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Invasive species have great ecological and economic impacts and
are difficult to control once established, making the ability to
understand and predict invasive behavior highly desirable. Pre-
emptive measures to prevent potential invasive species from
reaching new habitats are the most economically and environ-
mentally efficient form of management. Darwin’s naturalization
hypothesis predicts that invaders less related to native flora are
more likely to be successful than those that are closely related to
natives. Here we test this hypothesis, using the weed-rich thistle
tribe, Cardueae, in the California Floristic Province, a biodiversity
hotspot, as our study system. An exhaustive molecular phyloge-
netic approach was used, generating and examining more than
100,000 likely phylogenies of the tribe based on nuclear and chlo-
roplast DNA markers, representing the most in-depth reconstruc-
tion of the clade to date. Branch lengths separating invasive and
noninvasive introduced taxa from native California taxa were used
to represent phylogenetic distances between these groups and
were compared at multiple biogeographical scales to ascertain
whether invasive thistles are more or less closely related to natives
than noninvasive introduced thistles are. Patterns within this
highly supported clade show that not only are introduced thistles
more closely related to natives more likely to be invasive, but
these invasive species are also evolutionarily closer to native flora
than by chance. This suggests that preadaptive traits are impor-
tant in determining an invader’s success. Such rigorous molecular
phylogenetic analyses may prove a fruitful means for furthering
our understanding of biological invasions and developing predic-
tive frameworks for screening potential invasive taxa.
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Spread beyond their native ranges, some species have become
numerically and ecologically dominant in new regions (1) and

become of great interest and concern to scientists, policymakers,
and the public. Such invasive species, sensu Colautti and MacIsaac
(2), affect biodiversity, ecosystem function, and human health (3)
and have ecological and economic impacts that cannot be ignored
(4, 5), making the ability to understand and predict the inva-
siveness of species of great importance. Also, once exotic species
become established in a new region, they are often extremely
difficult to control (6, 7). Identifying and preventing new po-
tentially invasive exotic species from reaching ground zero is, by
far, the most economically and environmentally efficient man-
agement method (8). Hence, there is great need for early warning
systems to determine the probability that a given species will
become invasive (9–12).
The number of plant species introduced into the United States

far exceeds that of other groups of organisms (13). However,
although many case studies have illuminated various aspects of
plant invasions (14–22), it has proven difficult to quantify and/or
make generalizations about traits, characteristics, and circum-
stances that contribute to plant invasiveness across multiple
geographic scales and ecological systems (10, 23–28). The diffi-
culty of devising a framework to predict the behavior of exotic
plants following dislocation and the challenges of designing

effective control strategies for the ones that have become in-
vasive result from the uniqueness of the organisms involved in
each case, as well as the complexity of interactions between
invaders and native communities (29). Few studies have provided
a practical means of addressing these issues (30, 31).
Quantifiable measures that can provide robust predictions are

therefore required (32), and phylogenetic relationships between
native and introduced taxa may reveal patterns that invoke
testable hypotheses that could not be derived from examining
species traits alone (33). Distinct sets of traits evolve in response
to environmental conditions, which in turn reflect past and
present selection pressures and are therefore expected to differ
not only among geographic regions and local communities (34),
but also among evolutionary lineages. Hence species’ responses
are not statistically independent from their shared evolutionary
histories (35–37), and phylogeny may affect a species’ biotic
interactions when it is introduced to a novel environment (38).
As Darwin (39) observed, this results in a link between the
evolutionary relatedness of organisms in a community, their
characteristics, and the ecological processes that determine their
distributions and abundance. Darwin’s naturalization hypothesis
posits that invaders that are closely related to native taxa are less
likely to be successful than those that are not. Assuming evolu-
tionary relatedness is correlated with ecological similarity, such
a pattern might emerge as a result of niche overlap and com-
petitive exclusion between introduced taxa and their native rel-
atives, in addition to being subject to the same predators and
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pathogens (40, 41). The enemy escape hypothesis also supports
this view (42, 43). An alternative, opposing hypothesis is that
relatedness to native taxa may convey degrees of preadaptation
to the conditions of the invaded environment, rendering close
relatives more likely to succeed once introduced (32, 39, 44).
Previous studies have been equivocal, finding evidence both

