given experiment, whereas the UPC
method is designed more for settings where data are being in-
tegrated across experiments and platforms and thus where more
granular comparisons are being made. These observations were
consistent across read aligners (Table S1 and Fig. S5).

UPC-Based, Multigene Profiles Generalize Across RNA-Seq Experiments.
To assess how well UPCs can produce values that are robust to
technical and experimental variations, we analyzed two RNA-Seq
datasets that had been processed on different instrument types,
using different protocols, and at substantially different read
depths. The first dataset was from the Illumina BodyMap 2.0
Transcript project; it profiles the transcriptomes of various hu-
man tissue types using two distinct library-preparation protocols

that produced either (i) single-end, 75-bp reads or (ii) paired-
end, 50-bp reads. The second tissue-profiling dataset was gener-
ated by Wang et al. (15) and contains 32-bp, single-end RNA-
Seq reads.
To evaluate the consistency of gene expression profiles across

the datasets, we derived multigene biomarkers to predict tissue
type in a training/testing validation design. We applied the
RELIEF-F algorithm (16) to the Body Map data to identify
genes that best distinguish the tissue types. We then used the
k-nearest neighbor algorithm (17) (k = 1) to derive a biomarker
from the BodyMap data and then to predict tissue type for the
Wang et al. samples. When the number of genes was at least 50,
the UPC (normal-normal) biomarker predicted tissue type cor-
rectly for all samples (Table 2). Biomarkers based on RPKM and
CQN attained similar levels of accuracy.
We used the BodyMap data to evaluate the consistency of

UPC values when either single-end or paired-end libraries were
used for a given tissue type or when different read aligners were
used. UPC (normal-normal) values were more highly correlated
on average between the single-end and paired-end libraries
(Spearman’s ρ = 0.979) than CQN (ρ = 0.927) or RPKM (ρ =
0.957) values. The UPC (normal-normal) values derived from
TopHat-aligned reads were more consistent with values derived
from reads aligned using Burrows-Wheeler Aligner (18) than
CQN values (Table 2).
We observed that UPC values are robust to differences in read

length. We evaluated a separate set of Body Map samples con-
sisting of pooled-tissue replicates that were sequenced using
stranded, 100-bp libraries; we compared measurements derived
using the full read length against measurements derived from the
same samples but where the reads had been trimmed to 32-bp.
UPC (normal-normal) values were highly correlated (ρ = 0.973)
between the two datasets, outperforming RPKM (ρ = 0.926) and
performing comparably to CQN (ρ = 0.974).
These examples demonstrate that the UPC approach is robust

to variations that occur commonly in RNA-Seq experiments.
Such variations can include equipment type, library preparation
protocols, personnel, read depth, and read length. In addition,
the biomarker example illustrates that our approach can be ap-
plied in settings where it is important to differentiate among
a large number of experimental conditions/categories. The UPC
normal-normal model consistently performed as well as or better
than the other approaches. Performance of the log-normal
model was slightly lower than the normal-normal model but
consistently higher than the negative-binomial model. RNA-Seq
count data typically exhibit a high level of skewness; however,
when the data have been transformed to a log scale, a pattern of
bimodality becomes apparent. The normal-normal and log-normal
mixture models appear to more stably and consistently identify

Table 1. Agreement between microarray and RNA-Seq active/
inactive calls

Microarray

Active Inactive 

R
N
A
-S
eq Active 5,546 (33.3%) 4,292 (25.8%) Discordant due 

to increased 
sensitivity of  

RNA-Seq Inactive 158 (1.0%) 6,655 (40.0%)

Microarray active or  
RNA-Seq inactive subset:  
98.7% correspondence 

across platforms 

Table 2. Summary of comparisons performed across RNA-Seq normalization methods

Dataset Comparison UPC (nn) UPC (ln) UPC (nb) RPKM CQN

Marioni et al. (11) Correlation between microarray and RNA-Seq* 0.801 0.786 0.625 0.698 0.798
Genes designated as active in microarray or inactive in RNA-Seq 74.2% 61.9% 64.9% N/A N/A
Concordance for microarray active/RNA-Seq inactive genes 98.7% 99.4% 97.4% N/A N/A