for (30, 31, 38, 45–50), and against (24, 32, 41, 44, 51–55) Darwin’s
hypothesis. However, few have used a strict phylogenetic ap-
proach based on evolutionary divergence, instead predominantly
relying on taxonomic ranks (e.g., refs. 45 and 56, reviewed in
refs. 57 and 58), which are highly subjective as measures of re-
latedness (59). In instances where phylogenetic trees were used,
some have used supertrees compiled from multiple studies (46,
60, 61), with estimated branch lengths that may not accurately
reflect the evolutionary distances between taxa. Other studies
have been based on community phylogenetic trees (47, 60, 62).
This approach may be problematic, as communities are not
necessarily monophyletic groups, but collections of co-occur-
ring species whatever their evolutionary relationships may be
(63), and sampling in such studies is unlikely to include ade-
quate representation of all lineages present, whereas phylo-
genetic analyses assume monophyly of the ingroup and their
accuracy is dependent on sampling that is representative of
the diversity within (64, 65).
This study sought to address theoretical and methodological

issues that may have limited progress toward resolving Darwin’s
naturalization conundrum (56) by using phylogenies based on
molecular markers to assess the evolutionary distances between
native and nonnative taxa in a strongly supported monophyletic
group, the thistle tribe (Cardueae, Asteraceae), in a well-defined
biogeographic area, the California Floristic Province (CAFP)
(66, 67). The thistles of California offer an ideal opportunity to
test Darwin’s hypothesis. The tribe, which boasts an impressive
list of Mediterranean and temperate invaders, is most prolific in
Mediterranean climate regions, which not only rank among the
most biodiversity-rich biomes on the planet (68, 69), but among
the most imperiled as well (70–74). The CAFP is one of such
biodiversity hotspots, as defined by Conservation International,
and is often recognized as a biogeological entity (75, 76). Also,
programs and legislation regarding invasive taxa are usually state
specific, making the study of invasive Cardueae in California
both politically and biologically meaningful.
Phylogenies of Cardueae based on sequences from three ge-

nomic regions commonly used in phylogenetic studies of angio-
sperms were generated with taxon sampling representing the full
lineage diversity of the tribe, including all species native and
naturalized in the CAFP. Phylogenetic trees were constructed
using parsimony, maximum likelihood, and Bayesian approaches.
Phylogenetic distances of invasive and noninvasive introduced
species from natives were compared using a comprehensive set
of metrics and statistical tests to assess the utility of phylogenetic
distance from natives as a predictor of invasive behavior. This
study finds evidence contrary to Darwin’s hypothesis and dem-
onstrates the robustness of such metrics, which should be more
informative and meaningful than taxonomic groupings (30, 46,
77–79), especially when supported by a well-resolved molecular
phylogeny.

Results
Phylogenetic trees of 202 species spanning the entire diversity of
Cardueae, including the 51 species that occur in the CAFP, were
constructed using Bayesian inference, maximum likelihood, and
parsimony analyses based on two different combinations of three
genomic regions: the internal transcribed spacer 1, 5.8S rRNA
gene, and internal transcribed spacer 2 (nrDNA, ITS); the trnL
intron, the 3′ trnL exon, and the intergenic spacer between trnL
and trnF (cpDNA, trnL-trnF IGS); and maturase K (cpDNA,
matK), per Sussanna et al. (80). Of the 73 recognized genera
(81), 61 were represented. The issue of whether wider sampling
of taxa is more important to accurate phylogenetic recon-
structions than wider sampling of characters has been debated

(82). Hence, two datasets, one with 165 taxa represented by
three markers and another with 202 taxa represented by two
markers, were examined. The chloroplast matK region was
excluded in the two-marker dataset, as it contained the least
number of variable sites.
The total number of possible topologies examined for both

datasets and three tree building methods combined was 112,626.
These trees represent the most thoroughly sampled phylogenetic
reconstructions of the tribe Cardueae to date. The Bayesian
consensus tree in Fig. 1 illustrates the phylogenetic distribution
of species of the four possible biogeographic and ecological
categories used in this study (invasive, noninvasive exotic, native,
and not present in CAFP), and is largely congruent with previous
studies, including the paraphyly of subtribe Carduinae and strong
support for the monophyly of Centaureinae as traditionally cir-
cumscribed (80, 83). Nonnative (introduced) species were clas-
sified as either invasive or noninvasive based on the California
Invasive Plant Council invasive plant inventory (84).
The mean phylogenetic distance between each introduced

species and all native species (MPD) and that between each
introduced species and its nearest native relative (MNND) were
calculated separately for invasive and noninvasive introduced
species, and the results were compared for all 112,626 trees.
Invasive species were significantly more closely related to the