MAQC Correlation between RNA-Seq and qPCR* 0.871 0.869 0.673 0.762 0.866
AUC for present/absent calls 0.864 0.869 0.870 0.834 0.874

Body Map 2.0 Accuracy in predicting Wang et al. (15) tissue types (10 genes)† 0.739 0.733 0.455 0.783 0.794
Accuracy in predicting Wang et al. tissue types (50 genes)† 1.000 0.889 0.722 0.944 0.900
Accuracy in predicting Wang et al. tissue types (100 genes)† 1.000 1.000 0.722 1.000 1.000
Accuracy in predicting Wang et al. tissue types (500 genes)† 1.000 1.000 0.833 1.000 1.000
Correlation between single-end and paired-end data* 0.979 0.967 0.966 0.957 0.927
Correlation between data aligned using either TopHat or BWA* 0.889 0.847 0.381 0.890 0.847
Correlation between 100- and 32-bp data (pooled tissue)* 0.973 0.963 0.929 0.926 0.974

ln, log-normal; nb, negative-binomial; nn, normal-normal.
*Correlation coefficients were calculated using Spearman’s rank-based method.
†Prediction accuracy is represented by the area under the ROC curve.
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a convergence point between the two modes than the negative-
binomial approach. Although negative-binomial approaches
have been invaluable for identifying genewise differential ex-
pression across multiple samples (8, 19), they may not be as well
suited to deriving absolute measures of expression within
single samples.

Comparisons Against Prior Microarray Barcode Approach. Next, we
compared the effectiveness of the UPC method against the
McCall et al. barcode method, which is designed specifically for
oligonucleotide microarrays (1, 2). We assessed the ability of
each method to estimate transcriptional activation for 14 spike-
in concentrations ranging between 0 and 512 pM in the Affy-
metrix Human Genome U133 Latin Square data. Using the frma
package in R/Bioconductor (7, 20), we obtained barcode P val-
ues that indicate whether each transcript belongs to the “un-
expressed” distribution and then subtracted these values from 1
(so they would be analogous to our UPC values).
Fig. S6 A and B display value ranges produced by the two

methods for each spike-in concentration. As the spike-in con-
centration increases, the expression values also tend to increase
for both methods. We tested whether expression values for nonzero
spike-in concentrations tended to be higher than expression val-
ues for the zero concentration. We tested this separately for each
spike-in concentration; in each case, we only considered nonzero
concentrations greater than the given concentration threshold.
Fig. S6 C and D show that both methods were highly sensitive at
concentrations greater than 1 pM; however, for the lowest con-
centrations, barcode values resulted in an average AUC of 0.952,
and the average AUC for UPCs was 0.911.
In an additional comparison, we used RNA-Seq read counts

from the liver and kidney data (11) as a reference standard and
assessed whether genes with higher RNA-Seq read counts ten-
ded to be called as active by the two microarray approaches (and
vice versa). First, we rounded barcode and UPC values to zero/1
activation calls; then we compared those calls against RNA-Seq
read counts using ROC curves. Irrespective of the threshold
used, the UPC method attained higher AUC values (Fig. S7).
Finally, we emphasize that the UPC method offers a key lo-

gistical advantage compared with the prior barcode method.
Because the background distribution is derived from a given
sample, there is no need to derive a background distribution
from a large number of external samples. In addition, the UPC
approach provides standardized absolute expression measures
for integration across multiple platforms, whereas the previous
barcoding method is only available for Affymetrix arrays.

Discussion
A key goal of researchers in the genomics era is to identify gene
expression profiles—multigene transcriptional biomarkers—that
reliably characterize specific biomedical phenomena. Such pro-
files may be useful in clinical settings, for example, to refine
diagnoses and treatment plans (21–23), to estimate disease
prognoses (24), and to delineate biological activity occurring
within tissue types. To achieve this goal, gene expression profiles
must robustly generalize across experiments that have been per-
formed in different laboratories, with different equipment, and by
different personnel. If not accounted for, even minor differences
in such factors can introduce technical artifacts into raw data,
which can drastically confound biomedical interpretations (25).
Also importantly, the divergent raw-data distributions produced
by different platforms can impede researchers from developing
generalizable models. For example, extreme RNA-Seq read counts
in a few genes can dominate expression profiles and thus obscure
biologically meaningful patterns in other genes. The UPC method
addresses such challenges by (i) processing each sample inde-
pendently to avoid perpetuating biases from one sample into an-
other, (ii) correcting for technological variations through statistical
modeling, and (iii) producing a consistently interpretable repre-
sentation for each sample regardless of the underlying technology.