Fig. 1. Bayesian majority rule consensus tree of Cardueae (ITS+matK+trnL-
trnF). Tips represent species, which are color coded according to their in-
vasive status. Blue circles on the nodes indicate posterior probabilities of 0.9
and higher; gray circles represent posterior probabilities of 0.75 and higher.
Major subtribes are labeled, and OG represents the outgroup.

17916 | www.pnas.org/cgi/doi/10.1073/pnas.1309948110 Park and Potter

www.pnas.org/cgi/doi/10.1073/pnas.1309948110


native community than were noninvasive exotic species in all
topologies examined (P < 0.05). Invasive species also tended to
have significantly closer nearest native relatives than noninvasive
exotics in 99% of the trees tested (Table 1). Also, Cardueae
species not occurring in CA were found to be significantly less
related to the native CA thistle community than were invasive
nonnative CA Cardueae in all cases (Table S1).
To further examine the nature of the nonnative community of

thistles in CA, the net relatedness index (NRI), a standardized
measure that quantifies the degree of clustering of taxa over the
entire phylogeny, and nearest taxon index (NTI), a measure of
nearest taxon distance that quantifies the clustering of the ter-
minal nodes (85, 86), were calculated as follows:

NRI=−ðMPDobs −MPDrndmÞ=ðSdsMPDrndmÞ
NTI=−ðMNNDobs −MNNDrndmÞ=ðSdsMNNDrndmÞ;

where MPDobs and MNNDobs are the mean phylogenetic dis-
tance and mean nearest neighbor distance between introduced
species and native species of the observed original data and
MPDrndm and MNNDrndm are those of 10,000 randomly gener-
ated communities. SdsMPDrndm and SdsMNNDrndm refer to the
SDs of the MPDs and MNNDs of the random assemblages.
P values for the calculated NRI/NTIs were obtained by dividing
the number of random assemblages with means greater than or
equal to observed by the number of randomizations + 1 (85).
Thus, positive NRI/NTI values indicate phylogenetic clustering,
and negative values indicate overdispersion, relative to the native
community. Positive values were retrieved in all instances for

invasive taxa, indicating that invasive taxa were more closely re-
lated to their respective nearest native relatives, as well as to the
native thistle community as a whole, than would be expected by
chance. Results were statistically significant (P < 0.05) in nearly
all of the topologies investigated (Table 1). In contrast, nonin-
vasive exotic taxa were not significantly closer to native species
than by chance.
To examine Darwin’s naturalization hypothesis at a local and

possibly more ecologically meaningful scale (57), the afore-
mentioned analyses were replicated at the level of individual
bioregions, using the phytogeographic boundaries as defined in
The Jepson Manual (Table 1) (87). Again, the majority of the
investigated evolutionary topologies resolved invasive species as
more closely related to the natives than are noninvasive exotic
taxa. Despite smaller sample sizes, in most bioregions, invasive
species were significantly more closely related to native species
than by random chance as well. However, these patterns were
not as well supported in the Great Central Valley as in the other
bioregions, which generally represent coastal and mountainous
areas of California.
These results suggest that, within the thistle tribe, introduced taxa

more closely related to the native community and/or have closer
native relatives are more likely to become invasive than those that
are more distantly related to natives. The robustness of this pattern
is demonstrated by the fact that it was upheld atmultiple geographic
scales, across various tree-building approaches.