UPC is a completely intrinsic, single-sample processing ap-
proach that can be applied to microarray (one-color and two-
color) and RNA-Seq data. Additionally, unlike previous barcode
methods, which require hundreds of samples to inform model
derivation, we used a relatively small sample set to inform der-
ivation of the UPC models. Thus, when a new gene expression
technology emerges, the approach can be tailored to that tech-
nology relatively early in the technology’s life cycle because it is
not necessary for a large body of samples to have accumulated.
Having derived a UPC model for a given technology, data from
ancillary samples need not be considered when the model is
applied to new samples. However, we have observed that in-
creased probe-level sensitivity can be obtained by estimating the
gene or probe-specific background based on a large set of cu-
rated samples from the same profiling platform.
Many normalization approaches are designed for experiments

where a single platform is used and where comparisons only
need to be made among samples in a given experiment (e.g.,
differential expression analyses). Although we have shown that
UPCs can perform comparably to existing methods on various
such applications, we recognize that a possible disadvantage of
the UPC approach is that it may not be best suited to identifying
subtle differences in expression between conditions—for exam-
ple, moderately active and highly active genes would both be
labeled as active by the UPC method. However, we have shown
that UPC values are useful in diverse applications, such as in-
tegrating samples across experiments and platforms, constructing
generalizable biomarkers, and classifying tissue samples. The
ability to integrate data across multiple platforms will enable
researchers to continue taking advantage of the vast pool of
microarray samples that have accumulated over the past de-
cade and to integrate them with the emergent pool of samples
now being profiled with next-generation technologies.
The UPC approach standardizes data from distinct platforms

into consistent representations of expression—whether a given
gene is expressed above the model-estimated background level in
a sample. However, different technologies may have different
background levels and sensitivities in detecting gene activity. For
example, in the results described above, we showed that RNA-
Seq designated more genes as active than Affymetrix microarrays
on the same biological samples. This is likely due to decreased
background noise and thus higher sensitivity of RNA-Seq plat-
forms. This did create a discrepancy between the active genes
called by both methods. However, by focusing on genes called
active by the less sensitive technology (arrays) and those called
inactive by the more sensitive platform (RNA-Seq), we were able
to identify a large subset (74.2%) of genes that were 98.7% con-
cordant across the platforms. This provides a simple and direct
approach for combining data across technologies that have dif-
ferent sensitivities; this approach can also be applied to other
expression-profiling technologies.
In sum, the UPC method facilitates cross-platform expression

analyses, the ability to aggregate data across independent ex-
periments, and robustness in the face of inevitable variations in
experimental protocols and conditions. Our general approach
can be tailored to any high-throughput expression-profiling plat-
form. It also can be applied not only to expression values repre-
senting gene activity but also to exon-level, transcript-level, and
noncoding expression values.

Materials and Methods
We have developed a general approach for estimating transcriptional activa-
tion, which we termUPC. This section describes themethod’s general approach
and how it has been customized for each type of gene expression platform.

Formal Derivation of UPC Approach. For a given expression profiling sample,
we let Yi denote the unnormalized expression measurement for gene i. We
assume that
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Yi = ð1−ΔiÞY1i +ΔiY2i , [1]

where Y1i is a random variable from the “background” distribution for the
gene, Y2i originates from the “background-plus-signal” distribution, and Δi

is an unobserved indicator variable that is equal to 1 if gene i is active and
0 if the gene is inactive in the sample. Formulating the model in Eq. 1 based
on a “missing data” approach (where the Δis are the missing data), we arrive
at a complete data likelihood of