Discussion
In themidst of a plethora of conflicting results andmethodologies,
some have argued that predicting which species will be invasive is

Table 1. Proportion of evolutionary topologies contrary to Darwin’s naturalization hypothesis

Maximum parsimony Bayesian inference

Bioregion Statistic
ITS+matK+trnL-F

(n = 13,528)
ITS+trnL-F
(n = 19,092)

ITS+matK+trnL-F
(n = 40,002)

ITS+trnL-F
(n = 40,002)

Sum of all trees
(n = 112,626)

CAFP MPD 100.00 100.00 100.00 100.00 100.00
MNND 100.00 100.00 99.70 96.81 98.76
NRI 100.00 100.00 99.99 99.21 99.72
NTI 100.00 100.00 99.86 90.01 96.40

CaR MPD 100.00 100.00 100.00 100.00 100.00
MNND 100.00 100.00 91.12 91.79 93.93
NRI 100.00 98.82 84.55 35.28 71.32
NTI 100.00 99.41 83.03 35.11 70.83

CW MPD 100.00 100.00 100.00 100.00 100.00
MNND 100.00 100.00 100.00 100.00 100.00
NRI 100.00 100.00 99.94 94.41 97.99
NTI 100.00 100.00 99.93 94.20 97.91

GV MPD 100.00 100.00 100.00 100.00 100.00
MNND 100.00 0.31 95.58 42.08 60.96
NRI 18.13 0.00 2.21 0.02 2.97
NTI 19.20 0.00 2.21 0.02 3.10

NW MPD 100.00 100.00 100.00 100.00 100.00
MNND 0.00 0.00 90.61 10.19 35.80
NRI 100.00 100.00 99.12 58.85 85.07
NTI 96.69 12.48 93.07 17.33 52.94

SN MPD 100.00 100.00 100.00 100.00 100.00
MNND 100.00 100.00 99.99 68.89 88.95
NRI 100.00 100.00 99.98 90.92 96.77
NTI 100.00 100.00 99.97 89.66 96.32

SW MPD 100.00 100.00 100.00 100.00 100.00
MNND 0.00 100.00 3.52 100.00 53.72
NRI 100.00 100.00 100.00 99.97 99.99
NTI 100.00 100.00 100.00 99.98 99.99

Values indicate the percentage of P values thatwere<0.05, when investigatingwhether invasive taxa are significantlymore closely related to natives than are
noninvasive exotic taxa (MPD, MNND), or more closely related to natives than by random assembly (NTI, NRI). Bioregions are abbreviated as follows: Cascade
Ranges (CaR), Central Western California (CW), Great Central Valley (GV), Northwest California (NW), Sierra Nevada (SN), Southwestern California (SW).
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nigh impossible (11); however, there may exist an optimal scale
and scope of analysis at which the prediction of invasiveness is
feasible, focusing on meaningfully circumscribed taxonomic and
biogeographic entities (88). The phylogenetic scope of this study,
encompassing a highly supported clade of 202 species within 64
genera, allows for circumvention of some of the problems that
might occur in similar studies aimed at testing Darwin’s natural-
ization hypothesis at lesser or greater taxonomic scales. Examin-
ing the relationships between introduced species and native
species where the community is composed of taxa classified in
multiple families (47) and possibly separated by over a hundred
million years of evolution (89), may not be ecologically mean-
ingful, as it becomes difficult to assume ecological similarities
between such taxa are the result of shared evolutionary history.
Also, at such a large scale, it is difficult to construct well sampled,
robust phylogenies of an all-encompassing monophyletic group.
At the other extreme, examining the relationships among species
within a smaller clade, as might be represented by a single genus,
would likely provide results whose applicability to other situations
would be quite limited. The scale used here provides a reasonable
middle ground where taxa maintain a relatively high level of ge-
netic and structural uniformity, yet are diverse enough to display
a wide range of ecological adaptations.
The reliability of such comparative analyses depends on

whether the phylogeny used accurately reflects the true evolu-
tionary history of the taxa involved. However, phylogenetic
reconstructions are prone to error and uncertainty, and most
studies currently use one or few working phylogenies (90). Here,
by examining a large number of likely evolutionary scenarios
generated by a range of methods, it was possible to deal, to an
extent, with the problem of phylogenetic uncertainty.
Results of this study suggest that introduced species with

highly negative ecological impacts are phylogenetically closer to
their native counterparts than are largely benign, noninvasive
introduced species. Together with the finding that these invasive
species were more closely related to native taxa than by chance,
this suggests that preadaptive advantages, evolved over shared
history and shared through common ancestry, may outweigh the
importance of enemy escape or competitive exclusion, at least in
certain stages of biological invasions. This trend mirrors those
found in studies using taxonomic ranks and supertrees at large
continental scales (44, 55, 91, 92) but has rarely been observed at
local community scales (61).
Although invasive species tended to be closer to both the