Lðyi ,ΔiÞ= ½ð1− πÞf1ðyi jθ1Þ�1−Δi ½πf2ðyi jθ2Þ�Δi , [2]

where i= 1 . . .N indexes the probes, π is the proportion of active genes in the
sample, f1ðyi jθ1Þ is the density function of the background, and f2ðyi jθ2Þ is
the density function of the background-plus-signal distribution. Parameter
estimation is conducted using the expectation–maximization (EM) algorithm
(26). Application of the EM algorithm is straightforward in this case as it
entails a probabilistic assignment of each data point to each mixture com-
ponent (expectation step) and then an estimate of each component’s param-
eters using the imputed probabilities from the previous step as weights
(maximization step). These two steps are then iterated to convergence, tak-
ing note that convergence is to a global, not local, maximum. Once the al-
gorithm has converged, the UPC value for gene i, denoted Pi , is given by the
expected value of Δi given that the parameters π, θ1, and θ2 are set to their
maximum-likelihood estimates:

Pi = E
�
Δi jyi ,π̂,θ̂1,θ̂2

�
=

π̂f2
�
yi jθ̂2

�

�
1− π̂

�
f1
�
yi jθ̂1

�
+ π̂f2

�
yi jθ̂2

�: [3]

Deriving UPCs for Affymetrix Microarrays. Our approach for Affymetrix ex-
pression arrays builds upon our single-channel array normalization (SCAN)
approach (6), which is a modification of model-based analysis of tiling arrays
(MAT) (27). The MAT/SCAN background model has been shown to account
for as much as 63% of the variation due to array, probe-composition, and
cross-hybridization effects in tiling-array samples and was previously applied
successfully to Affymetrix exon arrays by another group (28), thus showing
the broad applicability and robustness of this modeling approach. For our
approach, using the logged probe intensity, we assume Y1i ∼NðXθ1,σ21Þ and
Y2i ∼NðXθ2,σ22Þ, where Xθm is the mth mixture component MAT/SCAN model
for probe i represented in the equation below for a given m:

Ymi = αmniT +
X25

j= 1

X
k=A,C,G

βmjkIijk +
X

l=A,C,G,T

γmln
2
il + «mi , [4]

where nil is the number of nucleotides l in probe i, αm is a baseline value
derived from the number of Ts on the probe, Iijk is a function that indicates
Iijk = 1 if the nucleotide at position j is k for probe i, βmjk represents the effect
of each base k (except T, which is already modeled via αm) at each position
j, γml is the squared effect of the nucleotide count, and «mi is an error term
specific to each probe and is assumed to follow a Gaussian distribution.
The background model parameter estimates and UPC values are then obtained
for each sample individually using the EM algorithm as described above.

Deriving UPCs for Two-Color Microarrays. In addition to bias introduced by
probe composition effects, two-color arrays suffer from bias stemming
from the different dyes used as well as from correlation between the two
channels. For these arrays, we use a two-step approach: the first step is
a standardization that removes the probe and dye effects as well as the
correlation between channels. The probes are grouped into “bins” based
on the total number of G and C nucleotides (G + C count), and the probes
are then standardized within the G + C bin. This approach accounts for
array and probe composition effects and for differences in the channel
correlation across G + C bins as illustrated by our previous work (29). Our
approach assumes that the probe intensities from probe i in G + C bin k,
denoted Yi = ðYi1,Yi2Þ follow a bivariate normal distribution on the log
scale, namely,

logðYiÞ= ðlogðYi1Þ,logðYi2ÞÞ∼Nðmk ,ΣkÞ, [5]

where mk = ðμ1k ,μ2kÞ is the vector of means for the logged probe intensities
and Σk is the variance–covariance matrix for G + C bin k. We standardize the
data as follows:

Si =Σ−1=2
k ðlogðYiÞ−mkÞ, [6]

where Σ−1=2
k is the inverse “square root” of the variance–covariance matrix.

This square root is obtained by first obtaining the eigenvalue decomposition
of the matrix, namely Σk =VΛV−1, where V is a matrix of eigenvectors and Λ
is a diagonal matrix containing the eigenvalues. The inverse square root is
obtained by inverting and square rooting the diagonal matrix of eigenval-
ues and then reconstructing the matrix, Σ−1=2

k =VΛ−1=2V−1. It can be shown
that the transformation in Eq. 6 will zero-center and variance-standardize
the data while removing the correlation between channels. Once the data
are standardized, we can barcode the samples one channel at a time by
assuming a simple mixture model, namely for channel c: Yc1i ∼Nðμc1,σ2c1Þ and
Yc2i ∼Nðμc2,σ2c2Þ and applying the general approach described above. The
background model parameter estimates and UPC values are obtained for
each sample individually using the EM algorithm as described previously.

Deriving UPCs for RNA-Seq Experiments. There is also a need for background
and normalization models for RNA-Seq data, although the bias comes from
different sources than inmicroarrays. Potential sources of bias are sequencing
errors, read-mapping errors, nucleotide composition effects, and gene length
biases (longer genes are likely to be sequenced more often than shorter
genes). In addition, we have observed that, in RNA-Seq experiments, at least
a few reads are typically mapped to a large proportion of genes. We do not
believe this high number is caused by mapping errors or that all of the genes
in these tissues are active. Instead, we attribute this high number to a phe-
nomenon we term “leaky transcription,” meaning that, in any given gene in
a tissue, there are at least a handful of cells expressing the gene (30). When
we log the read counts, this effect manifests itself in a strong bimodal dis-
tribution that clearly justifies the need for a mixture-modeling approach.

In one approach, we approximate the background and background-plus-
signal distributions of the log-read counts using a mixture of normal dis-
tributions, namely Y1i ∼NðXθ1,σ21Þ and Y2i ∼NðXθ2,σ22Þ, where Xθm is the mth
mixture component of the bias model for a given m:

Ymi = αm +GCiβm + liδm + «mi , [7]

where αm is the intercept, βm is the effect of the gene’s G + C ðGCiÞ content,
and δm is the effect of the log of the gene length ðliÞ.

Alternatively, because of the discrete nature of RNA-Seq (count) data and
therefore a possibly skewed background distribution, we have also ap-
proximated the background and background-plus-signal distributions using
mixtures of log-normal or negative-binomial distributions. The log-normal
approach is identical to the normal approach, except that we replace the

normal density with a log-normal distribution, namely Y1i ∼ LN
�
Xθ1,σ21

�

and Y2i ∼ LN
�
Xθ2,σ22

�
. For the negative-binomial regression, we used

Y1i ∼NBðXθ1,φ1Þ and Y2i ∼NBðXθ2,φ2Þ, where Xθm represents the mean and
φm represents the dispersion factor as described previously (8, 31). Imple-
mentations of all three approaches (normal, log-normal, negative-binomial)
are provided in our software package. However, in general, we have ob-
served that the mixture of Gaussian distributions is more stable and per-
forms better based on comparisons across platforms and technical replicates
(described above).

Due to the large number of zero values commonly observed in RNA-Seq
data, we excluded these values before UPC calculations and output a default
value of zero for these genes.

Data Processing Performed for Comparative Analyses.Microarray and qPCR data
were downloaded from the Gene Expression Omnibus (GSE11045, GSE12946,
GSE5350) and from www.affymetrix.com/support/technical/sample_data/
datasets.affx. Raw RNA-Seq data were downloaded from the Short Read
Archive (SRA000299, ERP000546, SRP000727). RNA-Seq reads from SRA000299
were trimmed to 32 bp in accordance with a recommendation from the
original authors.

Microarray probe values were mapped either to Affymetrix probe set
identifiers or to genes [using BrainArray mappings (32)] and then summa-
rized using a 10% trimmed mean.

RNA-Seq reads were mapped to the human reference genome using
TopHat (33), GNUMAP (12), and/or Burrows–Wheeler Aligner (18). Default
GNUMAP settings were used, other than an alignment-score threshold of
80%. The HTSeq (www-huber.embl.de/users/anders/HTSeq/) and mpileup
(34) tools were used to generate read counts for genes and/or genomic
regions covered by the microarrays. RPKM values (5) were calculated
using a custom script. CQN values were calculated using the cqn package
(14). UPC values were calculated using convergence thresholds of 0.01
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(microarray), 0.001 (RNA-Seq normal-normal, log-normal), or 0.01 (RNA-
Seq negative-binomial).

The Weka (35) and ML-Flex software packages (36) were used for the
biomarker analysis. The k-nearest neighbor implementation in Weka uses
the Mahalanobis distance (37), which is invariant to scale. The ROCR package
(38) was used to generate ROC plots. The gplots package (39) was used
to generate heat maps. All scripts used to execute the analyses described
in this paper are available upon request. Software for deriving UPCs is freely

available from www.bioconductor.org/packages/release/bioc/html/SCAN.
UPC.html.
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