native community (MPD) and their closest native relatives
(MNND) than were noninvasive introduced species, higher
support was found for the former in most of the cases analyzed
here. Distances to the nearest native relatives may reflect simi-
larity to, and competition with, a single species, the one likely to
hold the closest ecological niche, and therefore may be a metric
that better reflects Darwin’s original rationalizations than mean
distance to the entire native community (46). However, given
that the CAFP native taxa are highly clustered phylogenetically,
the slightly lower support for each invasive thistle having a closer
native relative than each noninvasive introduced thistle is likely
an artifact of small sample size.
Although the same patterns were found at the bioregion level,

the results were not as highly supported across all phylogenies.
This finding is not unexpected, as the sample sizes were con-
siderably smaller (n < 30), and the results should be interpreted
with caution. Indeed, the fact that these patterns were upheld
across bioregions and phylogenies to this degree, although sur-
prising, suggests that preadaptations continue to be important to
species’ success at local scales and is a testament to the robust-
ness of using phylogenetic relatedness to gauge the success of
invading thistles. Interestingly, further support was found when
examining the species compositions of natural reserves in the
University of California Natural Reserve System for which spe-
cies lists are publically available (93). Of the 14 reserves in which
both native and invasive thistle species co-occur, 12 had at least
one invasive species in the same genus with a native, supporting

the patterns found at larger scales. No noninvasive introduced
thistles were found in the reserve system. However, the Great
Central Valley of California seems to be an exception; although
this region is far from being the smallest, or most thistle-free
bioregion, little support was found for phylogenetic relatedness
determining the success of introduced taxa. This result is likely
due to the fact that the Central Valley is predominantly farmland
and grazing land for livestock and is almost entirely in private
ownership (94). Very little land is left unmanaged, and remain-
ing natural habitats are mostly small and fragmented. It may be
impossible to observe ecological patterns underlying biological
invasions in such areas.
Only a small fraction of the many exotics that have been in-

troduced to alien habitats over the years have become highly
invasive (93). Clearly, the net outcome of a plethora of oppor-
tunities and obstacles introduced plants are faced with will de-
termine whether their populations ultimately thrive against, or
are suppressed by, the native community (2). As demonstrated
here, a phylogenetic framework can represent such interactions
by addressing the shared evolutionary history of species. Thus,
the evolutionary relatedness of exotic taxa to natives can provide
information for identifying threats to native communities, as well
as extending our understanding of why certain introduced spe-
cies prove to be more invasive than others. This study suggests
that monitoring and regulating exotic species that are closely
related to native taxa but not yet introduced or escaped should
be a priority.

Methods
Study System. The Asteraceae, the largest eudicot family and possibly the
largest angiosperm family, represents 8% of all flowering plant species and,
although most prominent in drier, Mediterranean climates, can be found on
all continents except Antarctica (95). While comprising many important crop
and horticultural species, the family also includes a disproportionately high
global representation of invasive species (96, 97). Of specific interest is the
thistle tribe, Cardueae, one of the largest tribes of Asteraceae, with ∼2,500
species. Previous molecular studies have unanimously confirmed Cardueae
as monophyletic (80, 95, 98–101). The tribe comprises roughly half of the
invasive Asteraceae species in California, as well as many natives and
endemics (102). Native and nonnative introduced taxa were delimited
according to the second edition of The Jepson Manual (87).

Collecting Materials. Sampling was based on previous systematics studies (80,
83, 101) to represent most of the genera and major clades of the tribe
Cardueae. Plant material was collected both from the field and herbarium
specimens. A small amount of leaf tissue was removed from each specimen
and dried in silica gel and/or frozen for DNA extraction. Collected specimens
were pressed and deposited at the University of California–Davis Center for
Plant Diversity. Relevant sequences were also downloaded from GenBank.
Species were chosen to represent the entire diversity of the tribe and ach-
ieve sufficient depth of taxon sampling within that monophyletic group. To
minimize inaccurate placements of taxa, sampling of hybrids was avoided.
The origins of the samples and their GenBank accession numbers are listed in
Table S2.

DNA Extraction, Amplification, and Sequencing. DNA extractions were per-
formed using Qiagen miniprep kits. The ITS region was amplified and se-
quenced using primers ITS6 and ITS9 (103) and separately using combinations
of ITS2 and ITS5, and ITS3 and ITS4, respectively (104). The trnL intron, the
3′ trnL exon, and the intergenic spacer between trnL and trnF were ampli-
fied and sequenced together. The universal primers trnL-c and trnL-f were
used for amplifying the trnL-trnF IGS region. In some cases, combinations of
trnL-d and trnL-e were used together as well (105). The first 1,000 bp of the
5′ end of the gene maturase K (matK), which account for most of the var-
iability found in the gene (106), were amplified with the primers trnK-710 F
(107) and AST-1R (101). In some cases, combinations of the primers matK1F,
matK1R,matK2F, andmatK2R were used as well (95). PCR products were run
on a 1% agarose gel. Identifiable bands were cut out and purified with
Qiagen Gel Extraction Kits. Sanger sequencing of the purified PCR products
was performed on ABI 3730 Capillary Electrophoresis Genetic Analyzers at
the University of California–Davis College of Biological Sciences Sequencing
Facility, with the same primers used for amplification.
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Phylogenetic Analyses. The ITS region, as well as the chloroplast matK gene
and the trnL-F region, was chosen not only because of their widespread use
in phylogenetics, but also because the combination of relatively fast-evolv-
ing regions and slower ones was necessary to provide the required deep and
shallow level resolution for performing phylogenetic analyses at the species
level. The combination of these markers has been used in previous studies of
the group (80, 83), and Shimodaira-Hasegawa tests (108) were performed in
PAUP (109) to confirm lack of significant conflict in phylogenetic signal
between nuclear and plastid regions (Table S3). Sequences of each region
were aligned independently with ClustalX (110), edited further by hand
using MEGA5 (111), and combined into a single matrix. Multiple phylogenies
of the tribe Cardueae were estimated based on two combinations of the
three aforementioned markers: ITS and trnL-F (n = 202) and ITS, trnL-F, and
matK (n = 165). To minimize error and bias in taxon placement and branch
length calculations, all taxa in the phylogenies were represented by all
markers, with only 0.15% missing data. In addition, to investigate a full
breadth of possible evolutionary scenarios, three different tree building
methods were used as described below.

Garli 2.0 (112) was run on the Cipres Science Gateway server to generate
maximum likelihood (ML) phylogenies. The general time reversible (GTR+ Γ+ I)
(113) model was used with default settings. Four parallel runs were performed
to ensure that the resulting treewas not lodged on a local optimum.Maximum
parsimony analyses were conducted with PAUPRat (114) through the Cipres
Science Gateway. Analyses were run with default settings with TBR branch
swapping for 43,000 Ratchet repetitions and 200 Ratchet iterations for the ITS+
trnLF dataset and 50,000 repetitions and 200 iterations for the ITS + trnL-F +
matKdataset, yielding 19,092 and 13,528most parsimonious trees, respectively.
Maximum likelihood trees andbootstrap values are presented in Figs. S1 and S2.
Bayesian inference analyses were carried out usingMrBayes 3.2.1 (115). Models
of molecular evolution were evaluated with JMODELTEST (116); the best fit
models were GTR + Γ + I for ITS and GTR + Γ for plastid regions, based on both

the modified Akaike information criterion and Bayesian inference criterion.
Analyses were run under default settings for 13 million generations, sampling
twoMarkov chainMonte Carlo (MCMC) chains every 500 generations. A total of
40,002 trees were saved for each dataset after discarding 23% as burn-in.

Investigating Darwin’s Naturalization Hypothesis. To assess whether exotic
invaders tend to be more closely related to their native relatives, the MPDs
from each nonnative taxon to all native taxa, as well as the distance from each
nonnative taxon to its nearest native relative, i.e., the MNNDs, were calcu-
lated using the ICOMDIST function in phylocom (85). These two metrics were
compared using a t test in R (117). To determine the degree to which vari-
ance in tree topologies affects these results, this process was repeated for all
of the phylogenies generated by the aforementioned methods using a cus-
tom Perl script, for a total of > 100,000 trees. Identical analyses were also
conducted at the bioregion level as defined by The Jepson Manual (87), to
seek a more focused view of species interactions.

Custom R scripts were used to calculate NRI and NTIs across all phylogenies.
In accordance to the independent swap null model, nonnative taxa were
randomly sampled to generate random exotic assemblages of equal species
richness as observed communities (118). A total of 10,000 random assemb-
lages were generated per tree.
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